

DOI 10 15625/0866-708X/54/3/6566

APPLICATION OF DATA ASSIMILATION FOR PARAMETER CORRECTION IN SUPER CAVITY MODELLING

Tran Thu Ha^{1.2,4,*}, Nguyen Anb Son³, Duong Ngoc Hai^{1,2,4}, Nguyen Hong Phong^{1,2}

¹Institute of Mechanics -VAST - 264 Doi Can and 18 Hoang Quoc Viet Hanoi, Vietnam

²University of Engineering and Technology -VNU,144 Xuan Thuy, Hanoi, Vietnam

³National University of Civil Engineering, 55 Giaiphong Str., Hai Ba Trung Hanoi

⁴Institute of Science and Technology -VAST 18 Hoang Quoc Viet Hanoi, Vietham

'Email: tran_thuha1@yahoo.com

Received: 27 July 2015; Accepted for Publication. 2 May 2016

ABSTRACT

On the imperfect water entry, a high speed slender body moving in the forward direction rotates inside the cavity. The super cavity model describes the very fast motion of body in water. In the super cavity model the drag coefficient plays important role in body's motion. In some references this drag coefficient is simply chosen by different values in the interval 0.8-10. In some other references this drag coefficient is written by the formula $k = C_{po} (1 + \sigma) \cos^2 \alpha$ with σ is the cavity number, α is the angle of body axis and flow direction, C_{oo} is a parameter chosen from the interval 0.8-0.85. In this paper the drag coefficient $k = k_c C_{po} (1 + \sigma) \cos^2 \alpha$ is written with fixed $C_{op} = 0.82$ and the parameter k_i is corrected so that the simulation body velocities are closer to observation data. To find the convenient drag coefficient is used in the cost function. The data assimilation is applied. In this method the observing data is used in the cost function. The data assimilation is one of the effected methods to solve the optimal problems by solving the adjoin problems and then finding the gradient of cost function.

Keywords data assimilation, optimal, Runge-Kutta methods.

1. INTRODUCTION

When stender body running very fast under water (velocity is higher than 50 m/s) the cavity phenomena is happened. Cavity may have a variety of cause. The most common example is boiling water, where the vapor pressure is increased by raising the water temperature. In hydrodynamics applications cavitation is the appearance of vapor bubbles and pockets inside bomogeneous hquid medium. This phenomenon occurs because the pressure is reduced to the vapor pressure limit. In this paper we will study super cavity appearing by the very fast movement of slender body in water that makes uncontrolled gun-launched slender body. Except the body head called by cavitator is directly touching with water, the gas layer can be covered partial or full body depending on the design of body form. The body rotates about its nose. The form of body's nose can be differently chosen such as: sharp, hemisphere, plate disk. For simple calculation we choose cavitator formed by the plate disk with diameter d, (Figure 1).

The body is consisted of two parts: the cone top and cylinder part with the diameter d.

- L is the length of the slender body,
- L2 is the body's length of cylinder part;
- L is the body's length of cone top part,
- d is the body's diameter;

- d, the body's nose diameter.

Figure 1 Slender body geometer.

In the super cavity model the following assumptions are [1, 2]

- The motion of the projectile is confined to a plane,

- The slender body rotates about its nose [1 - 4];

- The effect of gravity on the dynamics of this body is negligible;

 The motion of the slender body is not influenced by the presence of gas, water vapor or water drops in the cavity;

The super cavity problems are studied in [1, 2, 5 - [1]. To study the motion problems of slender body running under water there are basic approaches:

- The experimental approach consisting in observing and measuring motion by remote sensing.

The modeling approach based on mathematical models of the flow and of the body motion.

 The models of body's motion under water include some parameters that have not a clear physical meaning because they are a synthetic representation of several physical effects such as sub-grid turbulence that can't be explicit in the model because of a necessary truncation for numerical purposes.

None of these approaches is sufficient to predict the evolution of body motion. They have to be combined to retrieve the body motion under water. All the techniques used to combine the information provided by observations and the unformation provided by models are named by Data Assimilation methods and have known an important development during these last decades. The Data Assimilation method using differential variation is based on the theory of optimal control for partial differential equation by Lions et al. [12, 13] and Marchuk et al. [14]. This method is applied to correct coefficients, solve the inverse problems, simulate the air and fluid pollution processes ([14 - 21])

- In this paper we will concentrate the study on the identification coefficient parameter k_1 of the drag coefficient $k = k_1 C_{D0} (1 + \sigma) \cos^2 \alpha$ ($C_{D0} = 0.82$). In the second section we will describe the abstract definition of an inverse problem via variation methods. The unknown coefficient is defined as the solution of an optimization problem. In the third section we will

formulate the model of the problem of body's fast motion under water problem. The 4-th section is devoted to the application of optimal control to the identification of model's coefficient.

