APPLICATION OF DATA ASSIMILATION FOR PARAMETER CORRECTION IN SUPER CAVITY MODELLING

Tran Thu Ha ${ }^{1.2,4, *}$, Nguyen Anh Son ${ }^{3}$, Duong Ngoc Hai ${ }^{1,2,4}$,
Nguyen Hong Phong ${ }^{1,2}$
'Instiute of Mechanics -VAST - 264 Doi Can and 18 Hoang Quoc Viet Hanoi, Vietnam
${ }^{3}$ Unversity of Engineering and Technology -VNU, 144 Xuan Thuy, Hanoi, Vietnam
${ }^{3}$ National Unversity of Ciwl Engineering, 55 Gaiphong Str., Hai Ba Trung Hanoi
${ }^{4}$ Institute of Science and Technology-VAST 18 Hoang Quac Viet Hanoi, Vietinam

‘Email: rron_thuhal@yahoo.com

Received: 27 July 2015; Accepted for Publication. 2 May 2016

Abstract

On the imperfect water entry, a high speed slender body moving in the forward direction rotates inside the cavity. The super cavity model describes the very fast motion of body in water. In the super cavity model the drag coefficient plays important role in body's motion. In some references this drag coefficient is simply chosen by different values in the interval 0.8-1.0. In some other references this drag coefficient is written by the formula $k=C_{D 0}(1+\sigma) \cos ^{2} \alpha$ with σ is the cavity number, u is the angle of body axis and flow drection, $C_{D O}$ is a parameter chosen from the interval $0.6-085$. In this paper the drag coefficient $k=k_{1} C_{D 0}(1+\sigma) \cos ^{2} \alpha$ is written with fixed $C_{D 0}=0.82$ and the parameter k_{1} is corrected so that the simulation body velocities are closer to observation data. To find the convenient drag coefficient the data assimulation method by differential varnation is applied. In this method the observing data is used in the cost function The data assimilation is one of the effected methods to solve the optimal problems by solving the adjoin problems and then finding the gradient of cost function.

Keywords data assimilation, optimal, Runge-Kutta methods.

1. INTRODUCTION

When slender body running very fast under water (velocity is higher than $50 \mathrm{~m} / \mathrm{s}$) the cavity phenomena is happened, Cavity may have a variety of cause. The most common example is boiling water, where the vapor pressure is increased by ratsing the water temperature. In hydrodynamics applications cavitation is the appearance of vapor bubbles and pockets inside homogeneous liquid medium This phenomenon occurs because the pressure is reduced to the vapor pressure limit In thas paper we will study super cavity appearing by the very fast
movement of slender body in water that makes uncontrolled gun-launched slender body. Except the body head called by cavitator is directly touching with water, the gas layer can be covered partual or full body depending on the design of body form. The body rotates about its nose. The form of body's nose can be differently chosen such as: sharp, hemisphere, plate disk. For simple calculation we choose cavitator formed by the plate disk with diameter d_{i} (Figure 1).

The body is consisted of two parts: the cone top and cylinder part with the diameter d.

Figue I Slender body geometer.
In the super cavity model the following assumptions are [1, 2].

- The motion of the projectile is confined to a planc,
- The slender body rotates about its nose [1-4];
- The effect of gravity on the dynamics of this body is negligible;
- The motion of the slender body is not influenced by the presence of gas, water vapor or water drops in the cavity;

The super eavity problems are studied in [1, 2, 5-11]. To study the motion problems of slender body running under water there are basic approaches:

- The experimental approach consisting in observing and measuring motion by remote sensing.

The modeling approach based on mathematical models of the flow and of the body motion.

- The models of body's motion under water include some parameters that have not a clear physical meaning because they are a synthetic representation of several physical effects such as sub-gnd turbulence that can't be explicit in the model because of a necessary truncation for numerical purposes.

None of these approaches is sufficsent to predict the evolution of body motion. They have to be combined to retrieve the body motion under water All the techniques used to combine the information provided by observations and the information provided by models are named by Data Assimilation methods and have known an important development durng these last decades. The Data Assimilation method using differential variation is based an the theory of optimal control for partial differental equation by Lions et al. $[12,13]$ and Marchuk et al [14]. This method is applied to correct coefficients, solve the inverse problems, simulate the air and flund pollution processes ([14-21])

- In this paper we will concentrate the study on the identification coefficient parameter $k_{\text {t }}$ of the drag coefficient $k=k_{1} C_{D D}(1+\sigma) \cos ^{3} \alpha\left(C_{D 0}=0.82\right)$. In the second section we will describe the abstract defintion of an inverse problem via varuation methods The unknown coefficient is defined as the solution of an optimization problem In the third section we will
formulate the model of the problem of body's fast motion under water problem. The 4-th section is devoted to the application of optimal control to the identification of model's coefficient.

2. GENERAL VARIATION APPROACH

Because In the model's parameters are a synthetic representation of several physical effect, they can't be drectly estimared. They depend both on the model and on the data. They will be evaluated as the solution of an "Inverse Problem", basically as the solution of an optimization problem. The advantage is that there exist many efficient algorithms for solving these problems. Most of them requre to compute the gradient of the function to be minimized. The cost function is done by solving an "Adjoin Model" The method is described in many papers together with the computational developments ($[14-21])$ It can be summarized as follows:

