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ABSTRACT 

On the imperfect water entry, a high speed slender body moving in the forward direction 
rotates inside the cavity. The super cavity model describes the very fast motion of body in water. 
In the super cavity model the drag coefficient plays important role in body's motion. In some 
references this drag coefficient is simply chosen by different values in the interval 0.8-1.0. In 
some other references this drag coefficient is written by the formula k = Caf^{\ + CF)cos~a with 
a is the cavity number, ot is the angle of body axis and flow direction, C^Q is a parameter 
chosen from the interval 0,6-0 85. In this paper the drag coefficient i^i |Cpo(l+ cr)cos^ff is 
written with fixed Coo ̂ 0.82 and the parameter A:; is corrected so that the simulation body 
velocities are closer to observation data. To find the convenient drag coefficient the data 
assimilation method by differential vanation is applied. In this method the observing data is used 
in the cost function The data assimilation is one of the effected methods to solve the optimal 
problems by solving the adjoin problems and then finding the gradient of cost fiinction. 

Keywords data assimilation, optimal, Runge-Kutta methods. 

1. INTRODUCTION 

When slender body running very fast under water (velocity is higher than 50 m/s) the 
cavity phenomena is happened. Cavity may have a variety of cause. The most common example 
is boiling water, where the vapor pressure is increased by raising the water temperature. In 
hydrodynamics applications cavitation is the appearance of vapor bubbles and pockets inside 
homogeneous liquid medium This phenomenon occurs because the pressure is reduced to the 
\apor pressure limit In this paper we will study super cavity appearing by the very fast 
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movement of slender body in water that makes uncontrolled gun-launched slender body. Except 

the body head called by cavitator is directly touching with water, the gas layer can be covered 

partial or full body depending on the design of body form. The body rotates about its nose. The 

form of body's nose can be differently chosen such as: sharp, hemisphere, plate disk. For 

simple calculation we choose cavitator fonned by the plate disk with diameter d^ (Figure 1). 

The body is consisted of two parts: the cone top and cylinder part with the diameter d . 

- Z, is the length of the slender body, 

- L, is the body's length of cylinder part; 

- L, is the body's length of cone top part, 

- t/ is the body's diameter; 

dt - d^ the body's nose diameter. 

Figure 1 Slender body geometer. 

In the super cavity model the following assumptions are [I, 2] ' 

- The motion of the projectile is confined to a plane, 

- The slender body rotates about its nose [1 - 4]; 

- The effect of gravity on the dynamics of this body is negligible; 

- The motion of the slender body is not influenced by the presence of gas, water vapor or 
water drops m the cavity; 

The super cavity problems are studied in [1, 2, 5 - 11]. To study the motion problems of 
slender body running under water there are basic approaches: 

- The experimental approach consisting in observing and measuring motion by remote 
sensing. 

The modeling approach based on mathematical models of the flow and of the body 
motion. 

- The models of body's motion under water include some parameters that have not a clear 
physical meaning because they are a synthetic representation of several physical effects such as 
sub-gnd turbulence that can't be explicit in the model because of a necessary truncation for 
numerical purposes. 

None of these approaches is sufficient to predict the evolution of body motion. They have 
to be combined to retrieve the body motion under water All the techniques used to combine the 
mformation provided by observations and the information provided by models are named by 
Data Assimilation methods and have known an important development durmg these last 
decades. The Data Assimilation method using differential variation is based on the theory of 
optimal control for partial differential equation by Lions et al, [12, 13] and Marchuk et al [14] 
This method is applied to correct coefficients, solve the inverse problems, simulate the air and 
fluid pollution processes ([14 - 21]) 

- In this paper we will concentrate the study on the identification coefficient parameter k, 

of the drag coefficient k =k,C,,{l+c7)coi-a ( C „ , ^ 0 , 8 2 ) . In the second section we w,ll 

describe the abstract definifion of an inverse problem via variation methods The unknown 

coefficient IS defined as the solution of an optimization problem In the third section wc will 
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fonnulate the model of the problem of body's fast motion under water problem. The 4-th section 
IS devoted to the application of optimal control to the identification of model's coefficient. 