2. GENERAL VARIATION APPROACH

Because In the model's parameters are a synthetic representation of several physical effects, they can't be directly estimated. They depend both on the model and on the data. They will be evaluated as the solution of an "Inverse Problem", basically as the solution of an optimization problem. The advantage is that there exist many efficient algorithms for solving these problems. Most of them require to compute the gradient of the function to be minimized. The cost function is done by solving an "Adjoin Model" The method is described in many papers together with the computational developments ([14 - 21]). It can be summarized as follows:

Let X(t) the state vector describing the evolution of a system governed by the abstract equation:

$$\begin{cases} \frac{dX}{dt} = F(X, \mathcal{E}, \dots, \mathcal{E}_n) \\ X(0) - X_0 \end{cases}$$
(2.1)

where: $E_1,...,E_n$ are the equation's parameters with *n* is the number of parameters; X(t) is a unknown state vector belonging for any *t* to a Hilbert space \mathbb{S} , $X_0 \in \mathbb{S}$; *F* is a nonlinear operator mapping $Y \times Y_p$ to *Y* with $Y = L_2(0,T,\mathbb{S})$, $\|\|_Y = (...,)_Y^{1/2}$. Y_p is Hilbert space (the space of model's parameters). Suppose that for given initial value $X(0) = X_0 \in \mathbb{S}$ and $(E_1,...,E_n) \in Y_p$ there exists a unique solution $X \in \mathbb{S}$ to (2.1). In case the values of $E = (E_1,...,E_n)$ are unknown and there are some observation data $X_{obs} \in \mathbb{S}_{obs}$ with S_{obs} is a Hilbert space (observation space) we introduce the functional called cost function:

$$J(E) - \frac{1}{2} \int_{0}^{T} (H(CX - X_{obs}), CX - X_{obs})_{\mathfrak{Z}_{ov}} dt + \frac{1}{2} (E - E_0)^2$$
(2.2)

where $(E_{0,1},...,E_{0,n})$ are priori approximation evaluations of $E_1,...,E_n$; $C: \Im \to \Im_{obs}$ is a linear bounded operator, $H:\Im_{obs} \to \Im_{obs}$ is symmetric positive definite operator; The problem is to determine $E^* = (E_1^*,..,E_n^*)$ by minimizing J. The second and the third terms in J are a regularization term in the sense of Tykhonov, have a well posed problem (see [15, 17]). The optimal solutions are characterized by $\bar{\nabla}J(E_1^*,..,E_n^*)$ where $\bar{\nabla}J$ is the gradient of J. To compute this gradient we introduce e_i (i=1,2,..,n), the directions in the space Y_p . We will compute the Gateaux derivative of the cost function J by $E = (E_1,..,E_n)$ in the directions of $e^e = (e_1,...,e_n)$. The Gateaux derivative of the cost function J in the directions of $e^e = (e_1,...,e_n)$ will be.

$$J_{1:\ldots} = J_{n} = \sum_{i=1}^{n} \int_{0}^{r} \left[\left(C^{T} H \left(CX - X_{obs} \right), \hat{X}^{(i)} \right)_{3} dt + \sum_{i=1}^{n} \left\{ E_{i} - E_{i,0}, e_{i} \right\} \right]$$

$$= \sum_{i=1}^{n} \int_{0}^{r} \left[C^{T} H \left(CX - X_{obs} \right), \hat{X}^{(i)} \right]_{3} dt + \sum_{i=1}^{n} \left\{ E_{i} - E_{i,0}, e_{i} \right\}$$

$$= \left(\hat{J}_{E_{i}} \left(E_{i}, ..., E_{s} \right), ..., \hat{J}_{L_{s}} \left(E_{i}, ..., E_{s} \right) \right) \left(e_{i}, ..., e_{s} \right)^{T}$$
(2.3)

where: $\hat{X}^{(v)}$. $\hat{J}_{e_{\epsilon}}(E_{\epsilon},...,E_{\epsilon})$ respectively are the Gateaux derivatives of X and J with respect to E_{ϵ} in the directions e_{ℓ} . Here $<_{\epsilon}$ is the dot product associated with the norm operator $| \|$. The optimal solution of problem is characterized by $\hat{J}(E_{1},...,E_{\epsilon}) = \nabla J_{\epsilon}(e_{1},...,e_{\epsilon})^{t} = 0$ where $\nabla J = (J_{e_{\epsilon}},...,J_{e_{\epsilon}})$ is the gradient of J with respect to $E_{1},...,E_{\epsilon}$; The superscript T indicates the transpose of the vector

The Gateaux derivative equations of (2.1) by E_i in the directions of e_i (i=1,2,.,n) are:

$$\frac{d\hat{X}}{dt} = \frac{\partial F(X, E_i, \cdot, E_n)}{\partial X} \cdot \hat{X}^{(i)} + \frac{\partial F}{\partial E_i} \cdot e_i$$

$$\hat{X}^{(i)}(0) = 0$$
(2.4)

Let us introduce $P^{(i)}$, the adjoin variable in the same space as A. Multiplying equation (2.4) by $P^{(i)}$ in space S we integrate by time between 0 and T. It comes,

$$\int_{0}^{T} \left(\frac{d\hat{X}^{(\alpha)}}{dt}, P^{(\alpha)} \right)_{0}^{\alpha} dt - \int_{0}^{T} \left(\frac{dF}{dX}, \hat{X}^{(\alpha)}, P^{(\alpha)} \right)_{0}^{\alpha} dt + \int_{0}^{T} \left(\frac{dF}{dE_{\alpha}}, e_{\alpha}, P^{(\alpha)} \right)_{0}^{\alpha} dt$$
(2.5)

$$\operatorname{or}\left[\dot{X}^{(i)}(T), P^{(i)}(T)\right]_{3} - \left[\dot{X}^{(i)}(0), P^{(i)}(0)\right]_{3} - \int_{0}^{T} \left[\dot{X}^{(i)}, \frac{dP^{(i)}}{dt} + \left[\frac{dP}{dX}\right], P^{(i)}\right]_{3} dt + e_{i}\int_{0}^{T} \left[\frac{dP}{dT_{i}}\right] I^{(i)} dt \qquad (2.6)$$