Let $X(t)$ the state vector describing the evolution of a system govemed by the abstract equation

$$
\left\{\begin{array}{c}
\frac{d X}{d t}=F\left(X, E_{1} \ldots . E_{n}\right) \tag{2.1}\\
X(0)-X_{0}
\end{array}\right.
$$

where: E_{l}, \ldots, E_{n} are the equation's parameters with n is the nurnber of parameters; $X(t)$ is a unknown state vector belonging for any t to a Hilbert space 3 : $X_{0} \in 3 ; F$ is a nonlinear operator mapping $Y \times Y_{p}$ to Y with $Y=L_{2}(0, T, 9), \|_{\|}=(, .)_{Y}^{1 / 2}, Y_{p}$ is Hilbert space (the space of model's parameters). Suppose that for given initial value $X(0)=X_{0} \in 3$ and $\left(E_{1}, \ldots, E_{n}\right) \in Y_{p}$ there exists a unique solution $X \in \mathcal{S}$ to (2.1). In case the values of $E=\left(E_{1} \ldots . E_{n}\right)$ are unknown and there are some observation data $X_{o b s} \in \Im_{o b s}$ with $\Im_{o b s}$ is a Hilbert space (observation space) we imeduce the functional calted cost function:

$$
\begin{equation*}
J(E)-\frac{1}{2} \int_{0}^{T}\left(H\left(C X-X_{o b s}\right), C X-X_{o b s}\right)_{\xi_{w .1}} d t+\frac{1}{2}\left(E-E_{0}\right)^{2} \tag{2.2}
\end{equation*}
$$

where $\left(E_{0,1}, \ldots, E_{0, n}\right)$ are prori approximation cvaluations of $E_{[} \ldots, E_{n}: C: \mathcal{S} \rightarrow \mathcal{S}_{\text {obs }}$ is a linear bounded operator, $H: 3_{o b s} \rightarrow 3_{o b s}$ is symmetric positive definite operator; The problem is to determme $E^{*}=\left(E_{I}^{*}, ., E_{n}^{*}\right)$ by minmizing J. The second and the third terms in J are a regularization term in the sense of Tykhonov, have a well posed problem (see [15,17$]$). The optimal solutions are characterized by $\vec{\nabla} f\left(E_{1}^{*}, \ldots, E_{n}^{*}\right)$. where $\vec{V} . J$ is the gradient of J. To compute this gradient we introduce $e_{i}(i=1,2, \ldots, n)$, the dircctions in the space Y_{p}. We will compute the Gateaux dervative of the cost function J by $E=\left(E_{1}, \ldots, E_{n}\right)$ in the directions of $e=\left(e\left[\ldots . e_{n}\right)\right.$ The Gateaux derivative of the cost function J in the directions of $e=\left(e_{1}, \ldots e_{n}\right)$ will be.

$$
\begin{align*}
& \left.A_{1}, E_{n}\right)=\sum_{i=1}^{n} \int_{[j}^{T}\left(C^{T} H\left(C X-X_{\alpha d s}\right), \hat{X}^{(n)}\right)_{3} d t+\sum_{i=1}^{n}\left\langle E_{i}-E_{10}, e_{i}\right\rangle \\
& =\sum_{i=1}^{n} \int_{0}^{T}\left(C^{T} H\left(C X-X_{\rho b s}\right), \hat{X}^{(1)}\right)_{3} d t+\sum_{i=1}^{\pi}\left\langle E_{i}-\dot{E}_{10}^{0}, e_{i}\right\rangle \tag{2.3}\\
& =\left(J_{E_{1}}\left(E_{1}, \ldots, E_{n}\right), \hat{J}_{E_{n}}\left(E_{1}, \ldots, E_{n}\right)\right)\left(e_{1}, \ldots, e_{n}\right)^{T}
\end{align*}
$$

where: $\hat{X}^{(n)} \dot{J}_{E}\left(E_{1} \ldots, E_{n}\right)$ respectively are the Gateaux derivatives of X and J with respect to E_{i} in the directions e_{i}. Here $<>$ is the dot product associated with the norm operator $\|$. The optimal solution of problem is characterized by $\hat{J}\left(E_{1}, \ldots . E_{n}\right)=\bar{\nabla} . J .\left(\epsilon_{1}, \ldots, e_{n}\right)^{I}=0$ where $\vec{\nabla} . J=\left(J_{E_{1}}, \ldots, J_{E_{-}}\right)$is the gradient of J with respect to $E_{1}, \ldots E_{n}$; The superscript T indicates the transpose of the vector

The Gateaux derivative equations of (2.1) by E_{i} in the directions of $e_{i}(l=1,2, n)$ are:

$$
\left\{\begin{array}{c}
\frac{d \hat{X}}{d l}=\frac{\partial F\left(X, E_{1}, E_{n}\right)}{\partial X} \cdot \hat{X}^{(!)}+\frac{\partial F}{\partial E_{1}} e_{i} \tag{2.4}\\
\hat{X}^{(n)}(0)=0
\end{array}\right.
$$

Let us introduce $P^{(i)}$, the adjoin variable in the same space as a Multiplying equanon (2.4) by $P^{(1)}$ in space \mathfrak{J} we integrate by time between 0 and T. It comes.

$$
\begin{align*}
& \int_{0}^{r}\left(\frac{d \dot{X}^{(t)}}{d t}, P^{(t)}\right)_{3} d t-\int_{0}^{r}\left(\frac{d F}{d t} \cdot \hat{X}^{(0)}, P^{(t)}\right)_{3} d t+\int_{0}^{T}\left(\frac{d F}{d E_{1}} e_{n}, P^{(t)}\right)_{3} d t \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& i=1,2, \ldots, n \tag{26}
\end{align*}
$$

The superscript ' indicates the transpose of the marnx
Summing n equations of (26) we have

$$
\begin{align*}
& \sum_{1=1}^{n}\left[\left(\dot{X}^{(t)}(T), P^{(1)}(T)\right)_{s}-\left(\hat{X}^{(1)}(0), P^{(1)}(0)\right)_{s}\right] \tag{27}
\end{align*}
$$

If $p^{(t)}$ is the solution of

$$
\left\{\begin{array}{c}
\frac{d P^{(1)}}{d r}+\left[\frac{d F}{d Y}\right]^{r} P^{(1)}=C^{T} H\left(C X-X_{(A,)}\right) \tag{28}\\
P^{(0)}(T)-0
\end{array}\right.
$$

then (2.7) becomes.