2. GENERAL VARIATION APPROACH 

Because hi the model's parameters are a synthetic representation of several physical effects, 
they can't be directly estimated. They depend both on the model and on the data. They will be 
evaluated as the solution of an "Inverse Problem", basically as the solution of an optimization 
problem. The advantage is that there exist many efficient algorithms for solving these problems. 
Most of them require to compute the gradient of the function to be minimized. The cost fiinction 
is done by solving an "Adjoin Model" The method is described in many papers together with 
the computational developments ([14 - 21]). It can be summarized as follows: 

Let X{t) the state vector describing the evolution of a system governed by the abstract 
equation' 

— = FiX.E,.....E.) dl I • '• • • ' (2.1) 

X{0) = X„ 

whete: E\,....Efj ate the equation's parameters with n is the number of parameters; X(l) isa 

unknown state vector belonging for any / to a Hilbert space 3 , A'Q e 3 : f is a nonlinear 

operator mapping YxYp to Y with y = L2 (0,r ,3), | | | j/=( ..)y^ , Kp is Hilbert space (the 

space of model's patametets). Suppose that for given initial value A'(O) = A'Q e 3 and 

iE\ E,])eYplheTc exists a unique solution XsZ to (2.1). In case the values of 

^ = (̂ 1 Eu) are unknown and there are some observation data XQIJ^e 3^^^ with SQ^Jis a 
Hilben space (obsen'alion space) we introduce the functional called cost function; 

AE)^-l(H{CX~Xobs).CX-X„l„)„ dl + Us-Eof 
0 -*'••• ^ 

whete (£o,!, .,£0,17) ^te pnori apptoximation evaluations of E\,...,E„; C;3->3o;,^is a 

lineal bounded operator, H; 3obs ^ %bs 's symmetnc positive definite operator; The 

problem is to detenmne E* =f ff. .,£* J by minimizing J . The second and the third tenns in 

J arc a tcgularizalion tenn in the sense of Tykhonov, have a well posed problem (see [15, 17]), 

The optimal solutions are characterized byV7(£i*,.. ,£*), where V./is the gradient of J . To 

compute this gradient we introducec,- (i = l,2, ..,;i), the directions in the spacel^,. Wc will 

compute the Gateaux denvative of the cost function / by £ = (£],..,£„) in the directions 

°*̂ *'̂ <'n '̂/i) The Gateaux derivative of the cost function J m the directions of 
e = (q,..,e„) will be. 
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A.- . -E,) = '^\[c'H(CX-X^,),X"']_Jl + 'Z(.E.-^i«.') 

'i,j[C'H{CX-X,„).X">ldl + f,{E,-£,.,e,) (2.3) 

'{Jr{E,....E.)...l_{E,....E,)){e,.....c.)' 

where: X . J^ \E^,..,Ef) respectively are the Gateaux derivatives of X and / with respect 

to £•, in the directions ei. Here <,> is the dot product associated with the norm operator || ||, 

The optimal solution of problem is characterized by J(£|,...,£'J-V.y.(e,,...,ej'^ =0 where 

v.y = ŷ£ , -,^^J is the gradient of J with respect to E,,..,E^; The superscript T indicates 

the transpose of the vector 

The Gateaux derivative equations of (2.1) by £•, in the direcfions of e,- ( i - l ,2 , ,n)are: 

IdJt _dE{X,E,, ,£•„] .^,, BE 
\dt~ dX ' '^dE^' 

{ l " ' ( 0 ) - 0 

(2.4) 

Let us introduce P'", the adjoin variable in the same space as ^ Multiplying equation 
(2,4) by /'*" in space 3 we integrate by time between 0 and 7 . It comes. 

f(^'-l-!(f^^--]/'lg^'--)/' 
or(i<' '(71,/. 'n7))^-(i ' ' ' (0),/^' '(0))^=fi<' ' , i^+r|],r]ti+,fi?]^'. . 