The superscript ' indicates the transpose of the matrix Summing n equations of (2.6) we have

$$\sum_{i=1}^{n} \left[\left(\hat{X}^{(i)}(T), P^{(i)}(T) \right)_{3} - \left(\hat{X}^{(i)}(0), P^{(i)}(0) \right)_{9} \right]$$
$$= \sum_{i=1}^{n} \left[\int_{1}^{T} \left(\hat{X}^{(i)}, \frac{dP^{(i)}}{dt} + \left\{ \frac{dF}{dX} \right\}^{2} P^{(i)} \right)_{3} dt + e_{i} \int_{1}^{T} \left[\frac{dF}{dF_{i}} \right] P^{(i)} dt \right]$$
(2.7)

If P⁽ⁱ⁾ is the solution of

$$\left|\frac{dP^{(i)}}{dt} + \left[\frac{dF}{dX}\right]^{t} P^{(i)} = C^{T}H(CX - X_{obs}) \right|$$

$$P^{(i)}(T) = 0$$
(2.8)

then (2.7) becomes.

App.

$$\sum_{i=1}^{n} \int_{0}^{T} \left(\hat{X}^{(i)}, \frac{dP^{(i)}}{dt} + \left[\frac{dF}{dX} \right]^{2}, P^{(i)} \right)_{j_{3}} dt = \sum_{i=1}^{n} \int_{0}^{T} \left(\hat{X}^{(i)}, C^{T} H \left(CX - X_{obs} \right) \right)_{5} dt$$

$$= -\sum_{i=1}^{n} e_{i} \int_{0}^{T} \left[\frac{dF}{dE_{i}} \right]^{2} P^{(i)} dt$$
(2.9)

Therefore, from (2.3), (2.9), we have

$$\hat{J}(E_1,...,E_n) = \sum_{i=1}^{n} \left(-\int_0^t \left[\frac{dF}{dE_i}\right]^i \cdot P^{(i)} dt + E_i - E_{j,S}\right] e_j$$

= $\bar{\nabla}_i J_i(e_1,...,e_n)^T$ (2.10)

$$\bar{\nabla}J = \left(J_{E_1}(E_1, ..., E_n), ..., J_{E_n}(E_1, ..., E_n)\right)$$
(2.11)

with

where:
$$J_{E_i}(E_1,...,E_n) = -\int_0^T \left[\frac{\partial F}{\partial E_i}\right]' P^{(i)} dt + E_i - E_{i,0}$$

Equations 2.1 - 2.9 and the condition for the gradient (2.11) to be null are the Optimality System (O.S) The adjoin model will be run back word to get the gradient which are used to carry out an algorithm of optimization [14 - 21].

3. MATHEMATICAL MODEL FOR THE BODY MOTION

To describe the motion of body, a body fixed coordinate system as shown in Figure 2 is chosen. (X_n, Y_n, Z_n) is the inertial reference frame with origin at O and (X_1, Y_n, Z_1) is the noninertial reference frame with origin at A, the tup of the slender body. The X_1 -axis coincides with the longitudinal axis of the slender body. The components of velocity of point A along X_1 and Z_1 direction are U and W respectively. The components of velocity of point A along X_0 and Z_0 direction are U_r and W_r respectively. The angular velocity and rotating angular about Y_0 axis are Q and respectively.

Figure 2 Axes of body and mertial frames.

The relationships between body and inertial fixed velocities are described by the following formulas.

 $U_F = U\cos\vartheta + W\sin\theta; \quad W_F = -U\sin\vartheta + W\cos\vartheta; \quad \dot{\vartheta} = Q; \quad \vartheta(0) = \vartheta_0$

The mathematic cavity model [1] is used to describe the motion of slender body under water in cavity. The motion of slender body in both phases is written by the following equations:

Phase 1. For $U^2 >> W^2$ and $\rho A_c k(U, W, h) U^2 >> 2mLQ^2$ the equation can be written as

$$\frac{\partial U}{\partial t} = -\frac{1}{2m}\rho k(U,W,h)A_{t}U^{2}$$

$$\frac{\partial W}{\partial t} = QU$$

$$\frac{\partial Q}{\partial t} = 0$$

$$\frac{\partial Q}{\partial t} = -U\sin\vartheta + W\cos\vartheta$$

$$\frac{\partial \vartheta}{\partial t} = Q$$

$$U(0) = U_{0},W(0) = W_{t};Q(0) = Q;Q(0) = Q;h(0) = h_{t}^{-1}(0) = 0$$
(3.1)

Phase 2: For $U^2 >> W^2$ and $\rho A_1 k(U,W,h)U^2 >> 2mLQ^2$ the equation can be written as:

$$\frac{\partial U}{\partial t} = \frac{1}{2m} \rho k(U,W,h) F(A_{i},r,l_{i},\theta) L^{2}
\frac{\partial W}{\partial t} = KW^{2} [M_{i}l_{i} + M_{i}l_{i}x_{m}(L-x_{m})] + 2KW [QM_{i}Lx_{m}l_{i}(L-x_{m})] + QU
\frac{\partial Q}{\partial t} = -KM_{i} [W^{2}l_{i}x_{m} + 2WQL_{i}x_{m}].
\frac{\partial W}{\partial t} = -U\sin \theta + W\cos \theta
\frac{\partial W}{\partial t} = Q$$
(3.2)

where:

Þ

- θ is the angle of slender body during impact with the cavity boundary.

