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ABSTRACT 

In this paper, dense families of relation schemes are introduced. We characterize minimal keys 
of relation schemes in terms of dense families. Note that, the dense families of database 
relations were introduced by Jarvinen [6]. We prove that the set of all minimal keys of a relation 
scheme s = (U, F) is the transversal hypergraphs of  a  hypergraph D  – {∅}, where D is any s-
dense family. We give a necessary and sufficient condition for an abitrary family to be s-dense 
family. We also present some dense families of relation schemes. Furthermore, in this paper, we 
also study antikeys by means of dense families. We present connections between antikeys and a 
dense family of relation schemes. Finally, we study the time complexity of the problem finding 
antikeys. 
 
1. INTRODUCTION 
 
In this section we briefly present the main concepts of the theory of relational databases which 
will be needed in sequel. The concepts and facts given in this section can be found in [1, 3, 4, 7, 
8]. 
Let U be a finite set of attributes (e.g. name, age etc) and R = {h1, …, hm} be a relation over U. 
A functional dependency (FD for short) over U is a statement of form X → Y, where X, Y ⊆ U. 
The FD X → Y holds in a relation R if 

(∀ hi, hj ∈ R)((∀ a ∈ X)(hi(a) = hj(a)) ⇒ (∀ b ∈ Y)(hi(b) = hj(b))). 

We also say that R satisfies the FD X → Y. 

Let FR be a family of all FDs that holds in R. Then F = FR satisfies 

(F1)  X → X ∈ F, 

(F2)  (X →  Y ∈ F, Y →  Z ∈ F ) ⇒ (X →  Z ∈ F), 

(F3)  (X →  Y ∈ F, X ⊆ V, W ⊆ Y) ⇒ (V →  W ∈ F), 
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(F4)  (X →  Y ∈ F, V →  W ∈ F) ⇒ (X ∪ V → Y ∪ W ∈ F). 

A family of FDs satisfying (F1) - (F4) is called a  f-family over U. 

Clearly, FR is a f-family over U. It is known [1] that if F is an arbitrary f-family, then there is a 
relation R over U such that FR = F. 

Given a family F of FDs over U, there exists a unique minimal f-family F+ that contains F. It 
can be seen that F+ contains all FDs which can be derived from F by the rules (F1) - (F4). 

A relation scheme s is a pair (U, F), where U is a set of attributes and F is a set of FDs over U.  

Let U be a nonempty finite set and P(U) its power set.  The mapping L: P (U) → P(U) is called 
a closure operation over U if it satisfies the following conditions: 

(1)  X ⊆ L(X), 

(2)  X ⊆ Y implies L(X) ⊆ L(Y), 

(3)  L(L(X)) = L(X). 

Remark 1.1. It is clear that, if F is a f-family, and we define LF(X) as 

LF(X) = {a ∈ U : X → {a} ∈ F} 

then LF is a closure operation over U. Conversely, it is known [1, 3] that if L is a closure 
operation, then there is exactly one f-family F over U so that L = LF, where  

F = {X → Y : X, Y ⊆ U, Y ⊆ L(X)}. 

Thus, there is a one-to-one correspondence between closure operations and f-families over U. 

Let s = (U, F) be a relation over U and K ⊆ U. Then K is a key of s if K → U ∈ F+. K is a 
minimal key of s if K is a key of s and any proper subset of K is not a key of s.   
Denote Ks the set of all minimal keys of s. Evidently, Ks is a Sperner system over U (i.e. A, B ∈ 
Ks implies A ⊄ B). 
Let K be a Sperner system over R. We define the set of antikeys of K, denoted by K -1, as 
follows: 

K -1 = {A ∈ P (U): (B ∈ K) ⇒ (B ⊆/  A) and (A ⊂ C) ⇒ (∃ B ∈ K)(B ⊆ C)}. 
It is easy to see that K –1 is also a Sperner system over U. 
 
2. HYPERGRAPHS AND TRANSVERSALS 
 
Let U be a nonempty finite set and put P (U) for the family of all subsets of U (its power set). 
The family H = {Ei : Ei ∈ P (U) , i = 1,..., m} is called a hypergraph over U if Ei ≠ ∅ holds for 
all i (in [3] it is required that the union of Eis is R, in this paper we do not require this).  