(2.5) 

(2 6) 

The superscript ' indicates the transpose of the matnx 
Summing ti equations of (2 6) we have 

|[(i'"(r),P"(r))^-(i""(o),P"(o))J 

=1 ̂ '"•̂ 4f ] -; 
If / " " is the solution of 

dl [dX] * 

[ P"'{7-) = 0 

(2.7) be omes. 

/-4ffl 

- ^ . . , ) 

.P"'dl 
(2 7) 

(2 8) 
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f(^'"'^i^]''"l'"-tF"'^'"''^''-^-'t/' 

_[dE,^ 

Therefore, from (2.3), (2,9), we have 

J(E,.....E.)-ii-]j^^]-F'"dl.E.-E. 
dE. I 

(2,10) 
= v.y.(<.„..,..)' 

with VJ = (yj. ( £ , , „ „ £ . ) , . ,J,_ ( £ , „ . „ £ . ) ) P " ' 

ei' where: J , ( £ , £ j = - J ^ P'-'dt + E,-E,, 

Equations 2.1 - 2.9 and the condition for the gradient (2.11) to be null are the Optimality 
System (O.S) The adjoin model will be run back word to get the gradient which are used to 
carry out an algorithm of optimization [14 - 21]. 

3. MATHEMATICAL MODEL FOR THE BODY MOTION 

To de,scribe the motion of body, a body fixed coordinate system as shown in Figure 2 is 

chosen. {X^.,.Y„,Z„) is the inertial reference frame with origin at O and (X,,y^,Zj) is the non-

inertial reference frame with origin at A, the tip of the slender body. The A", -axis coincides with 

the longitudinal axis of the slender body. The components of velocity of point A along X, and 

Z( direction are (7 and W respectively. The components of velocity of point A along/V,, and Z,, 

direction arc Up and IVf respectively. The angular velocity and rotating angular about >;, axis 

are Oand respectively. 

Figure 2 Axes of body and inertial frames. 

The relationships between body and inertial fixed velocities are described by the following 
formulas. 
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!- F =Ucosi?+lVs\nd: Wf =-Usini^+fr<:osO: h = Q. i%.^\ = ^ 

lhe iridthematic cavity model [1] is used to describe the motion of slender body under 

water in ca\ ny The motion of slender body in both phases is written by the following equafions: 

Phase 1- For U' »W- and p AM[U ,W J{)U' »2mLQ~ the equation can be written as 

du 1 
- ^ = --~pk{U.W.h)A.V' 
at 2in ' ' 

(3.1) 

f / ( 0 ) = £ / „ » ' ( 0 ) = B^,;O(0) = a ; e ( 0 ) = a ; ; , ( 0 ) = ; , „ . - ( 0 ) . , 

Phase 2: For U' » W and pA,k(U.W.h)U'- » 2mL0'- the equation can be wnnen as: 

BU I 

- ^= -—/ ' * - ( ! ^ ' , n ' , ' i l f (4.'••'..eiL'-

- ^ = ™ • [.«,; +.W,x, (7.-.v_ l] + 2CT'[aV/,i.v./, ( i - . t _ )] + « , • 

- e = -KM, [ r V , v_ + 2IVQLI, .v_ ] , 
3* 
^ - - c sin t?+K'cos (̂  
dl 

dIV 
Sl 

se. 

dh 

3l>_ 

'QU 

= 0 

: -U sin 

-Q 

l}+W cos 

(3 2) 

f-
where: 

- 9 is the angle of slendet body dunng impact w ith the cavity boundar>, 

tan ^ = — or ^ = arctan — 

-M. \i ^£1. 