$$
\begin{align*}
& \left.\sum_{i=1}^{n}\right]_{0}^{T}\left(\hat{X}^{(n)}, \frac{d P^{(i)}}{d t}+\left[\frac{d F}{d X}\right]^{t} \cdot P^{(i)}\right)_{i=1}^{\prime} d t=\sum_{i=1}^{n} \int_{0}^{I}\left(\hat{X}^{(i)}, C^{T} H\left(C X-X_{u t s}\right)\right)_{3} d t \\
& --\sum_{i-1}^{n} e_{i} \int_{0}^{T}\left[\frac{d F}{d E_{1}}\right]^{T} \cdot P^{(i)} d t \tag{2.9}
\end{align*}
$$

Therefore, from (2.3), (2.9), we have

$$
\begin{align*}
& \dot{J}\left(E_{1}, \ldots, E_{n}\right)-\sum_{t=1}^{n}\left(-\int_{0}^{T}\left[\frac{d F}{d E_{1}}\right]^{r} \cdot P^{(t)} d t+E_{1}-E_{t, 0}\right)_{i} \\
& =\bar{\nabla} \cdot J .\left(e_{1}, \ldots, e_{n}\right)^{r} \tag{2.10}
\end{align*}
$$

with

$$
\begin{equation*}
\bar{\nabla} J=\left(J_{E_{1}}\left(E_{1}, \ldots, E_{n}\right), ., J_{E_{n}}\left(E_{1}, \ldots, E_{n}\right)\right) \tag{211}
\end{equation*}
$$

where: $J_{E_{1}}^{\prime}\left(E_{1}, \ldots, E_{n}\right)=-\int_{n}^{T}\left[\frac{\partial F}{\partial E_{1}}\right]^{\prime} P^{(1)} d t+E_{1}-E_{i, v}$
Equations 2.1-2.9 and the condition for the gradient (2.11) to be null are the Optinality System (O.S) The adjoin model will be rum back word to get the gradient which are used to carry out an algorithm of optimization [14-21].

3. MATHEMATICAL MODEL FOR THE BODY MOTION

To describe the motion of body, a body fixed coordinate system as shown in Figure 2 is chosen. (X_{0}, Y_{0}, Z_{n}) is the inertial reference frame with origin at O and (X_{1}, Y_{1}, Z_{1}) is the noninertial reference frame with origin at A , the tip of the slender body. The X_{1}-axis coincides with the longitudinal axis of the siender body. The components of velocity of point A along X_{1} and Z_{1} direction are U and W respectively. The components of velocity of point A along $X_{i j}$ and Z_{f} direction are U_{i} and W_{f} respectively. The angular velocity and rotating angular about Y_{0} axis are Q and respectively.

Figure 2 Axes of body and mertial frames.
The relanonships between body and mettial fixed velocities are described by the following formulas.

$$
\ell_{F}=U \cos \vartheta+W \sin \theta_{,} \quad W_{F}=-U \sin \vartheta+W \cos \vartheta: \dot{\theta}=Q: \quad \vartheta(0)=\omega
$$

The mathematic cavity model [1] is used to describe the motion of slender body under water in cas ity. The motion of slender body in both phases is written by the following equations:

Phase 1- For $U^{2} \gg W^{2}$ and $\rho A k\left(U^{\gamma}, W, h\right) U^{-2} \gg 2 m L Q^{-}$the equation can be written as

$$
\begin{align*}
& \frac{\partial U}{\partial t}=-\frac{1}{2 m} \rho k(U, W, h) A_{c} C^{?} \\
& \frac{\partial W}{\partial t}=Q U \\
& \frac{\partial Q}{\partial t}=0 \tag{3.1}\\
& \frac{\partial h}{\partial t}=-U \sin \vartheta+W \cos \vartheta \\
& \frac{\partial \vartheta}{\partial t}=Q
\end{align*}
$$

$$
U(0)=U_{0}, W(0)=W_{u} ; Q(0)=Q_{j}: Q(0)=Q_{0}: h(0)=h_{0},-(0)-
$$

Phase 2: For $U^{2} \gg W^{2}$ and $\rho A, k(U . W . h) U^{-} \gg 2 m L Q^{-}$the equation can be wnitten as:
where:

- θ is the angle of slender body during impact wth the cavity boundary.

$$
\tan \theta=\frac{15}{L^{-}} \text {or } \theta=\arctan \frac{W}{L^{\prime}}
$$

$-\mathfrak{H}_{1}=-\frac{\rho d}{m} . M_{2}=\frac{\rho d}{l}$

- $F\left(A_{i}, I_{i}, \theta\right)=A_{i}+r \cos ^{-1}\left(\frac{r-l_{i} \tan \theta}{r}\right)-\left(r-l_{i} \tan \theta\right) \sqrt{d I \cdot \tan \theta}$
$-k(L . W . h)=k_{1} C_{b r}(1+\sigma) \cos ^{2} \alpha$
$-C_{.}=0.82$

$$
\begin{align*}
& \frac{\partial U}{\partial t}=-\frac{1}{2 m} \rho k(U, W, h) F\left(A_{i}, r, l_{t}, \theta\right) U^{2} \\
& \frac{\partial W}{\partial f}=K H=\left[M l_{4}+M_{2} I_{t} x_{m}\left(L-x_{c m}\right)\right]+2 K H\left[Q M_{2} L x_{c m} l_{4}\left(L-x_{\mathrm{cm}}\right)\right]+Q C \\
& \frac{\partial Q}{\partial t}=-K M_{-}\left[W^{2} l_{\Lambda} x_{c m}+2 H O L_{L_{4}} x_{c m}\right] \text {. } \tag{32}\\
& \frac{\partial h}{\partial t}=-U \sin v+H \cdot \cos v \\
& \frac{\partial w}{\partial}=Q
\end{align*}
$$