$$\tan \theta \approx \frac{n}{L'} \text{ or } \theta \approx \arctan \frac{H'}{L'}$$

$$\cdot M_{1} = -\frac{\rho d}{m} M_{2} \approx \frac{\rho d}{l}$$

$$\cdot F(A, r, l_{1}, \theta) = A_{1} + r^{2} \cos^{2}\left(\frac{r - l_{1} \tan \theta}{r}\right) - (r - l_{1} \tan \theta) \sqrt{dl_{1} \tan \theta}$$

$$- k(L, W, h) = k_{1}C_{tot}(1 + \sigma) \cos^{2} \alpha$$

$$- C_{1} = 0.82$$

- α is the angle between flow direction and body's direction in moving

$$\cos \alpha \approx \frac{U}{\sqrt{U^2 + W^2}}$$

- $p_m = \rho g h + P_{atm}$ - Ambient pressure;

- l_k is the wetted length of the body;
- κ_1 , K are parameters; For the circular section $K = 2\pi$ [1];
- h is the water depth between the body's position and water free surface, ρ is the mass density of water,
- x, is the distance between body's tail and its centre of mass;
- m is the mass of the slender body;

-
$$\sigma$$
 is the cavitation number $\sigma = \frac{p_m - p_c}{0.5(U^2 + W^2)}$

- I is the moment of inertia of the body about an axis parallel to the Y_1 axis and passing through its centre of mass;

- r = d/2 is the radius of slender body;

 $-A_c = \frac{\pi d_c^2}{4}$ is the area of the cavitator;

- $r_c = \frac{d_c}{2}$ is the cavitator radius;

- g = 9.81 m/s is the gravity acceleration,
- p_i is the vapour pressure of water.

To get the above equations the following condition is needed: $\frac{l_k}{I} \ll 1$

The geometry of the cavity is given by ([1, 2, 8]):

$$\frac{(x-l/2)^2}{(l/2)^2} + \frac{y^2}{(D_k/2)^2} = 1$$

where the maximum diameter D_k and length l of the cavity shape are given by the following formulas:

$$D_k = d_r \sqrt{\frac{k_i C_{D0} (1 + \sigma)}{\sigma}}, l = \frac{d_e}{\sigma} \sqrt{\log \frac{1}{\sigma}}$$

The equation (3 1) - (3.2) can be rewritten as follows:

$$\begin{cases} \frac{\partial X}{\partial t} = A(X) \\ X(0) = X_0 \end{cases}$$
(3.3)

where.

App.

$$X = (U, W, Q, h, \vartheta)^{T}$$
^(3.4)

is an unknown state function vector of the equations (3 1)-(3 2) and

$$X_{b} = \{U_{0}, W_{0}, Q_{0}, h_{0}, \vartheta_{0}\}^{T}$$

$$A(X) = \left[A_{1}(X), A_{2}(X), A_{3}(X), -U\sin\vartheta + W\cos\vartheta, Q\right]^{T}$$

$$A_{1}(X) = \begin{cases} -\frac{1}{2m}\rho k(U, W, h) A_{c}U^{2} \text{ in the first phase} \\ -\frac{1}{2m}\rho k(U, W, h) F(A_{c}, r, l_{k}, \theta)U^{2} \text{ in the second phase} \end{cases}$$

$$A_{2}(X) = \begin{cases} QU \qquad \text{in the first phase} \\ KC_{1}W^{2} + KC_{2}W + QU \text{ in the second phase} \end{cases}$$

$$A_{3}(X) = \begin{cases} QU \qquad \text{in the first phase} \\ C_{3}W^{2} + C_{4}WQ \text{ in the second phase} \end{cases}$$

$$C_{1} = M_{1}l_{k} x_{m}(L - x_{m}); C_{2} = 2M_{2}L_{x}w_{l}(L - x_{m}); C_{3} = -M_{2}l_{k}x_{m}; C_{4} = -M_{2}Ll_{k}x_{m}$$
The equation 3.3 is solved by Runge Kutta method.

4. CORECTION OF k1 COEFFICIENT

We have priori approximations $k_{i,*}$ of k_i and measurement $\chi_{obs} = (U_{obs}, W_{obs}, \partial_{obs}, h_{obs}, \partial_{obs})$ of the motion velocity of body. Using the cost function (see formula 4.1) the continuous problem is to determine k_1^* minimizing J:

$$J(k_{1}) = \frac{1}{2} \int_{0}^{T} (CX - X_{obs}, CX - X_{obs})_{\Im_{-k}} dt + \frac{1}{2} (k_{1} - k_{1,0})^{2}$$
(4.1)

C is an operator, that is Diract's matrix, from the space of the variable X to the space of observation with point wise measurement. Therefore, we have an optimal control problem with respect to the coefficient k_1 . The first step is to exhibit the Euler-Lagrange equation-necessary equation for an optimum in order to exhibit the gradient of J with respect to k_1 . Then, we will be able to carry out some optimization algorithm.

The data assumilation problem is written in the form

$$\begin{cases} \frac{\partial X}{\partial t} = A(X) \\ X(0) - X_{0} \\ J(k_{1}^{*}) = \inf_{k_{1}^{*}} J(k_{1}) \end{cases}$$
(4.2)

433

here $X = (U, W, Q, h, \theta)^{T}$, A(X) is the vector function defined by the formula (3.4)- (3.5), and the cost function $J(k_1)$ is defined by the formula (4.1). To solve the problem (4.2) we will define the formula of function $J'_k(k_1)$ in the next subsection.