- F(.4.r.l,.0)^.4. + , - c o s - | ^ t i 2 1 ? J ^ ( , . _ , ^ lan»)^'rf/ tanO 

- A(t ,» ' , / i) = J-|C,.,(l + CT)co5=(? 

-C ,=0.S2 
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- a IS the angle between flow direction and body's direction in moving 

U 
cosg = —p 

•Ju'+w-
. p^ = pgh + /^^ - Ambient pressure; 

- If. is the wetted length of the body; 

- K, , K are parameters; For the circular section K = 27r [1]; 

- h IS the water depth between the body's position and water free surface, 

p is the mass density of water, 

- x^^ IS the distance between body's tail and its centre of mass; 

- m is the mass of the slender body; 

P~-Pc - a is the cavitation number (7 — 
0.5(t/ '+W') 

- / is the moment of inertia of the body about an axis parallel to the yj axis and passing 
through its centre of mass; 

- r = d 12 is the radius of slender body; 

-A - — - ^ is the area of the cavitator; 
4 

_d^ 
' '''^ 2 

- g = 9.81 m/s IS the gravity acceleration, 

- p , is the vapour pressure of water. 

To get the above equations the following condition is needed: -^ « I 

The geometiy of the cavity is given by ([1, 2, 8]): 

mf {DJ2)' 
where the maximum diameter D^ and length / of the cavity shape are given by the following 

V (T cr\ a 
The equation (3 1) - (3.2) can be rewritten as follows: 

• dl (3.3) 
X{0)'X(, 
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" ' • " ' = • X=(U.W.Q,h.a)' ' ^ • ' " 

IS an unknon n state fiinction vector of the equations (3 1 )-(3 2) and 

X,={U,.IV„,a.lt«.lfJ 

A(.X) = lAi{X),A2(X),A2(X).-Us'mif-l-WcasAQf (3.5) 

A[(X)^ 
-^pk(U,W,h)AcU'^ In the first phase 

1 ,, 
\-^Pl'(U,W,h)F(Ac,r,li^.e)U^ in lhe second phase 

[QU in thefirst phase 
A2{X)-\ J 

[KCflV^ -^ KC2 tV-l-QU m lhe second phase 

f QU In the first phase 

2 
CifV^+Ci^WQ In the second phase 

q =M,I, +Mj / , . t , . ( t - . i „ , ) ;C , = 2 M , L r J , ( i- . t :„.) ;C, =-M,/,.v„.;Q = - M , i / , r „ . 

The equation 3.3 is solved by Runge Kutta method. 

4, CORECTION OF *[ COEFFICIENT 

Wc have priori approximations *,. of A' and measurement 

'^ohs '[Uobs'^obs-Qobs-^obs'i^ohs) ^^^^^ motion velocity of body. Using the cost function 

(see fonnula 4 1) the continuous problem is to deteimine A]* minimizing J : 

T 

J(H)'^-\(CX-Xobs.CX-Xob.,)^ dl + Uki-kx_of (4.1) 

0 

C is an opetator, thai is Diiact's matnx, from the space of the variable X to lhe space of 

observation with point wise measutcmcnt Thctefoic, wc have an optimal conttol problem with 

tcspect to the coefficient AT . The fitst step is to exhibit the Euler-Lagrange equation- necessary 

equation for an optimum m order lo exhibit the gradient of J with respect toA] Then, we will 

be able to carry out some optimization algonthm 

The data assimilation ptoblem is written in lhe form 

[ ^ = ..(,n 
.\-(0) = A'„ 

,;(A,") = infJ(A|) ' ' *^ ' 
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here X = {U,W.Q,h,i}f. A(X) is the vector fimction defined by the formula (3.4)-(3.5), and 

the cost function J{k,) is defined by the formula (4.1). To solve the problem (4.2) we will 

define the formula of function J[^ (A:,) in the next subsection. 