- α is the angle between flow direction and body's direction in moving
$\cos \alpha=\frac{U}{\sqrt{U^{2}+W^{2}}}$
- $p_{\infty}=\rho g h+P_{a t m}$ - Ambient pressure;
$-I_{k}$ is the wetted length of the body;
$-\kappa_{1}, K$ are parameters; For the circular section $K=2 \pi$ [1];
- h is the water depth between the body's position and water free surface, ρ is the mass density of water,
- $x_{L m}$ is the distance between body's tail and its centre of mass;
- m is the mass of the slender body;
- σ is the cavitation number $\sigma=\frac{p_{\infty}-p_{c}}{0.5\left(U^{2}+W^{2}\right)}$
- l is the moment of mertia of the body about an axis parallel to the Y_{1} axis and passing through its centre of mass;
- $r=d / 2$ is the radius of slender body;
$-A_{t}=\frac{\pi d_{c}{ }^{?}}{4}$ is the area of the cavitator;
$-r_{c}=\frac{d_{c}}{2}$ is the cavitator radius;
- $g=9.81 \mathrm{~m} / \mathrm{s}$ is the gravity acceleration,
- p, is the vapour pressure of water.

To get the above equations the following condtion is needed: $\frac{l_{1}}{L} \ll 1$
The geometry of the cavity is given by ($1,2,8]$):

$$
\frac{(x-l / 2)^{2}}{(/ / 2)^{2}}+\frac{y^{2}}{\left(D_{k} / 2\right)^{2}}=1
$$

where the maximum diameter D_{k} and length / of the cavity shape are given by the following formulas:

$$
D_{k}=d_{\mathrm{r}} \sqrt{\frac{k_{1} C_{D 0}(1+\sigma)}{\sigma}}, l=\frac{d_{c}}{\sigma} \sqrt{\log \frac{1}{\sigma}}
$$

The equation (31)-(3.2) can be rewritten as follows:

$$
\left\{\begin{array}{l}
\frac{\partial X}{\partial t}=A(X) \tag{3.3}\\
X(0)=X_{0}
\end{array}\right.
$$

where.

$$
\begin{equation*}
X-(U, W, Q, h, V)^{T} \tag{3.4}
\end{equation*}
$$

is an unknoun state function vector of the equations (31)-(32) and

$$
\begin{align*}
& X_{0}=\left(U_{0}, W_{0}, Q_{0}, h_{0}, v_{6}\right)^{T} \\
& A(X)=\left[A_{1}(X), A_{2}(X), A_{3}(X),-U \sin \vartheta+W \cos \vartheta, Q\right]^{T} \tag{3.5}\\
& A_{1}(X)=\left\{\begin{array}{l}
-\frac{1}{2 m} \rho k(U, W, h) A_{C} U^{2} \text { in the first phase } \\
-\frac{1}{2 m} \rho k(U, W, h) F\left(A_{C},{ }^{,}, l_{k}, \theta\right) U^{2} \text { m the sec ond phase }
\end{array}\right. \\
& A_{2}(X)= \begin{cases}Q U \quad \text { in the first phase } \\
K C_{1} W^{2}+K C_{2} W+Q U \text { in the sec ond phase }\end{cases} \\
& A_{3}(X)= \begin{cases}O U & \text { in the first phase } \\
C_{3} W^{2}+C_{4} W Q & \text { in the second phase }\end{cases}
\end{align*}
$$

The equation 3.3 is solved by Runge Kutta metbod.

4. CORECTION OF k_{1} COEFFICIENT

We have priori approximations k_{10} of k_{1} and measurement $X_{o b s}=\left(U_{o b s}, W_{o b s}, Q_{o b s}, h_{o b s}, \vartheta_{o b s}\right)$ of the motion velocity of body. Using the cost function (see formula 4 1) the contonuous problem 18 to determine k_{1}^{*} minimizing J :

$$
\begin{equation*}
J(k)=\frac{1}{2} \int_{0}^{T}\left(C X-X_{o b s}, C X-X_{o b s}\right) g_{,} d t+\frac{1}{2}(k-k 1.0)^{2} \tag{4.1}
\end{equation*}
$$

C is an operator, that is Dract's matrix, from the space of the varable X to the space of observation with point wise measurement Therefore, we have an optual control problem with respect to the coefficient k. The first step is to exhibit the Fuler-Lagrange equation- necessary equation for an optimum in order to exhbit the gradment of J with respect to k then, we will be able to carry out some optimization algonthm

The data assumblation problen is witten in the form

$$
\left\{\begin{array}{c}
\frac{\partial X}{\partial t}=A(X) \tag{42}\\
X(0)-X_{0} \\
J\left(\hat{A}_{i}^{*}\right)=\inf _{k_{1}^{*}} J\left(k_{1}\right)
\end{array}\right.
$$

here $X=(U, W, Q, h, \vartheta)^{\top}, A(X)$ is the vector function defined by the formula (3.4)- (3.5), and the cost function $J\left(k_{1}\right)$ is defined by the formula (4.1). To solve the problem (4.2) we will define the formula of function $J_{k_{1}}^{\prime}\left(k_{1}\right)$ in the next subsection.