4.1. Computation of Gateaux derivative for the cost function J

Let k_1 being a value in the space of the control. Let us introduce the Gateau derivative $\hat{X} = (\hat{U}, \hat{W}, \hat{Q}, \hat{h}, \hat{\partial})^T$ of $X = (U, W, Q, h, \partial)^T$ by k_1 in the directions of $\overline{k_1}$ as follows ([22]).

$$\hat{X} = \lim_{\alpha \to 0} \frac{X(k_1 + \alpha \bar{k}_1) - X(k_1)}{\alpha}$$

Then the Gateaux derivative of the cost function J with respect to k_{\parallel} in the directions of $\overline{k_i}$ will be:

$$\hat{J}(k_{1}) = \int_{0}^{T} \left(C^{T} \left(CX - X_{obs} \right), \hat{X} \right)_{3} dt + \left(k_{1} - k_{1,0} \right) \overline{k_{1}}$$
(4.3)

Firstly, we will compute Gateaux derivatives $\hat{J}_{i_1}(k_1)$ of the cost function J with respect to k_i in the directions of $\overline{k_i}$.

The Gateau derivative equations of (3.3) with respect to k_1 in the direction of $\overline{k_1}$ are written as follows:

$$\begin{cases} \frac{\partial \hat{X}}{\partial t} = N(X)\hat{X} + B(X)\overline{k}_{\mathbf{j}} \\ \hat{X}(0) = 0 \end{cases}$$
(4.4)

where.

$$N(X) = \begin{bmatrix} N_{11}(X) & N_{12}(X) & 0 & N_{14}(X) & (4.5) \\ N_{21}(X) & N_{22}(X) & N_{22}(X) & 0 & 0 \\ 0 & N_{32}(X) & N_{33}(X) & 0 & 0 \\ -\sin\vartheta & \cos\vartheta & 0 & 0 & -U\cos\vartheta - W\sin\vartheta \\ 0 & 1 & 0 \end{bmatrix};$$

$$N_{ij} = \begin{bmatrix} N_{ij}^{(1)} & \text{in the first phase} \\ N_{ij}^{(2)} & \text{in the second phase} \end{bmatrix} (i = 1, 3; j = 1, 4)$$

$$N_{i1}^{(i)} = -\frac{1}{2m}\rho_k C_{ns} \left[1 + \frac{p_n - p_i}{0.5\rho(U^2 + W^2)} \right] \frac{(2U^* + 3U^2W^2)}{(U^2 + W^2)^{3/2}} A_i + \frac{1}{m}k_i\rho C_{os} \frac{p_n - p_i}{0.5\rho(U^2 + W^2)} U^* A_i$$

$$N_{i1}^{(i)} = -\frac{1}{2m}\rho_k C_{ns} \left[1 + \frac{p_n - p_i}{0.5\rho(U^2 + W^2)} \right] \frac{(2U^* + 3U^2W^2)}{(U^2 + W^2)^{3/2}} A_i + \frac{1}{m}k_i\rho C_{os} \frac{p_n - p_i}{0.5\rho(U^2 + W^2)} WU^* A_i$$

la,

$$\begin{split} N_{4}^{(4)} &= -\frac{\rho}{2m} h_{1}^{(2)} e^{-\frac{R}{2m} \frac{R}{1} \left(\frac{R}{2} + \frac{R^{-2}}{1} \right)^{\frac{R}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{1} \right)^{\frac{R}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{2} \right)^{\frac{R^{-2}}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{2} + \frac{R^{-2}}{2} \right)^{\frac{R^{-2}}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{2} + \frac{R^{-2}}{2} \right)^{\frac{R^{-2}}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{2} + \frac{R^{-2}}{2} + \frac{R^{-2}}{2} \right)^{\frac{R^{-2}}{2}} \left(\frac{R^{-2}}{2} + \frac{R^{-2}}{2} + \frac{R^{-2}}{2} \right)^{\frac{R^{-2}}{2}} \left(\frac{R^{-2}}{2} + \frac{$$

$$\begin{split} N_{22}^{(1)} &= \mathcal{Q} : N_{22}^{(2)} = 2KC_{*}W + KC_{1}\mathcal{Q} : N_{23}^{(2)} = KC_{2}W + U_{*}N_{22}^{(2)} = 2KC_{*}W + KC_{4}\mathcal{Q} \\ & N_{33}^{(2)} = KC_{4}W \\ & B = (B_{1}, B_{2}, B_{3}, 0, 0) \end{split}$$

$$B_{i} = \begin{cases} -\frac{1}{2m}\rho C_{ha}(1+\sigma)\frac{U^{4}}{U^{2}+W^{2}}A_{i} \text{ for the first phase} \\ -\frac{1}{2m}\rho C_{ha}(1-\sigma)\frac{U^{4}}{U^{2}+W^{2}}F_{i} - \frac{1}{2m}k(U,W,h)U^{2}F_{i}'A_{i}'A_{i} \text{ for the second phase} \\ F_{ih} = \begin{cases} \frac{\sin\left(\frac{i-I_{i}}{1+4\pi}\right)^{2}-\frac{1}{2m}}{\cos^{2}\left(\frac{I-I_{i}}{1+4\pi}\right)^{2}-\frac{1}{2}}\sqrt{\frac{I_{i}}{2}} + \frac{3}{2}\tan\theta\sqrt{aI_{i}}\frac{I_{i}}{\tan\theta}} \end{cases} \\ B_{2} = \begin{cases} 0 \text{ for the first phase} \\ C_{i}'A'' + C_{2h}'W' + C_{2h}'W' \text{ for the second phase} \end{cases} \\ B_{i} = \begin{cases} 0 \text{ for the first phase} \\ C_{i}'A''' + C_{4h}'W' \text{ for the second phase} \end{cases} \end{cases}$$