4.1. Computation of Gateaux derivative for the cost function / 

Let k\ being a value in the space of the control. Let us introduce the Gateau denvative 

X = iu, W, Q, ft, ^)^ of A" - [U, W, Q, / j , ^)^ by k\ in the direcfions of k, as follows ([22]). 

^ ^ X{lq+aki)-X{kY) 

ff^O '^ 

Then the Gateaux derivative of the cost function J with respect to k\ in the directions of 

i . wilt be: 

Hk,) = \(c'{CX-X,„).x)^dt + (k,-k,„)k, 
(4 3) 

Firstly, we will compute Gateaux derivatives J^ (A,) of the cost function J with tespect to 

A| in the directions of A,. 

The Gateau derivative equations of (3.3) with respect to A, in the direction of A, are written 

as follows: 

\-—-^Nl.X)X + Bi.X)k\ 

[A'(0) = 0 

"wm N^ilX) 0 « ,4(J0 

Mzitfl A'22(A-) N2i{X) 0 0 

0 iV32(,if) N^-ilX) 0 0 

-sini^ cost? 0 0 -[/cosi^-iFsint 

0 0 

(4,4) 

(4.5) 

Nij' 

K'—j-pk,c„\ 

1,(1), 

1,(2) ; 

P.-P. 

0 = 1 .3 ;y - l 4) 

(2(/'+3(/'W') 

0-5^(t/' + lf')Jff/^ + t f ^ ) " ' 

0 5 p ( f ' + » ' = ) " 

Q-Sp{V' -i-W'f" 
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N!l'=~-^k,C^^ 
o.5(t.'' + fr-) " 

K^Q^ MV=0; iv ; ! ' = osA'5V^0;jV33' = 0 

>,pc,.[i.^^:zt^]R^'^-^^^'":)]^l^^c„ '--''- ..i-T 
[ 05p(t,'-+ir:) lu'-fir']" " 0.5plL"-+li-')' ' '')) {u'-+iv''}'' 

li--i,ime]i, fTT 

.lil"*'" 

"S-^fiPCJ: 

2"' ' ""[ 05/)(£,-+IF-) 

OSp(t,'-*IC^)J(u: + „.i)'^ „ """"o.SplL'^+ir)^ 

^-/, lan^)^ I l,d 

-jiU'*!''-

«">=^^A,C„ TTU'F, 

2m 0 5 (C /=+» '= ) ' 

WSf = Q:N',;'= 2KC,W-v KC,Q ; W i f = KC,IV + U A'!;' = 2JfC,»' + KC^Q 

N\l'=KCJV 

B = {BuB2.B2,0.0'} 

-T-pCi„{t + a) -A. for the first phase 
_ I zm (,'- +H'-

| - ^ ^ C „ „ ( l + c r ) ^ ^ ^ ^ | ^ f ; -±.i-(U,IV,l,)U-F:j:, for the second phase 

0 for the first phase 

l c 'f' + c: ,WQ for the second phase 

[0 forthe tirst phase 

( c ; , H'- + c ; , WQ for the second phase 

C , \ , c ; ^ , r ; ^ , c ; , , are the de^^atlves of those functions with respect to paramctct A) 

Multiplying the equation (4 4) by adjoin x anable P = (n.F.P,.P,.P,)' ,„Hie same space as X 

and then mtegrating by t belween 0 and T we have 
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(l(r),p{r))^-{x{o),/'(o))^=j[;^,^+F(z,/')j dt+k,]B p'dt (4.6) 

where' F {X,P) = N^.P with N(X) is defined by the formula (4.5). 

