

DOI: 10 15625/0866-708X/54/3/7253

## AN ESTIMATION OF BAMBOO BORER BIOMASS IN SON LA PROVINCE, NORTHWESTERN VIETNAM AND REMARKS ON ITS PARASITIC CHARACTERISTICS

### Pham Quynh Mai

Institute of Ecology and Biological Resources, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi

### Email: pqmai70@gmail.com

Received: 9 October 2015, Accepted for publication: 29 March 2016

#### ABSTRACT

The population of Vietnam has been rapidly increased and would reach 100 million people in the near future. It is very likely that the sources of traditional food are insufficient to the whole population. Therefore, a study for sustainable usage of insects as a supplemental food far human in the future is clearly required. In fact, larvae of bamboo borer, *Omphika fuscidentalis*, has been used as a kind of foods by local people in mountainous provinces in northern Vietnam. It also appears as a trade product in local markets. This paper presents the results of recent studies on the infested rates of bamboo borer larvae from different bamboo species. An assessment of its paratite characteristics and an estimation of biomass in Son La province are also given in this paper.

Keywords estimation, biomass, food, insect, Omphisa fuscidentalis, Vietnam.

### 1. INTRODUCTION

Scientific research to use insects as a kind of food for human is essentially important [1, 2]. Omphinsa firscidentalis is a tropical species [3, 4], which distributes in the Southeast Asian region including Vietnam [5, 6, 7]. The species has been exploited for food by local people in northem Vietnam for many years It inhabits shoots of bamboo and other plant species. In Son La province, bamboo shoots annually growth in early summer, between April and May. Adult borer lays an egg cluster on a bamboo shoot in June. The newly hatched larvae bore a hole through the internodal wall so that all larvae from the egg cluster move into the internode and feed on the internodal wall so that all larvae from the egg cluster move into the internode and feed on the between nine and the ree body, larvae bore a hole through the septum and move upward from an internode to another internode in order to obtain fresh inner pulp. The larvae inhabit internode between nine and ten months. In April, they find the original internode or the internode just above the original one to pupate in the middle of the following April. Eclosion takes place inside the internode thus lasts from mid-June untl early April of the following year [9]. Nutritional value of Omphina fuscidentalis bamboo borer has also been identified. Of which, every 100mg of dry bamboo borer contains 26.29 % protein and 50.54 % fat [6, 10]. Bamboo borer is one of the insect spectes supplying local people with food and other products. The species would play important role in development of social economics in mountainous regions of Vietnam.

- Ô

## 2. STUDY SITES AND METHODS

### 2.1. Study sites

Field surveys were implemented in six communes and one town of Son La province: Chieng Sinh, Ta Xua, Gia Phu, Phu Yen town (Phu Yen), Muong Sai, Muong Lum, Chieng Son (Fig. 1)



Figure 1 The study sites in Son La province, northern Vietnam.

### 2.2. Methods

RRA (Rapid Rural Approach) was employed to understand the natural and socioeconomic features in the study areas. Questionnaires were produced for interviews during the field surveys. Information from the interviews was analyzed using the PRA (Participatory Rural Approach) method for obtaining proper results.

Distributional data of bamboo species and their biomass were obtained from published literatures and local institutions. Son La Statistics office 2013 [11]; A list of all plant species in Vietnam [12]; Separate Forest Inventory and Planning Institute North West [13].

Bamboo species were identified following Anantachot [14], Dransfield and Widjaja [5], Watcharapuk [15], A hst of all plant species in Vietnam [11]; Leksawasdi [8]; Separate Forest Inventory and Planning Institute Northwest [12]; Garden et al. [7]:

To determine the infection rate of borer within each bamboo species, at each study site, the author conducted surveys of 25 random bamboo clusters. Based on observational data. The age of bamboo clusters and the rate of bamboo trees infected by borer were estimated using observational data. Number of borers were averaged were collected from at least 30 bamboo trees then calculated for an average

# 3. RESULTS AND DISCUSSION

# 3.1. Distribution of bamboo species and infection of O. fuscidentalis



At least 20 bamboo species belonging to the subfamily Bambusoideae were found in the seven study areas in the Son La province. The author conducted research on ca. 60,260 trees of each species. Borer was found from ten bamboo species. The parasite rates of borer are given in Table 1.