4.1. Computation of Gateaux derivative for the cost function J

Let k_{1} being a value in the space of the control. Let us introduce the Gateau denvative $\hat{X}=(\hat{U}, \hat{W}, \hat{Q}, \hat{h}, \hat{\partial})^{T}$ of $X=(U, W, Q, h, \vartheta)^{T}$ by $\left.k\right]$ in the directions of \bar{k}_{1} as follows ([22]).

$$
\dot{x}=\lim _{\alpha \rightarrow 0} \frac{x\left(k_{1}+\alpha \overline{k_{1}}\right)-x\left(k_{1}\right)}{\alpha}
$$

Then the Gateaux derivative of the cost function J with respect to $k q$ wn the directions of \bar{k}_{1} will be:

$$
\begin{equation*}
\hat{J}\left(k_{1}\right)=\int_{0}^{T}\left(C^{\prime}\left(C X-X_{\text {obs }}\right), \hat{X}\right)_{3} d t+\left(k_{1}-k_{1.0}\right) \overline{k_{1}} \tag{43}
\end{equation*}
$$

Firstly, we will compute Gateaux denvatives $\bar{J}_{k_{1}}\left(k_{1}\right)$ of the cost function J with respect to k_{1} in the directions of \bar{k}_{1}.

The Gateau derivative equations of (3.3) with respect to k_{1} in the direction of \bar{k}_{1} are written as follows:

$$
\left\{\begin{array}{l}
\frac{\partial \hat{X}}{\partial t}=N(X) \hat{X}+B(X) \bar{k} \tag{4.4}\\
\hat{X}(0)=0
\end{array}\right.
$$

where.

$$
\begin{align*}
& N(X)=\left[\begin{array}{ccccc}
N_{11}(X) & N_{12}(X) & 0 & N_{14}(X) & \\
N_{21}(X) & N_{22}(X) & N_{23}(X) & 0 & 0 \\
0 & N_{32}(X) & N_{33}(X) & 0 & 0 \\
-\sin \vartheta & \cos \vartheta & 0 & 0 & -U \cos \vartheta-W \sin v \\
& 0 & 1 & 0 &
\end{array}\right] ; \tag{4.5}\\
& N_{i j}=\left\{\begin{array}{l}
N_{i j}^{(1)} \text { in the first phase } \\
N_{i j}^{(2)} \text { in the second phase }
\end{array} \quad(i=\mathbf{I} \cdot 3 ; j=14)\right. \\
& N_{11}^{(1)}=-\frac{1}{2 m} \rho k_{1} C_{D d}\left(1+\frac{p_{m}-p_{c}}{05 \rho\left(U^{2}+W^{2}\right)}\right)\left(\frac{\left(2 U^{4}+3 U^{2} W^{2}\right)}{\left(U^{2}+W^{2}\right)^{3 / 2}} A_{c}+\frac{1}{m} k_{p} \rho C_{00} \frac{p_{m}-p_{c}}{05 \rho\left(U^{2}+W^{2}\right)^{5 / 2}} U^{0} A_{c}\right. \\
& N_{12}^{\prime \prime \prime}=-\frac{1}{2 m} \rho k_{1} C_{o u}\left(1+\frac{p_{\alpha}-p_{c}}{0.5 \rho\left(U^{2}+W^{2}\right)}\right) \frac{U^{3} W}{\left(U^{2}+W^{2}\right)^{1 / 2}} A_{c}+\frac{1}{m} k_{1} \rho C_{D 0} \frac{p_{0}-p_{c}}{0.5 \rho\left(U^{2}+W^{2}\right)^{3 / 2}} W U^{3} A_{r}
\end{align*}
$$

$$
\begin{aligned}
& N_{4}^{\prime \prime \prime}--\frac{\rho}{2 m} k_{1} \mathrm{C}_{-1,} \frac{\mathrm{~g}}{0.5\left(U^{\prime}+W^{2}\right)^{\prime 2}} l^{\prime 2}+ \\
& N_{2!}^{\prime \prime}-Q, N_{2!}^{(1)}=0 ; N_{3!}^{(1)}-U ; N_{; 2}^{(1)}=0, N_{33}^{\prime!}=0
\end{aligned}
$$

$$
\begin{aligned}
& N_{4}^{!-3}=-\frac{\rho}{2 m} k_{1} C_{D a} \frac{g}{05\left(U^{\prime}+W^{\prime 2}\right)^{32}} U^{3} F_{0} \\
& N_{:}^{(2)}=Q ; N_{2 l}^{(2)}=2 K C_{i} W+K C_{:} Q ; N_{2 ?}^{(2)}=K C_{2} W+U V_{2}^{(2)}=2 K C_{3} W+K C_{4} Q \\
& N_{33}^{(2)}=K C_{4} W \\
& B=\left(B_{1}, B_{2}, B_{3}, 0.0\right) \\
& B_{1}=\left\{\begin{array}{l}
-\frac{1}{2 m} \rho C_{b_{0}}(1+\sigma) \frac{U^{4}}{U^{\prime}+W^{2}} A_{1} \text {, for the first phase } \\
-\frac{1}{2 m} \rho C_{m,}(1-\sigma) \frac{U^{\prime}}{U^{2}+W^{2}} F_{i}-\frac{1}{2 m} k(L, W, h) U^{\prime} F_{-i_{1}^{\prime} i_{1,}^{\prime},} \text { for the sccond pliase }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& B_{2}={ }^{\text {"O }}{ }^{0} \text { for the first phasc } \\
& B_{:}=\left\{\begin{array}{l}
0 \text { for the first phase } \\
C_{: ~, ~}^{\prime} w^{\prime \prime}+C_{4,}^{\prime} W Q \text { for the second phasc }
\end{array}\right.
\end{aligned}
$$

$C_{14}^{\prime} \cdot C_{=1,}^{\prime}, C_{i, 1}^{\prime}, C_{i \alpha,}^{\prime}$, are the denatives of those functions with respect to parameter k Multiplyme the equation (44) by adjom vanable $P=\left(P_{1}, P_{2}, P_{2}, P_{1}, P_{2}\right)^{T}$ in the same space as X and then megratung by \subset between 0 and T we have

$$
\begin{equation*}
(\hat{X}(T), P(T))_{3}-(\hat{X}(0), P(0))_{3}=\int_{0}^{T}\left(\hat{X}, \frac{d P}{d t}+F(X, P)\right)_{3} d t+\bar{k}_{i} \int_{0}^{J} B P^{r} d t \tag{4.6}
\end{equation*}
$$

where $F(X, P)=N^{T} . P$ with $N(X)$ is defined by the formula (4.5).
If P is satisfying the following equation:

$$
\left\{\begin{array}{l}
\frac{d P}{d t}+F(X, P)=-C^{\prime} H\left(C X-X_{n s x}\right) \tag{4.7}\\
P(T)=0
\end{array}\right.
$$