The elements of U are called vertices, and the sets E1, ..., Em the edges of the hypergraph H. A 
hypergraph H is called simple if it satisfies ∀ Ei, Ej ∈ H: Ei ⊆ Ej ⇒ Ei = Ej. It can be seen that 
simple hypergraphs are Sperner-systems. Clearly, KS,  are simple hypergraphs. Let H be a 
hypergraph over U. Then min(H) denotes the set of minimal edges of H with respect to set 
inclusion, i.e., min(H) = {E

1−
SK

i ∈ H: ∃/  Ej ∈ H : Ej ⊂ Ei}, and max(H) denotes the set of maximal 
edges of H with  respect to set inclusion, i.e., max(H) = {Ei ∈ H: ∃/  Ej ∈ H : Ej ⊃ Ei}. It is clear 
that, min(H) and max(H) are simple hypergraphs. Futhermore, min(H) and max(H) are uniquely 
determined by H. A set T ⊆ U is called a transversal of H (sometimes it is called hitting set) if it 
meets all edges of H, i.e., ∀ E ∈ H : T ∩ E ≠ ∅. Denote by Trs(H) the family of all transversals 
of H. A transversal T of H is called minimal if no proper subset T' of T is a transversal.  
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The family of all minimal transversals of H called the transversal hypergraph of H, and denoted 
by Tr(H). Clearly, Tr(H) is a simple hypergraph. 

 
Proposition 2.1 [2] Let H and G two simple hypergraphs over U. Then 
 
(1)  H = Tr(G) if and only if G = Tr(H), 

(2)  Tr(H) = Tr(G) if and only if H = G, 

(3)  Tr(Tr(H)) = H. 

By the definition of minimal transversal, the following proposition is obvious 
 
Proposition 2.2 Let H be a hypergraph over U. Then 

Tr(H) = Tr(min(H)). 

The following algorithm finds the family of all minimal transversals of a given hypergraph (by 
induction). 
 
Algorithm 2.3 [5] 
 
Input: Let H  = {E1, ..., Em} be a hypergraph over U. 

Output: Tr(H). 

Method: 

Step 0: We set L1 := {{a}: a ∈ E1}. It is obvious that L1 = Tr({E1}). 

Step q+1: (q < m) Assume that 

},,...,{ 1 qtqq BBSL ∪=  

where BBi ∩ Eq+1 = ∅, i = 1, ..., tq and Sq = {A ∈ Lq: A ∩ Eq+1 ≠ ∅}, for each i (i = 1,..., tq) 
construct the set {BiB  ∪ {b}: b ∈ Eq+1}. Denote them by (i = 1, ..., ti

r
i

i
AA ,...,1 q). Let 

}.1,1,:{1 iq
i
pq

i
pqq rptiAASAASL ≤≤≤≤⊂/⇒∈∪=+  

Theorem 2.4 [5] For every q (1 ≤ q ≤ m) Lq = Tr({E1, ..., Eq}), i.e., Lm = Tr(H).  

It can be seen that the determination of Tr(H) based on our algorithm does not depend on the 
order of E1, ..., Em. 

Remark 2.5 [5]. Denote  and l},,...,{ 1 qtqq BBSL ∪= q (1 ≤ q ≤  m-1) be the number of 

elements of Lq. It can be seen that the worst-case time complexity of our algorithm is 
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Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known that the size of 
arbitrary simple hypergraph over U cannot be greater than , where n = |U|.  is 
asymptotically equal to 2

]2/[n
nC ]2/[n

nC
n+1/2/(Π.n)1/2. From this, the worst-case time complexity of our 

algorithm cannot be more than exponential in the number of attributes. In cases for which lq ≤ lm 
(q = 1, ..., m-1), it is easy to see that the time complexity of our algorithm is not greater than 
O(|U|2| H ||Tr(H)|2). Thus, in these cases this algorithm finds Tr(H) in polynomial time in |U|, | 
H | and |Tr(H)|. Obviously, if the number of elements of H is small, then this algorithm is very 
effective. It only requires polynomial time in |U|. 