| No. | Scientific names                                    | Rate of<br>infected<br>borer (%) | No. | Scientific names                                 | Rate of<br>infected<br>borer (%) |
|-----|-----------------------------------------------------|----------------------------------|-----|--------------------------------------------------|----------------------------------|
| ł   | Ampelocalamus<br>patellaris (Gamble)<br>Stapleton   | 0                                | 2   | Bambusa agrestis (Lour)<br>Poir.                 | 0                                |
| 3   | B. bambos (L.) Voss.                                | 2.7                              | 4   | B. biumeana Schult. &<br>Schult.f                | 3.5                              |
| 5   | B multiplex (Lour.)<br>Raeusch.                     | 0                                | 6   | B. nutans Wall.ex Munro                          | 2.1                              |
| 7   | B tuldoides Munro                                   | 0                                | 8   | B. vulgaris Schrad in Wendl.                     | 3.2                              |
| 9   | Dendrocalamus asper<br>(Schult.f.) Back ex<br>Heyne | 5.3                              | 10  | D. brandisii (Munro)<br>Kurz                     | 1.5                              |
| 11  | D giganteus Munro                                   | 3.8                              | 12  | D hamilltonii Nees ex<br>Arn. ex Munro           | 4.9                              |
| 13  | D sericeus (Roxb ) Nees                             | 55                               | 14  | Indosasa amabilis<br>McClure                     | 0                                |
| 15  | 1 crassifolia McClure                               | 0                                | 16  | Gigantochloa levis<br>(Blanco) Merr.             | 5.1                              |
| 17  | Neohouzeaua dullooa<br>(Gamble) A Camus             | 0                                | 18  | Phyllostachys pubescens<br>Mazel ex H. de Lehaie | 0                                |
| 19  | Schizostachyum<br>acıculare Gamble                  | 0                                | 20  | Sinobambusa sat (Bal.)<br>T.Q. Nguyen            | 0                                |

Table 1 List of bamboo species distributing in Son La province and parasite rates of borer.

Ten bamboo species were infested by borers comprising Bambusa bambos, B. blumeana, B. nutans, B. vulgaris, Dendrocalamus asper, D brandisti, D. giganieus, D hamililonii, D sericeus, Giganiochhoa levis. Considerably, three species exhibited high infested rates: D sericeus, D asper and G. levis; four species exhibited an average infested rate of over 3 % endpands. In the series of the series o

The study results also indicated that borers are only found in 10 of the 20 known bamboo species in Son La province. The rates infected borer in 10 bamboo species are given in the Figure 2.

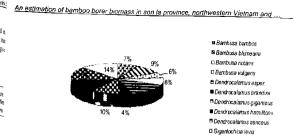



Figure 2 The rates infected borer in 10 bamboo species in Son La

Borers were only found in large bamboo trees of 5.0 - 7.0 meters in height with a root trunk of at least 10 cm in diameter. They were not found in small bamboo with body wall thinner than 0.5 cm. Remarkably, borers were only discovered in young bamboo, which is less than 12 months of age. The findings are equal to the developmental stages of the borer larvae, which is more or less 10 months.

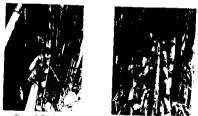



Figure 3 Bamboo trees were infested by O fuscidentalis

The bamboo trees infested by borers would be easily recognized. They develop abnormally Their bodies are stunted, often curved and crocked with short internode. The young bamboo trees normally growth up without the top (Fig. 3).

# 3.2. Parasitic characteristics and development of borer in bamboo trees

Bamboo shoots in Son La annually grow up in early summer, between April and May. Afterwards, adult female moths lay a mass of 80 - 130 white eggs on the bamboo sheaths, mostly at the base of bamboo shoot. Upon hatching, the first stage of young larvae was pale brown. After an arrangement nulo long rows, they found a suttable internode for infestation. The larvae got inside the bamboo internode for a new development stage. Their food is bamboo powder inside the internodes. During the developmental processes, larvae moved upward within the shoots for food (Fig. 4).





Figure 4 Bamboo borer in a bamboo internode.

The larval stages in the internodes lasted for more or less 10 months. Bamboo borer is found in young bamboo at any time. However, local people annually harvest them from September to November. Within these months, larvae reach the largest body size with the best quality for human food. Numbers of larvae from each studied bamboo species are presented in Table 2.

| No | Bamboo species | Number of borer<br>(individual<br>/bamboo) | No. | Bamboo species | Number of borer<br>(individual<br>/bamboo) |
|----|----------------|--------------------------------------------|-----|----------------|--------------------------------------------|
| 1  | B bambos       | 68 <u>+</u> 2.5                            | 2   | B. blumeanu    | 110 ± 4.2                                  |
| 3  | B nutans       | 45 ± 2.7                                   | 4   | B. vulgaris    | 75 ± 1.2                                   |
| 5  | D. asper       | 81 ± 3.6                                   | 6   | D brandisii    | 35 = 2.4                                   |
| 7  | D giganteus    | 95 ± 2.8                                   | 8   | D hamilltonii  | 125 + 3 5                                  |
| 9  | D. sericeus    | 105 ± 3.3                                  | 10  | G levis        | 130 + 3.7                                  |

Table 2. The average number of individuals of O fuscidentalis from each studied bamboo species.