Then the Gateau denvative $\hat{J}_{k_{1}}\left(k_{1}\right)$ of the cost function J with respect to k in the directions of \bar{k}_{1} is: (see formula 4.3):

$$
\dot{J}_{k_{1}}\left(k_{1}\right)=-\int_{0}^{T}\left(\hat{X}, \frac{d P}{d t}+F(X, P)\right)_{3} d t+\left(k_{1}-k_{1,0}\right) \bar{k}_{1}=\bar{k}_{2}\left(-\int_{0}^{T} B P^{\top} d t+\left(k_{1}-k_{1,0}\right)\right)=\bar{k}_{1} J_{k_{1}}^{\prime}
$$

Therefore, the function $J_{i_{1}}^{\prime}\left(k_{1}\right)$ is calculated by the following formula:

$$
\begin{equation*}
J_{k_{1}}^{\prime}=-\int_{0}^{r}\left(B_{1} P_{1}+B_{2} P_{2}+B_{3} P_{3}\right) d t+\left(k_{1}-k_{.0}\right) \tag{4.8}
\end{equation*}
$$

4.2. Algorithm to solve the optimal control prohlem

The optimal method is based on inverse BFGS update [23-26]. The algorithm schema is written as follows.
a. Let $\mathrm{I}=0$. Get the mitial value $k_{1,4}=k_{1,0}: H_{i}=1$; Solve equations 3.3 with the parameter $k_{1,4}$, and the adjom equations 4.7 ; Get the function $J_{\alpha_{1}}^{\prime}\left(k_{,, 4}\right)$ by the formula 48
b. Calculate

$$
d_{j}--H_{i} J_{k_{1}}^{\prime}\left(k_{1, i}\right)
$$

c. Calculate α_{i} so that is satisfied the Armujo-Wolfe conditions ([25, 26]):

$$
J\left(k_{1, i}-\alpha_{i} d_{i}\right) \leq J\left(k_{, i}\right)+\alpha_{i} \beta J_{k_{1}}^{\prime}\left(k_{1, i}\right) d_{i}
$$

where $\beta \in(0,1)$. Typically β ranges fom 10^{-4} to 0.1
This α_{i} can be found by the following schema steps ([27]):
c $1 \alpha_{\text {intial }}=1$;
c 2 Given $z \in(0,1)$. Typically $\tau=0.5$;
c. 3 Let $1=0$ then $\alpha^{l}=\alpha_{\text {inutial }}$;
c. 4 Check.

While not $J\left(k_{1, i}+\alpha^{I} d_{i}\right) \leq J\left(k_{1, i}\right)+\alpha^{l} \beta J_{k_{1}}^{\prime}\left(k_{1, i}\right) d_{i}$
Set $\alpha^{\prime+\alpha}=\tau \alpha^{\prime}$
Increase l by I
End while
c. 5 Set $\alpha_{i}=\alpha^{(l)}$;
d. Calculate: $\Delta \dot{k_{1, i}}=s_{i}=-\alpha_{i} H_{i} J_{k_{1}}^{\prime}\left(k_{, i}\right)$;
e. Calculate: $k_{1,-1}=k_{1+}+\Delta k_{11}$;
f. Solve equations 3.3 with the parameter $k_{1,+1}$ and the adjoin equations 4.7.
g. Get the function $J_{k_{1}}\left(k_{1,+1}\right)$ by the formula 4.8.
h. Calculate $y_{i}=J_{k_{1}}^{\prime}\left(k_{1, i+1}\right)-j_{k_{1}}^{\prime}\left(k_{1, i}\right)$
, Calculate $H_{i+1}=\left(1-\frac{s_{i} y_{i}}{y_{i} s_{i}}\right) H_{i}\left(1-\frac{s_{1} y_{i}}{y_{i} s_{i}}\right)+\frac{s_{i} s_{i}}{y_{i} s_{l}}$;
j. Let $\mathrm{i}=\mathrm{i}+1$
k. Go to step b if $J_{k_{1}}\left(k_{1}\right) \geq \varepsilon(\varepsilon \succ 0$ is given $)$.

If $J_{1,1}^{\prime}\left(k_{1, s}\right) \approx 0$ the optimal process is stopped. Then, we have $k_{]}=k_{1}^{*}$

4.3. Simulation experiment on correcting on correcting parameter k_{1} so that \mathbf{U} is closed to measurement

Let the body with $m=0.025091315 \mathrm{~kg}, L_{1}=2.5 \mathrm{~cm}, L_{2}=11.5 \mathrm{~cm} d=0.57 \mathrm{~cm}, d_{6}=0.12$ $\mathrm{cm}, U_{0}=240 \mathrm{~m} / \mathrm{s}, W_{0}=0, Q_{0}=\mathrm{Irad} / \mathrm{s}, h_{0}=7 \mathrm{~m}, \quad, 0=0, I_{1}=181.10-4 \mathrm{kgm}^{2}, x_{c \mathrm{~m}}=1001 \mathrm{~cm}$. We will test the problem by considering the following expenments

By the same way as $[16,28]$ we can have the observation data $X_{o b s}=\left(U_{o b s}, W_{o b s}, Q_{o b s}, h_{o b s}, \vartheta_{o b s}\right)$ as follows.

Let model run in 05 s with values $\mathbf{k}_{\mathbf{1}}=\mathbf{1}$ simulating the true velocity $X=(U, W, Q, h, v)$ by solving the equations (3.1)-(3.2).