 $C_{I_4}, C_{I_4}, C_{I_4}, C_{I_4}$ are the derivatives of those functions with respect to parameter k_1 Multiplying the equation (4.4) by adjoin variable $P = (P_1, P_2, P_3, P_4, P_4)^T$ in the same space as X and then integrating by t between 0 and T we have

$$\left(\hat{X}(T), P(T)\right)_{3} - \left(\hat{X}(0), P(0)\right)_{3} = \int_{0}^{T} \left(\hat{X}, \frac{dP}{dt} + F(X, P)\right)_{3} dt + \bar{k}_{1} \int_{0}^{T} B P^{T} dt$$
(4.6)

where $F(X,P) = N^{T} P$ with N(X) is defined by the formula (4.5).

If P is satisfying the following equation:

$$\begin{cases} \frac{dP}{dt} + F(X, P) = -C^{t}H(CX \cdot X_{abc}) \\ P(T) = 0 \end{cases}$$
(4.7)

Then the Gateau derivative $\hat{J}_{k_1}(k_1)$ of the cost function J with respect to k_1 in the directions of $\overline{k_1}$ is: (see formula 4.3):

$$\dot{J}_{k}\left(k_{1}\right) = -\int_{0}^{T} \left(\dot{X}, \frac{dP}{dt} + F\left(X, P\right)\right)_{3} dt + \left(k_{1} - k_{1,0}\right) \bar{k}_{1} = \bar{k}_{1} \left(-\int_{0}^{T} B P^{\tau} dt + \left(k_{1} - k_{1,0}\right)\right) = \bar{k}_{1} J_{4}$$

Therefore, the function $J'_{i_i}(k_i)$ is calculated by the following formula:

$$J'_{k_1} = -\int_{0}^{r} (B_1P_1 + B_2P_2 + B_3P_3) dt + (k_1 - k_{..0})$$
(4.8)

4.2. Algorithm to solve the optimal control problem

The optimal method is based on inverse BFGS update [23 - 26]. The algorithm schema is written as follows:

a. Let I = 0: Get the initial value $k_{i,s} = k_{i,s}$: $H_i = 1$; Solve equations 3.3 with the parameter $k_{i,s}$, and the adjoin equations 4.7; Get the function $J'_k(k_{i,s})$ by the formula 4.8

b. Calculate

$$d_{i} = -H_{i}J_{k}'(k_{1,i})$$

c. Calculate α_i so that is satisfied the Armijo-Wolfe conditions ([25, 26]):

$$J(k_{\mathbf{l},i} - \alpha_{i}d_{i}) \leq J(k_{\mathbf{l},i}) + \alpha_{i}\beta J_{k_{i}}(k_{\mathbf{l},i})d_{i}$$

where $\beta \in (0,1)$. Typically β ranges from 10^{-4} to 0.1

This α_i can be found by the following schema steps ([27]):

c 1 $\alpha_{initial} = 1$; c 2 Given $\tau \in (0,1)$. Typically $\tau = 0.5$; c.3 Let I=0 then $\alpha^{I} = \alpha_{initial}$; c.4 Check. 461

While not
$$J(k_{l,i} + \alpha^{l}d_{i}) \leq J(k_{l,i}) + \alpha^{l}\beta J'_{k_{i}}(k_{l,i})d_{i}$$

Set $\alpha^{c^{**}} = \pi\alpha^{c}$
Increase l by I
End while

c.5 Set $\alpha_i = \alpha^{(l)}$.

d. Calculate:
$$\Delta k_{1,i} = s_i = -\alpha_i H_i J_{k_i}(k_{1,i})$$

0:;;

e. Calculate: $k_{1,-1} = k_{1,2} + \Delta k_{1,2}$

f. Solve equations 3.3 with the parameter $k_{1,\mu}$ and the adjoin equations 4.7.

g. Get the function $J_{k_1}(k_{1,n+1})$ by the formula 4.8.

h. Calculate
$$y_i = J_{k_i}(k_{1,i+1}) - J_{k_i}(k_{1,i})$$

i. Calculate $H_{i+1} = \left(1 - \frac{s_i y_i}{y_i s_i}\right) H_i \left(1 - \frac{s_i y_i}{y_i s_i}\right) + \frac{s_i s_i}{y_i s_i}$

j. Let i = i + 1

k. Go to step b if $J_{k_1}(k_{1,i}) \ge \varepsilon$ ($\varepsilon \succ 0$ is given).

If $J_{k_1}(k_{1,r}) \approx 0$ the optimal process is stopped. Then, we have $k_1 = k_1^*$

4.3. Simulation experiment on correcting on correcting parameter k₁ so that U is closed to measurement

Let the body with m = 0.025091315 kg, $L_1 = 2.5 \text{ cm}$, $L_2 = 11.5 \text{ cm}$, d = 0.57 cm, $d_c = 0.12 \text{ cm}$. $U_0 = 240 \text{ m/s}$, $W_0 \approx 0$, $Q_0 = 1 \text{ rad./s}$, $h_0 = 7 \text{ m}$, $_0 = 0$, $I_c = 1 \text{ 81.10-4 kgm}^2$, $x_{cm} \approx 10.01 \text{ cm}$. We will test the problem by considering the following experiments:

By the same way as [16, 28] we can have the observation data $X_{obs} = \{U_{obs}, W_{obs}, Q_{obs}, h_{obs}, \vartheta_{obs}\}$ as follows.