Based on the number of borers from the studied bamboo trees, which can be divided into 3 groups of bamboo. Group 1: Bamboo hosts many borers (over 100 individuals/bamboo tree). There were four bamboo species in this group: *D. sericeus, B. blumeana, D. hamilltonii* and *G. levis*: Group 2: Number of borers in a range of 68 to 95 individuals per one bamboo. There were four bamboo species in this group: *B. bambos, B. vulgaris và D. asper and D. giganteus;* Group 3: Number of borer less than 50 individuals per one bamboo. There were two bamboo species in this group: *B. bambos, B. vulgaris và D. asper and D. giganteus;* Group in this group: *B. brandistii.* 

# 3.3. Estimated biomass of bamboo borer

To cater for the determination of bamboo borer biomass, the author determined an average weight of 10 borer. The study results showed that an average weight of 10 bamboo borers is 4.5 g Therefore, the average weight of 1 bamboo borer is 0.45 g. (Tab. 3).

| No | Bamboo species | Total of<br>bamboos<br>(tree) | Total of<br>infested<br>bamboo (tree) | Total of<br>bamboo borer<br>(individual)<br>110,636 | Total weight<br>of borer<br>bamboo (kg)<br>49.8 |
|----|----------------|-------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 1  | B. bambos      | 60,260                        | 1,627                                 |                                                     |                                                 |
| 2  | B. blumeana    | 60,260                        | 2,109                                 | 231,990                                             | 104 4                                           |
| 3  | B. nutans      | 60,260                        | 1,265                                 | 56,925                                              | 25.6                                            |
| 4  | B. vulgaris    | 60,260                        | 1,928                                 | 144,600                                             | 65.1                                            |
| 5  | D asper        | 60,260                        | 3,194                                 | 258,714                                             | 116.4                                           |
| 6  | D. brandisii   | 60,260                        | 904                                   | 31,640                                              | 110.4                                           |
| 7  | D. giganteus   | 60,260                        | 2,290                                 | 217,550                                             | 97.9                                            |
| 8  | D. hamiltona   | 60.260                        | 2,953                                 | 369,125                                             | <sup>97.9</sup><br>166,1                        |
| 9  | D. sericens    | 60,260                        | 3,314                                 | 347,970                                             |                                                 |
| 10 | G. levis       | 60,260                        | 3,073                                 | 399,490                                             | 156.6                                           |
|    | Total          | 602,600                       | 22,657                                | 2,168,640                                           | <u>179 8</u><br>975.9                           |

Table 3. Biomass of bamboo borcr in Son La.

The results in the Table 1 show that, the total of bamboo infested by bamboo borer (of 10 species of bamboo in Son La) are 33745 trees; The total of bamboo borers in 10 species of bamboos is Son La are 2,168,640 individuals with total weight of approximately 975.9 kg. The biomass of natural bamboo borer in Son La province could reach atomat 1,000 kg/year. The cost of larvae in local market is more or less 200,000 VND/kg. Therefore, the total costs for 975.9 kg valuable to tocal people communities.

In fact, weight of bamboo borers traded at markets was smaller than the estimated weight in the wild. Local people has just collected bamboo borers from bamboo trees around their houses or villages. Many bamboo species have naturally grown in protected areas of Son La province Currently, Son La contains five nature reserves including. Copia. Sop Cop, Ta Xua, Xuan Nha and Muong La. The total area of the reserves is 79.000 ha. Local people are not allowed to exploit bamboo borers in the nature reserves. As consequence, the traded biomass of bamboo borers sold Son La province is still limited.

### 4. CONCLUSION

Among 20 hamboo species distributing in Son La province. 10 species were infested by bamboo borer: Bambusa bambos, B blameana, B natans, B valgaris, Dendroculanus asper, D brandisti, D. giganteus, D hamiltoni, D serveus, Gigantochiaa levis

In a clump of bamboos, borers were found only in the body of the bamboo trees younger than 12 months of age whose height ranges from 1 m to 3 m

The hamboo borers annually appear between April and May then live inside a bamboo shoot until following February or March.



The amount of larvae in each infested culm ranged from 35 individuals (*D. brandisu*) to 130 individuals (*G. levis*) with an average weight of 4.5 g/10 larvae.

An estimated weight of about 2,168,640 larva individuals collected from infested bamboos was 975.9 kg. This would be an important food source for local people in the future

Acknowledgments. This research was financially supported by the Science Foundation of Vietnam Academy of Science and Technology for the project "Survey on insect resource diversity in the northwestern region, propose solutions for the development, exploitation and sustainable use"; Code VAST04.02/2014-2015.

