Nonlinear analysis of thermal behavior for a small satellite in Low Earth Orbit using many-node model

  • Pham Ngoc Chung
  • Nguyen Dong Anh
  • Nguyen Nhu Hieu

Abstract

In this paper, nonlinear thermal responses of a small satellite in Low Earth Orbit (LEO) are analyzed using many-node model. The main elements of primary structure of the satellite include six rectangular cover plates and a solar array linking with satellite's body. These elements can be modeled as different lumped thermal nodes. We use an eight-node model for estimating temperatures at nodal elements i.e. six nodes for cover plates, and two nodes for front and rear surfaces of the solar array. The nodes absorb three major heat energy sources from the space environment consisting of solar irradiation, Earth’s albedo and infrared radiation. The established system of thermal balance equations for nodes is nonlinear and is solved by a numerical algorithm. For simulation purpose, it is assumed that the satellite always remains Earth-pointing attitude during motion. Temperature evolutions of nodes in time are explored in details. The obtained results show that the predictive temperature values of nodes are within the allowable temperature limit range of the satellite.

điểm /   đánh giá
Published
2018-05-23
Section
ARTILES