This velocity X is used as a reference $X_{O b s}$.
The measurement $X o b s$ is obtaned by the values of X in all the time penod
Then we have $X_{o b s}$ in every time step

- In the testing the model is running in the time penod 0 ss with values $k_{1}=2 k_{1}$. Then, the vector function $X=(U, W, Q, h, \vartheta)$ is oblamed by solving equations (3.1)-(32)

The equations (3 1)-(3.2) are solved by Runge Kutta method

- Using the formula of function $J_{k}^{\prime}(4.8)$ the optimal control problem (4.2) is solved by the algorithrn schema in subsection 4.2. Then the minmum of $J\left(k_{1}\right)$ is found by the formula (4.1) with 4 value.
- The process findmg the coefficient is shown in Figure 3. By this process the emror of obtain coefficient in the end optimal process is less than 0.00001 percentage. In the Figure 4 the obtain cost function J in the end of optimal process is nearly zero (less than 0.00001). The error percentages of velocites U by X_{1} direction with reference Uobs with and without correction coefficent k_{1} are shown in Figure 5 . With the correction coefficient the percentage errors of velocities are less than 0.00016%.
- We have done real experimental of projectile running underwater. The cavity is presented in the Picture 1 In the real measurement we have 96 measured points of velocities U by $X_{\text {] direction }}$ with the mitial velocity $U_{0}=271.2 \mathrm{~m} / \mathrm{s}$. The other initial conditions are chosen approximately $\mathrm{W}_{0}=0, Q_{0}=1 \mathrm{rad}, / \mathrm{s}, h_{0}=1 \mathrm{~m}, \mathrm{i}_{0}=0$.
- Let the model run with the beginning coefficient $k_{1}=2.5$ then the optimal cocfficient k_{1}^{*} 0909999046325684 is found by the optimal program
- The comparison between velocity measurement and the other ones of calculation with $k_{1}=25$ or optimal coefficient $k_{1}^{*}=0.909999046325684$ is presented in the figure 6
- By this figure it is easy to see that with optimal coefficient $k_{1}^{*}=0.909999046325684$ the model is closer to measurement than the other one without correction.

Figure 3 Correcting coefficient k_{1} in optimal process (Left), Coefficient error percent in optimal process correcting k_{1} (Righ1)

Figure 4. Cost fupction J in optumal process correcting k_{1}.

Figure 5. Percent error of veloctry $U(t)$ wath optimal correction of coefficient $k_{1}=\mathbf{k}_{1}^{*}$ (ieft), Percent emtor of velocity $U(1)$ with coefficient $k_{1}=2$ (Rught)

Picture 1. The full cavity arsing in very fast motion of projectile under water

Figure 6 Percent error of velocttes U by X_{1} drection with and without optimal correction of coefficient
h_{1} comparng with measurement (left); Comparison of velocties U by X_{1} direction with or without correction and measurement.

4. CONCLUSIONS

In the model of slender body running very fast under water the coefficient k_{1} strongly effects to the simulation results (the right of Figure 5). By the results presented in Figures 3,4 it is easy to see that by the data assimulation method the corrected coefficient $k_{\text {i }}^{*}$ can be nearly
equal to the reference coefficient k_{1}. It follows that the velocity $U(t)$ is closed to the one in reference model (the left of the Figure 5 or Figure 6). Then the data assimulation method can be used as the good tool to correct coefficient in the model of body running fast under water.

Acknowledgements. The research funding by VAST01.01/14-15 project was acknowledged.