### REFERENCES

- Ashiru M O Ecology of Food and Nutrion, Taylor and Francis Online, 1988, pp. 1-25.
- Bodenheimer F. S. Insects as food, U. junk, the Hugue, published by Ellsevier Ltd., 1951, pp. 352-361
- Fu- Qiang Chen, Chun-Sheng Wu Taxonomic review of the subfamily Schoenobunae (Lepidoptera: Pyraloidea: Crambidae) from China, Zoological Systematics 39 (2) (2014) 163-208.

Monastyrskii A. L., Devyatkin A. L. - Butterflies of Vietnam (an Illustrated checklist), Thong Nhat Printing House, Hanoi, 2003, 56pp.

Dransfield S. and Widjaja E. A. Bamboo, Plant resources of South- East Asia, No. 7. Bogor Indonesia, 1995, 189 pp.

- Kayikananta L. Biological and ecological study on bamboo caterpillar, Omphisa sp. Proceedings of the forestry conference 1994 "Reforestation for Environmental Development", 1994, pp. 159-171.
- Garden S., Robinson K., Tuck R. and Shaffes M. A field guide to the smaller moths of South- East Asia, The Natural History Museum and Malaysian Nature Society, 1994, pp 181-308.
- 8 Leksawasdi P. Life history and natural enemy of a bamboo borer (Omphisa sp., Pyralidae: Lepidoptera) the second Plant Protection Conference 1 (1993) 96-102.
- 9 Tippawan Singtripop, Somsak Wanichacheewa, Seiji Tsuzuki and Sho Sakurai Larval Growth and Diapause in a Tropical Moth, Omphisa fuscidentatis Hampson, Zoological Science 16 (1999) 72-733.
- Kayikananta L. Mass rearing of barnboo catcrpillar, *Omphisa* sp., a new profitable job for extra incoms (with right collecting technique could get caterpillars, comprising food value from natural protein, and also get barnboo wood for utilizations). No R. 477, Royal Forest Department, 1996,14 pp.
- 11 Sonla statistics office, 2014, Sonla statistical yearbook: 348 pp.
- Hanoi National University and the Institute of Ecology and Biological Resources, 2005, A list of all plant species in Vietnam, Volume 3, Agriculture Publisher.
- 13. Separate Forest Inventory and Planning Institute North West Report on the survey results, assess the situation and investment opportunities developing Northwest forestry sector, 2009.

- m An estimation of bamboo borer biomass in son la province, northwestern Vietnam and
- Anantachot A. Bamboo in Thatland, Faculty of Forestry, Kasetsart University, 1991, 74 pp.
- 15. Watcharapuk C. Bamboo, 1985, 113 pp.

### TÓM TẮT

VỚC TÍNH TRỮ LƯỢNG LOÀI SÂU TRE VÀ MỘT SỐ ĐẶC ĐIỆM KỈ SINH CỦA CHÚNG TRÊN CÂY TRE Ở TÌNH SƠN LA, VÙNG TÂY BẮC VIỆT NAM

### Phạm Quỳnh Mai

Viên Sinh thái và Tài nguyên sinh vất, Viên HLKHCNVN, 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội

r e

## Email: pqmai70@gmail.com

Dân số Việt Nam đã và dang tăng nhanh, có thể đat tới 100 triệu dẫn trong tương lại không xa Khi dân số tăng cao, lượng thực và thực phảm từ các nguồn truyền thống không thể đáp ứng dù. Do vậy, việc nghiên cứu cốn trừng làm thực phẩm bổ sung là rất cần thiết và có ý nghĩa chiến lược. Từ lâu, ầu trùng loài Sâu tre Omphras fascidentalis dươn người đán các tình miền nửu phía Bắc Việt Nam sử dụng làm thực phẩm Hơn nữa, ầu trùng đó đã trở thành mết loại thương phẩm và sử dụng nhều trên thi trường trong nước nhện nay. Kắt quả nghiên cứu về tỉ lệ hniễm sâu tre của các loài trê ở Sơn La dat cao nhất là loài Dendo calanus serticeus 5,5 %. Ước tình trừ lượng của loài côn trùng sâu tre Omphras fuscidentalis khoảng 1 từ 952 triệu đông. Ai trừng sâu tre Omphras fuscidentalis ki nguồn tải nguyên sinh vật có thể được khai thác đế bố sung vào nguồn thực phẩm và có thể trở thành hang hoá có giá tri góp phần

Từ khóa: ước tính, sình khối, thực phảm, côn trùng, sâu tre Omphisa fuscidentalis, cây tre.