If P is satisfying the following equation: 

\ ^ + f{X,P)^-C'HiCX^X^,^) 

V{T) = 0 (4.7^ 
Then the Gateau denvative J^. (k,) of the cost fijnction J with respect to k\ in the 

directions of /:, is: (see fonnula 4.3): 

j^{k^)^-UX,— + E{X,P)\ dt+{k,-k,^)k,^kA-JB P^dt + [k,-k,M = k/i, 

Therefore, the funcnon Jl (k^) is calculated by the following formula: 

y; =-\{B,P,+ B.P., + B,P,)dt + {k,-k,A 
' 0 ' " (4.8) 

4.2. Algorithm to solve the optimal control problem 

The optimal method is based on inverse BFGS update [23 - 26]. The algorithm schema is 
written as follows' 

a. Let I = 0: Get the mitial value /:,, =*, „; Hj^l; Solve equations 3.3 with the parameter 

i i , , and the adjoin equations 4.7; Get the fijnction 7̂  (k^,) by the formula 4 8 

b. Calculate 

''i'-fi-^'k,(in,0 

c. Calculate Olj so that is satisfied the Anmjo-Wolfe condifions ([25, 26]): 

J(kij+aidi)< J(kli)-^aipj'k^ (k\,i)di 

where Pe (0,1). Typically /j ranges from 10~^ to 0,1 

This «/ can be found by the following schema steps ([27]); 

<: l''/mn'(3/=l. 

c2Given re (0,1). Typically r = 0.5. 

C.3 Let 1=0 

C.4 Check. 
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While not J{k\^i+c^di)<J{ki^i) + o^pJk^ K / ) ^ i 

Set or'-' ^ ro" 

Increase / by I 

End while 

c.5Seta,'-a(^)_ 

d. Calculate: A^̂ ,- = j , - ^ ~aiHij\^ (kij) 

e. Calculate: k, ̂ , =k^ +Ak 

f. Solve equations 3.3 witii the parameter A, ,̂ | and the adjoin equations 4.7. 

g. Get the fiinction yj_ (i, ,^,) by the fonnula 4.8. 

h. Calculate yj =Jf,^ (kl^i+])-Jk {Iqj) 

1 Calculate Hf^i -

Yj »/ J [ Jl",- s/ J >',. I, 
j . Let i - i + 1 

k. Go to step b if J' (A,,) > f ( f ^ 0 is given ), 

'f "'i, (̂ 1.,) = 0 the optimal process is stopped. Then, we have k\ = k\ 

4,3, Simulation experiment on correcting on correcting parameter A] so that U is closed to 
measurement 

Let the body with m-0.025091315 kg, i , -2 .5 cm, L,= 11.5 cm rf - 0.57 cm, < . 0 . 1 2 
cm, (/.= 240m/s, W.-O, ft'I rad./s, ,%.7m, . - 0 , 7,-1 81.10^kgm^ .r„ = 10 01 cm. 
We will test the problem by considenng the following expenments' 

By the same way as [16, 28] we can have the observation data 
^obs^{Uobs- '^'obs-Qobs.liobs.'^obs) as follows. 

Let model mn in 0 5s with values k] - I simulating the tme velocity 

X = {V. W.Q.h.ii)lyy ,solving the equations (3.1 )-(3,2). 

This velocity X is used as a reference XQbs. 

The measurement Xobs is obtained by the \ alues of X in all the time penod 

Then we have XQIJS in every time step 

- In the testing the model is ranning in lhe time penod 0 5s with values A, -2 k,. Then, the 
vector function X = [U. W.Q.h. t}) is oblained by solving equations (3.11-(3 2) 
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The equations (3 1 )-(3.2) are solved by Runge Kutta method 

- Using the formula of function J, (4.8) the optimal control problem (4.2) is solved by the 

algorithm schema in subsecnon 4.2. Then the minimum of J{k,) is found by the formula (4.1) 

with kl value. 

- The process finding the coefficient is shown in Figure 3. By this process the error of 
obtain coefficient in the end optimal process is less than 0.00001 percentage. In the Figure 4 the 
obtain cost fiinction / in the end of optima! process is nearly zero (less than 0,00001). The error 
percentages of velocities U by X\ direction with reference Uobs with and without correction 
coefficient A', are shown in Figure 5. With the correction coefficient the percentage errors of 
velocities are less than 0.00016 %. 