The following proposition is obvious 

Proposition 2.6 [5] The time complexity of finding Tr(H) of a given hypergraph H is (in general) 
exponential in the number of elements of U.  

Proposition 2.1 is still true for a simple hypergraph. 
 
3. DENSE FAMILIES 
 
In this section, we introduce the notion of dense families of relation scheme s = (U, F). A          
s-dense family is a collection of subsets of U, which by applying certain condition introduces 
the set F+. Then we characterize minimal keys of relation schemes in terms of dense families. 

Let D ⊆ P (U) be a family of subsets of a finite set U. We define a set FD over D as follows: 

FD = {X → Y : (A ∈ D)X ⊆ A ⇒ Y ⊆ A}. 

Proposition 3.1 FD is an f-family over U. 

Definition 3.2. Let s = (U, F) be a relation scheme and let D be a family of subsets of U. We say 
that a family D is s-dense (or dense in s) if F+ = FD. 

We set Ls = {X+ : X ⊆ U}, i.e., Ls is the set of all closures of s. The problem is how to find dense 
families. Our next proposition guarantees the existence of at least one dense family.  

Proposition 3.3 The family Ls is s-dense. 

Proof. Assume that X → Y ∈ F+. Let A ∈ Ls such that X ⊆ A. This implies that A → X ∈ F+. By 
(F2) we have A → Y ∈ F+. From this and A ∈ Ls, we obtain Y ⊆ A. Consequently,  X → Y ∈ 

. 
SLF

On the other hand, let X → Y ∈ . Because X
SLF + ∈ Ls and X ⊆ X+, according to the definition of 

, that is,   
SLF

SLF = {X → Y : ∀ A ∈ Ls) X ⊆ A ⇒ Y ⊆ A}, 

we obtain Y ⊆ X+. Hence X+ → Y ∈ F+. On the other hand, we have X → X+ ∈ F+. Thus, by (F2) 
we obtain X → Y ∈ F+. 

The proposition is proved.                    
 
The following lemma is obvious. 

Lemma 3.4 If the family D is s-dense then  
F+ = {X → Y : (∀ A ∈ D) X ⊆ A ⇒ Y ⊆ A}. 

Next we show that Ls is the greatest s-dense family. 
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Proposition 3.5 If D is s-dense, then D ⊆ Ls. 

Proof. Suppose that A ∈ D. Because A → A+ ∈ F+ and A ⊆ A, according to Lemma 3.4 we have 
A+ ⊆ A. On the other hand, we have A ⊆ A+. Hence A+ = A. This means that A ∈ Ls. 

The proposition is proved.  

Now we give a necessary and sufficient condition for an arbitrary family D to be s-dense. 

Theorem 3.6 Let s = (U, F) be a relation scheme and let D be a family of subsets of a U. Then D 
is s-dense iff for every X ⊆ U 

⎪⎩

⎪
⎨
⎧ ⊆∈∃

= ⊆

,,

,:,
)(

otherwiseU

AXAifA
XL AX

s
   

    DI
 

where Ls(X) = {a ∈ U : X → {a} ∈ F+}. 

Proof. First we prove that in an arbitrary family D ⊆ P (U) for all X ⊆ U 

⎪⎩

⎪
⎨
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= ⊆
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,:,
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otherwiseU
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Suppose that X is a set such that there is no A ∈ D with X ⊆ A. By the definition of FD, it is easy 
to see that X → U ∈ FD. Hence, (X) = U. 

DFL

Since ∅ ⊆ A ⊆ A, according to the definition of FD∈AI D and we obtain 
DFL

DFL (∅) = A. 
D∈A
I

If X ≠ ∅ and there is an A ∈ D such that X ⊆ A then we set 

G = {A : A ∈ D and X ⊆ A}, 

B = A. 
G∈A
I

It is easy to see that X ⊆ B holds. If G = D or G ≠ D, then we also obtain X → B ∈ FD. 

By the definition of , we have B ⊆ (X). Using X ⊆ B ⊆ (X), we obtain B → (X) 

∈ F
DFL

DFL
DFL

DFL

D. 