Let model run in 0.5s with values $k_1 = 1$ simulating the true velocity $X = (U, W, Q, h, \vartheta)$ by solving the equations (3.1)-(3.2).

This velocity X is used as a reference X_{obs} .

The measurement Xobs is obtained by the values of X in all the time period

Then we have Xobs in every time step

- In the testing the model is running in the time period 0.5s with values $k_i = 2$ k_i . Then, the vector function $X = (U, W, Q, h, \vartheta)$ is obtained by solving equations (3, 1)-(3, 2)

The equations (3 1)-(3.2) are solved by Runge Kutta method

- Using the formula of function J'_{t} (4.8) the optimal control problem (4.2) is solved by the algorithm schema in subsection 4.2. Then the minimum of $J(k_{1})$ is found by the formula (4.1) with k_{1}^{+} value.

- The process finding the coefficient is shown in Figure 3. By this process the error of obtain coefficient in the end optimal process is less than 0.00001 percentage. In the Figure 4 the obtain cost function J in the end of optimal process is nearly zero (less than 0.00001). The error percentages of velocities U by X_1 direction with reference Uobs with and without correction coefficient k_1 are shown in Figure 5. With the correction coefficient the percentage errors of velocities are less than 0.00015 %.

- We have done real experimental of projectile running underwater. The cavity is presented in the Picture 1 In the real measurement we have 96 measured points of velocities U by X] direction with the initial velocity $U_0 = 271.2$ m/s. The other initial conditions are chosen approximately $W_0 = 0$, $Q_0 = 1$ rad./s, $h_0 = 1$ m, $\frac{1}{2}_0 = 0$.

- Let the model run with the beginning coefficient $k_1 = 2.5$ then the optimal coefficient $k_1^* = 0.909999046325684$ is found by the optimal program

- The comparison between velocity measurement and the other ones of calculation with $k_1 = 2.5$ or optimal coefficient $k_1 = 0.909999046325684$ is presented in the figure 6

- By this figure it is easy to see that with optimal coefficient $k_l^* = 0.90999046325684$ the model is closer to measurement than the other one without correction.

Figure 3 Correcting coefficient k₁ in optimal process (Left), Coefficient error percent in optimal process correcting k₁ (Right)

Figure 5. Percent error of velocity U(t) with optimal correction of coefficient $k_{1} = k_{1}^{*}$ (left), Percent error of velocity U(t) with coefficient $k_{1} = 2$ (Right)

Picture 1. The full cavity arising in very fast motion of projectile under water

Figure 6 Percent error of velocities U by X_1 direction with and without optimal correction of coefficient

 k_1 comparing with measurement (left); Comparison of velocities U by X, direction with or without correction and measurement.

4. CONCLUSIONS

In the model of slender body running very fast under water the coefficient k_i , strongly effects to the simulation results (the right of Figure 5). By the results presented in Figures 3,4 it is easy to see that by the data assimilation method the corrected coefficient k_i^* can be nearly

equal to the reference coefficient k_i . It follows that the velocity U(t) is closed to the one in reference model (the left of the Figure 5 or Figure 6). Then the data assimilation method can be used as the good tool to correct coefficient in the model of body running fast under water.

Acknowledgements. The research funding by VAST01.01/14-15 project was acknowledged.

REFERENCES

- I Salis S. K., Rudra P. Study on the dynamics of a super cavitating projectile, Applied Mathematics Modelling 24 (2000) 113-129.
- 2 Rand R, Pratap R., Ramani D., Cipolla J., Kirchner I. Impact dynamics of a Super cavitating underwater projectile, Proceedings of the 1997 AMSE Design Engineering Technical Conferences, 16th Biennial Conference on Mechanical Vibration and noise, Sacramento, 1997, DETC97/VIB-3929.
- Ma F, Q., Ltu Y, S., Wang Y, Studies on the Dynamics of a Supercavitating Vehicle, International Conference on Manufacturing Science and Engineering ICMSE. Advances in Engineering Research, Atlantis Press, 2015, pp.388.
- Mojtaba M., Mohammad M. A., Mohammad E. High speed underwater projectiles modeling: a new empirical approach, Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (2) (2015) 613-626.
- Garabedian P. R. Calculation of axially symmetric cavities and jets, Pacific J. Math. 6 (4) (1956) 611-684.
- Kiceniukm T. An experimental study of the hydrodynamic forces acting on a family of cavity producing conical bodies of revolution inclined to the flow, California Institute of Technology, CIT Hydrodynamics Report, (No E-12, 17) (1954)
- Kırschner I. N., Fine N. E., Uhlman J. S., Kınh D. C. Numerical Modeling of Supercavitationg flow, Paper presented at the RTO AVT, Brussels, Belgium, 2001, (RTO EN-10) 9.1-9.39
- May A. Water entry and the cavity running behavior of missiles, Final Technical Report NAVSEA Hydroballistics Advisory, Navea Hydroballistics Advisory Committee Silver Spring Md, (1975) AD - A020 429.
- 9. Logvinovich G.V. Hydrodynamics of free boundary flows. Kiev 1969
- Milwitzky B. Generalized Theory for seaplane Impact, National Advisory Committee for Aeronautics, United States 1952, NACA-TR-1103.
- Nguyen A. S., Tran Th H., Duong Ng. H A Super cavity model of slender body moving fast in water, Process of Vietnam National Conference of Mechanics, 2014, 415-420.
- Lions J. L. Contrôle optimal des systèmes gouvernés par des e'quations aux dérivées partielles, Paris Dunod, 1968
- Lions J. L. Contrôlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, -Paris. Masson, 1988.
- Marchuk G. I, Agoshkov V L, Shutyaev V P Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, New York CRC Press Inc., 1996
- Glowinski R., Lions J. L. Exact and approximate controllability for distributed parameter systems, Acta Numerica 1 (1994) 269.