- We have done real experimental of projectile running underwater. The cavity is presented 
in the Picture 1 In the real measurement we have 96 measured points of velocities U by 
-^jdirection with the mitial velocity Ug= 271.2 m/s. The other initial conditions are chosen 
approximately W„= 0, Qg= 1 rad. /s, hg= ] m, '•o'^ 0. 

- Let the model run with the beginning coefficient A:,= 2.5 then the optimal coefficient k\ = 
0 909999046325684 is found by the optimal program 

- The comparison between velocity measurement and the other ones of calculation with 

1̂ = 2 5 or optimal coefficient k\= 0.909999046325684 is presented in the figure 6 

- By this figure it is easy to see that with optimal coefficient k} ̂  0,909999046325684 the 
model IS closer to measurement than the other one without correction. 

11 

i 

no 

07 

coefficiem 

V 11%) 

\ 
V 

Optimal process 

Figure 3 Correcling coefficienl A, in optimal ptocess (Left), Coefficient etrot percent in opiimal process 

coirecting A, (Righl) 
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„ 

0 -

cost funclion J 

^ 
Optimal process 

Figure 4. Cost function J in optimal process correcting k^. 
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Picture L The fiill cavity ansmg in very fast motion of projectile under water 
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Figiire6 Percent error of velociUes U by -Y] direction with and without optimal conection of coefficient 

A-j comparing with measurement (left); Comparison of velocities U by X, direction with or without 

CO nee Uon and measurement. 

4. CONCLUSIONS 

In the model of slender body running very fast under water the coefficient k^ strongly 

effects to the simulation results (the nght of Figure 5). By the results presented in Figures 3,4 it 

IS easy to see that by the data assimilation method the corrected coefficient A, can be neariy 
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equal to the reference coefficient (t, . It follows that the velocity U{,1) is closed to tiie one in 
reference model (the left of the Figure 5 or Figure 6). Then the data assimilation method can be 
used as the good tool to correct coefficient in the model of body running fast under water. 
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^iP_'cation of data assimilation for parameter correction in super cavity modeling 

Trong moi tnrcmg nuoc, khi mot vat th^ co hinh dang manh di chuyen vai van toe nhanh 
hucmg ve phia truoc se tu quay trong mot khe rong (con gpi la khoang hoi hay tiii hoi xam thuc) 

Trong mo hinh khe rong he s6 can cua vat the dong vai tro rat quan trong trong qua trinh di 
chuyen. Theo Salis, Garabedian, Kicemukm he s6 can nay dupc chpn boi cac gia tn thich hop 
trong khoang tii 0.8 din 1. Theo Rand, Kirschner thi he s6 can nay duoc viet boi cong thuc 
'̂ = Qo( ' + f)cos-Q- voi (T la s6 cavitation (s6 xam thuc ), a la goc giira true cua vat the 

manh va huong ctia di chuygn. C ,̂, la tham s6 thucmg dupc chpn trong khoang tir 0.6 d^n 
0,85 Trong bai bao nay he s6 can duoc viit duoi dang/:^A-,C^„(l + fr)cos'a. trong tinh toan 
he so Ĉ y dupc lay bang 0,82 va bang phucmg phap toan hoc he so chua hik k^ se duoc hieu 
chinh sao cho cac van toe di chuyen trong mo hinh giin voi cac s6 lieu quan sat dupc Phuong 
phap toan hpc dupc ap dung de tim he s6 chua bi^t k^ la phucmg phap ddng hoa s6 lieu Trong 
phucmg phap nay cac so lieu quan sat dugc sir dung trong ham muc tieu. Day chinh la mot trong 
nhirng phuong phap huu hieu de giai cac bai toan tai uu biing each giai bai toan hen hop r6i 
tinh gradient cua ham muc tieu, 

Tirkhoa- dong h6a so lieu, toi uu, phuong phap Runge-Kuna 