Now we suppose that b is an attribute such that b ∉ B. Then, there is A∈G so that b ∉ A. Hence, 
by the definition of FD we have B → B ∪ {b} ∉ FD. Consequently, 

DFL (X) = (A). 
D∈A
I

By Remark 1.1 it is easy to see that F+ = FD holds iff Ls = does.  
DFL

The theorem is proved. 
 
4. MINIMAL KEYS 
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In this section, we investigate minimal keys of a relation scheme by means of dense families. 
We show that generating all minimal keys of a relation scheme s = (U, F) can be reduced to 
generating all minimal hypergraphs of a hypergraph D  - {∅}, where D is any s-dense family. 

Theorem 4.1 Let s = (U, F) be a relation scheme over U and D family of subsets of a U. Then if 
D is an s-dense, then  

Ks = Tr(D  - {∅}). 

Proof. Assume K is a minimal key of s. This implies that K → U ∈ F+. Let T ∈ D -{U}. By 
Lemma 3.4, it is easy to see that if K ⊆ T then T = U. This means  that, if T ≠ U then   K ∩ T  ≠ 
∅. Hence, K ∈ Trs(D  - {∅})$. It is obvious that if there exists a K' ⊂ K such that K' ∈ Trs(D  - 
{∅}) then K' → U ∈ F+. This contracdicts the hypothesis K ∈ Ks. Consequently, K is a minimal 
transversal of D  - {∅} . 

On the other hand, let K be a minimal transversal of D  - {∅}. Therefore, we have 

∀ T ∈ D - {U}: K ∩ T  ≠ ∅.          (1) 

Note that T ≠ U. By (1), it is clear that if K ⊆ T then T = U. Thus, according to Lemma 3.4, we 
have K → U ∈ F+. It can be seen that, if there exists a minimal key K' such that K' ⊂ K, then K' 
∩ T  ≠ ∅ for all T ∈ D. This contracdicts the fact that K ∈ Tr(D  - {∅}). Consequently, K is a 
minimal key of s. 

The theorem is proved.  

Let s = (U, F) be a relation scheme over U. We define the family Ms as follows:  

Ms = Ls - {U}. 

Proposition 4.2 The family Ms is s-dense. 

Proof. Assume that X → Y ∈ F+. Let A ∈ Ms such that X ⊆ A. This implies that A → X ∈ F+. By 
(F2), we have A → Y ∈ F+. From this and according to the fact that A ∈ Ms, we get Y ⊆ A. From 
definition of , that is,   

SMF

SMF  = {V → W : (∀ A ∈ Ms) V ⊆ A ⇒ W ⊆ A}, 

it is obvious that X → Y ∈ . 
SMF

On the other hand, let X → Y ∈ . Clearly, if X is a key of s then X → Y ∈ F
SMF +. Suppose that X 

is not key of s. This implies that X+ ∈ Ms. Furthermore, X ⊆ X+. Therefore, according to 
definition of , we have Y ⊆ X

SMF +. Consequently, X → Y ∈ F+. 

The proposition is proved.  

Theorem 4.3 Let s = (U, F) be a relation scheme over U. Then  

Ks = Tr(min( sM )). 

Proof. According to Proposition 2.2, Proposition 4.2 and Theorem 4.1, the proof is straight-
forward.  

By Proposition 2.2, Proposition 3.3 and Theorem 4.1, the following corollary is also obvious. 

Corollary 4.4 Let s = (U, F) be a relation scheme over U. Then  
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Ks = Tr(min( }{∅−sL )). 

Let s = (U, F) be a relation scheme over U. For every X ⊆ U, we set  

I(X ) = {a ∈ U :  X → {a} ∉ F+}. 

Then I(X) is called an independent set of s. Denote by Is the family of all independent sets of s.   

Set min(Is) = {B ∈ Is : B ≠ ∅, ∃/  C ∈ Is: C ⊂ B}. min(Is) is called the family of all minimal 
independent sets of s. Clearly, min(Is) is a simple hypergraph over s. 