- Francois X, L., Shutyaev V., Tran T. H. General sensitivity analysis in data assimilation, Russ. J. Numer. Anal. Math. Mode 29 (2) (2014) 107-127.
- Luther W. W., Baxter E. V., David A., Francois X. L. Estimation of optimal parameters for surface hydrology model, Advance in water resources 26 (3) (2003) 337-348.
- Gejadze I., Le Dimet F. X., Shutyaev V. On optimal solution error covariances in variational data assimulation problems, Journal of Computational Physics 229 (2010) 2159-2178.
- Gejadze I. Y., Copeland G. J. M., Le Dimet F. X., Shutyaev V. Computation of the analysis error covariance in variation data assimilation problems with nonlinear dynamics, Journal of Computational Physics 230 (2011) 7923-7943.
- LeDimet F. X., Ngnepieba P., Shutyaev V. On error analysis in data assimilation problems, Russ. J. Numer. Anal. Math. Modelling 17 (2002) 71-97.
- Le Dimet F. X., Shutyaev V. On deterministic error analysis in variation data assimilation, Nonlinear Processes in Geophysics 14 (2005) 1-10.
- Daryoush B., Encych D. N. Introduction of Frechet and Gateaux Derivative, Applied Mathematical Sciences 2 (20) (2008) 975-980.
- 23 Bonnans, J. F., Gilbert, J. Ch., Lemaréchal C. and Sagastizábal C. A. Numerical optimization, theoretical and numerical aspects. Second edition. Springer, 2006.
- Gilbert, Lemarechal I. C. Some numerical experiments with variable-storage quasi-Newton algorithm, Math program. 45 (3) (1989), 407-435.
- Peter B. Lecture Notes #18: Numerical optimization Quasi-Newton Methods The BFGS Method, Department of Mathematics and Statistics, Dynamical Systems Group, Computational Sciences Research Center,San Diego State University,San Diego, CA 92182-7720: <u>http://termunus.sdsu.cdu/SDSU/Math693a_f2013/Lectures/18/lecture.pdf</u>
- 26. Quasi-Newton method: https://en.wikipedia.org/wiki/Quasi-Newton_method.
- Enrico B. Unconstrained minimization Lectures for PHD course on Numerical optimization, DIMS (Universita di Trento), 2011.
- Tran T, H., Pham D, T, Hoang V, L., Nguyen H P Water pollution estimation based on the 2D transport-diffusion model and the Singular Evolutive Interpolated Kalman filter, Compters Rendus Mecanique 342 (2014) 106-124.

TÓM TÁT

ỨNG DỤNG PHƯƠNG PHÁP ĐÒNG HÓA SỐ LIỆU ĐỂ HIỆU CHÍNH THAM SỐ TRONG MÔ HÌNH SIÊU XÂM THỰC

Trần Thu Hả^{1,2,4}, Nguyễn Anh Sơn³, Dương Ngọc Hải^{1,2,4}, Nguyễn Hồng Phong¹

Viện Cơ học, 264 Đội Cấn, Ba Đình, Hà Nội

²Đai học Công nghệ - VNU,144 Xuân Thủy, Hà Nội

³Đại học Xây dựng, 55 Giải Phóng, Hai Bà Trưng, Hà Nột

⁴Học viên Khoa học và Công nghệ, VAST 18 Hoàng Quốc Viêt, Hà Nội

'Email: tran_thuha1@yahoo.com

Application of data assimilation for parameter correction in super cavity modeling

Trong môi trưởng nước, khi một vật thể có hình dạng mảnh di chuyên với vận tốc nhanh hưởng về phía trước sẽ tự quay trong một khe rỗng (còn gọi là khoang hơi bay túi hơi xâm thực)

Trong mô hình khe rỗng hệ số cản của vật thể đóng vai trở rầi quan trọng trong quá trình đi chuyến. Theo Salis, Garabedian, Kicenukan hệ số cản này được chọn bởi các giả trì thích bởi công thờng trong khoảng từ 0,8 đến 1. Theo Rand, Kirschner tình lệ số cán này được việt bởi công thừ $k = C_{eo}(1 + \sigma)\cos^2 \alpha$ với σ là số cavitation (số xâm thực), α là góc giữa trục của vật thế mành và hướng của di chuyển. C_{rol} là tham số thường được chọn trong khoảng, từ 0,6 đến 0,85 Trong bài báo này hệ số cán được việt đười dạng $k = k_i C_{roi} (1 + \sigma)\cos^2 \alpha$, trong tính teản hệ số C_{so} được lầy bằng 0,82 và bằng phương pháp tóan học hệ số chưa biết k_i sẽ được hiệu chính sau cho các vận tốc đi chuyến trong mô hình gần với các số hệu quan sát được Phương pháp toán học được áp dụng để tìm hệ số chưa biết k_i là phương pháp tông hộa số liệu Trong phương pháp này các số liệu quan sát được sử dụng trong hậm muc tiêu. Đây chính là một trong những phương pháp nữu hiệu tiêu.

Từ khỏa : dòng hóa số liệu, tối ưu, phương pháp Runge-Kutta