REFERENCES

1 Salis S. K., Rudra P. - Study on the dynamics of a super cavitating projectile, Applied Mathematics Modelling 24 (2000) 113-129.
2 Rand R , Pratap R., Ramani D., Cupolla J., Kirchner 1. - Impact dynamics of a Super cavitating underwater projectile, Proceedings of the 1997 AMSE Design Engmeering Technical Conferences, $16^{\text {th }}$ Biennual Conference on Mechanical Vıbration and noise, Sacramento, 1997, DETC97/VIB-3929.
3. Ma F. Q., Ltu Y. S., Wang Y. - Studies on the Dynamics of a Supercavitating Vehicle, International Conference on Manufacturing Science and Eigineering ICMSE . Advances in Engineering Research, Atlantis Press, 2015, pp. 388.
4. Mojtaba M., Moharmad M. A., Mohammad E. - High speed underwater projectiles modeling: a new empirical approach, Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (2) (2015) 613-626.
5. Garabedıan P. R. - Calculation of axıally symmetric cavities and jets, Pacific J. Math. 6 (4) (1956) 611-684.
6. Kıcenukm T. - An experımental study of the hydrodynamic forces acting on a family of cavity producing conical bodres of revolution inclined to the flow, California Institute of Technology, CIT Hydrodynamics Report, (No E-12.17) (1954)
7. Kurschner I. N., Fine N. E., Uhlman J S., Kınh D. C - Numerical Modelıng of Supercavitationg flow, Paper presented at the RTO AVT, Brussels, Belgium, 2001, (RTO EN-10) 9.1-9.39
8. May A. - Water entry and the cavity running behavior of missiles, Final Technical Report NAVSEA Hydroballistics Advisory, Navsea Hydroballistics Advisory Committee Silver Spring Md, (1975) AD - A020 429.
9. Logvinovich G.V. - Hydrodynamucs of free boundary flows. Kiev 1969
10. Milwitzky B. - Generalized Theory for seaplane Impact, Natınal Advisory Committee for Acronautics, United States 1952, NACA-TR-1 103.
11. Nguyen A. S., Tran Th H., Duong Ng. H - A Super cavity model of slender body moving fast in water, Procds of Vietnam National Conference of Mechanics, 2014, 415-420.
12. Lions J. L. - Contròle optimal des systèmes gouvernés par des e'quations aux dérivées partielles, Paris Dunod, 1968
13. Lıons J. L. - Contrôlabilité Exacte Perturbations et Stabilisatıon de Systèmes Dıstrıbués, Paris. Masson, 1988.
14. Marchuk G. I, Agoshkov V 1.. Shutyaev V P - Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, New York CRC Press lnc, 1996
15. Glowinski R., Lions J. L. - Exact and approxımate controllability for distributed parameter
systems, Acta Numerica 1 (1994) 269.
16. Francois X. L., Shutyaev V., Tran I. H. - General sensitivity analysis in data assimilation, Russ. J. Numer. Anal. Math. Mode 29 (2) (2014) 107-127.
17. Luther W. W., Baxter E. V., David A., Francois X. L. - Estimation of optimal parameters for surface hydrology model, Advance in water resources 26 (3) (2003) 337-348.
18. Gejadze L, Le Dimet F. X., Shutyaev V. - On optimal solution error covariances in variational data assimulation problems, Joumal of Computational Physics 229 (2010) 2159-2178.
19. Gejadze I. Y., Copeland G. J. M., Le Dimet F. X., Shutyaev V. - Computation of the analysis error covariance in varnation data assimilation problems with nonlinear dynamics, Journal of Computational Physics 230 (2011) 7923-7943.
20. I eDimet F. X., Ngnepieba P., Shutyaev V. - Oti error analysis in data assimilation problems, Russ. J. Numer. Anal. Math. Modelling 17 (2002) 71-97.
21. Le Dimet F. X., Shutyaev V. - On determinstic error analysis in variation data assimilation, Nonlinear Processes in Geophysics 14 (2005) 1-10.
22. Daryoush B., Encyeh D. N. - Introduction of Frechet and Gateaux Derivative, Applied Mathematical Sciences 2 (20) (2008) 975-980.
23 Bonnans, J. F., Gılbert, J. Ch., Lemaréchal C. and Sagastizabal C. A. - Numerical optımızation, theoretical and numerical aspects. Second edition. Springer, 2006.
24. Gilbert, Lemarechal I. C. - Some numerical experiments with variable-storage quasiNewton algorithm, Math program. 45 (3) (1989), 407-435.
25. Peter B. - Lecture Notes \#18: Numerical optimization Quasi-Newton Methods - The BFGS Method, Department of Mathematics and Statistics, Dynamical Systems Group, Computational Sclences Research Center,San Diego State University,San Diego, CA 92182-7720: http://terminus sdsu.cdu/SDSU/Math693a_f2013/Lectures/18/lecture.jdf.
26. Quasi-Newton method https://en.wikıpedia.org/wiki/Quasi-Newton_method.
27. Enrico B. Unconstrained minimuzation Lectures for PHD course on Numerical optimization. DIMS (Universita di Trento), 2011.
28. Tran T. H., Pham D. T , Hoang V. L., Nguyen H P - Water pollution estimation based on the 2D transport-diffusion model and the Singular Evolutive Interpolated Kalman filter, Comptes Rendus Mecanique 342 (2014) I06-124.

TÓM TȦT

ƯNG DỤNG PHUONG PHÅ ĐÒNG HÓA SỐ LJÊU ĐÉ HIẸU CHİNH THAM SÓ TRONG MÔ HİNH SIÊU XÂM THƯC

Trần Thu Hà ${ }^{2} 4^{*}$, Nguyễn Anh Sơn ${ }^{3}$, Dương Ngoc Hál ${ }^{1.2 .4}$, Nguyễn Hồng Phong'
'Viẹn Co hoc, 264 Dột Cấn, Ba Đinh, Hà Nôt 'Ear hoc Cöng nghé - VNU, 144 Xuän Thüy, Hà Nọu ${ }^{3}$ Đai hoc Xây düng, 55 Giai Phong, Hai Bà Trıng. Hà Nôt

Email: man_thuhal@yahoo.com

Trong mós trương nước, khi một vật thẻ có hinh dạng mảnh di chuyên với vận tốc nhanh hương về phía trươe sẽ tự quay trong inột khe rồng (còn gợi là khoang hơi hay tú hờ xàm thực)

Trong mô hinh khe rỗng hệ số cản của vật thể đóng vai trò rà̉t quan trọng trong quá trinh di chuyèn. Theo Salıs. Garabedian, Kicenukm hê số can nay đượ chọn bớr các glá tri thich hop trong khoáng từ 0,8 dền 1 . Theo Rand, Kirschner thì hệ só cán này đưoc viết bờn công thức $k=C_{00}(!+\sigma) \cos ^{2} \alpha$ với σ lả số cavitation (số xâm thục), α là goc gıữa trục của vật thể mãnh và hướng của dı chuyển. $C_{n 0}$ lả tham só thường được chọn trong khoảng từ 0.6 đển 0,85 1rong bài báo này hê số càn đươ viết dưới dạng $k=k_{\mathrm{t}} C_{\mathrm{ini}}(1+\sigma) \cos ^{2} \alpha$, trong tính toán hę̣ số $C_{o v}$ đurợc là̀y bằng 0,82 và bằng phương pháp toán hoc hê số chura biết k_{1} sẽ đươc hiễu chınh sau cho các vạ̀n tốc dı chuyền trong mô hình gần vớn các số lıệu quan sát được Phưong pháp toán học được áp dưng đề tim hệ̣ số chura biét $k_{\text {}}$ là phương pháp đồng hóa só heệu Trong phươg pháp nảy các số liệu quan sát được sừ dưng trong hàm muc ticuu. Dây chính lả môt trong những phuơng pháp hữu hrêu đề glà các bài toán tối uu bằng cách glál bà toản lıên hơp rồ tính gradıent của hàm nnục tıétu.

Tǐ khȯa dồng hóa số liệu, tối und, phuong pháp Runge-Kutta