It can be seen that X is a key of s if and only if I(X) = ∅. 

Theorem 4.5 Let s = (U, F) be a relation scheme over U. Then  

Ks = Tr(min(Is)). 

Proof. By definition of Ms and min(Is), we have  

min( sM ) = min(Is). 

From this and Theorem 4.3, it is clear that  

Ks = Tr(min(Is)). 

The theorem is proved.  
 
5. ANTIKEYS 
 

In this section, firstly, we study antikeys by means of dense families. We present connections 
between antikeys and a dense family of relation schemes. 

Proposition 5.1 

)min( sM  = max(Ms). 

Proof. Suppose A ∈ )min( sM . Therefore, )min( sMA∈ . This means that  

∀ B ∈ sM : B ⊄ A  

 or  

.: ABMB s ⊃/∈∀  

Consequently, we obtain A ∈ max(Ms). 

On the other hand, let A ∈ max(Ms). By an argument analogous to the previous one, we get A ∈ 
)min( sM . The proposition is proved.  

Remark 5.2. Because min( sM ) is a simple hypergraph over U, according to Proposition 2.1(1) 
and Theorem 4.3, we obtain  

Tr(Ks) = min( sM ). 

From this and Proposition 5.1, we have  
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)( sKTr  = max(Ms). 

The following proposition is known [8]. 

Proposition 5.3 Let s = (U, F) be a relation scheme over U. Then  

Ks
-1 = )( sKTr . 

Theorem 5.4 Let s = (U, F) be a relation scheme over U. Then  

(1) Ks
-1 = max(Ms). 

(2) Ks
-1 = .)min( sI  

Proof.  (1) The proof is immediate from Remark 5.2 and Proposition 5.3. 

(2) Since min(Is) is a simple hypergraph over U, according to Proposition 2.1 and Theorem 4.5, 
we get  

Tr(Ks) = min(Is). 

Therefore  

)( sKTr  = .)min( sI  

From this and according to Proposition 5.3, we obtain  

Ks
-1 = .)min( sI  

The theorem is proved.  

Note that a set of minimal keys and set of antikeys form a Sperner system. Let K be a Sperner 
system over U. The time complexity of finding K-1 is (in general) exponential in the number of 
elements of U [7]. However, if we restrict the number of elements of K, then the time 
complexity of finding K -1 is polynomial time. 

Proposition 5.5 [8]. Let K be a Sperner system over U. Then  

K -1 = )(KTr . 

Lemma 5.6. Let K be a Sperner system over U. If |K| ≤ c (c is a constant) then K-1 is computable 
in polynomial time. 

Proof. Assume that K = {K1,…,Kc} where c ≤ 1. Certainly, Ki ≠ ∅ for all i = 1,2, …, c. We 
construct the set  

L = {{a1} ∪ … ∪ {ak} : ai ∈ Ki, 1 ≤ i ≤ c}. 

Denote elements of L by L1, …, Lt. Clearly, Li ∈ Trs(K) for all i = 1, 2, …, t. Then, we compute  

min(L) = {Li ∈ L : ∃/  Lj ∈ L: Lj ⊂ Li}. 

According to the denifition of transversal hypergraphs, we have  

Tr(K) = min(L). 

By Proposition 5.5, we obtain  

K -1 = )min(L . 
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Obviously, |L| < |U|c. Consequently, )min(L  is computable in polynomial time. 

The lemma is proved.   

Algorithm 5.7. (Finding K -1) 

Input: let K = {K1, …, Kc} be a Sperner system over U, where c is a constant. 

Output: K -1. 

Method: 

Step 1. We construct the set  
L = {{a1} ∪ … ∪ {ak} : ai ∈ Ki, 1 ≤ i ≤ c}. 

Step 2. Compute  
min(L) = {Li ∈ L : ∃/  Lj ∈ L: Lj ⊂ Li}. 

 
Step 3. Let K -1 = )min(L . 

By Lemma 5.6, it is clear that Algorithm 5.7 computes K-1. Futhermore, the time complexity of 
Algorithm 5.7 is polynomial time in the size of U. Obviously, if c is small then our algorithm is 
very effective. 
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