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ABSTRACT 

The paper is an overview on an algebraic approach to domains of linguistic variables and some 
first applications to show the applicability of this new approach. In this approach, each linguistic 
domain can be considered as a hedge algebra (HA for short) and based on the structure of HAs, 
a notion of fuzziness measure of linguistic hedges and terms can be defined. In order to apply 
hedge algebras to those problems, the results of which are needed, a notion of semantically 
quantifying mappings (SQMs) will be introduced. It shown that there is a closed connection 
between SQMs and fuzziness measure of hedge and primary terms (the generators of linguistic 
domains). To show the applicability of this approach, new methods to solve a Fuzzy Multiple 
Conditional Reasoning problem, the problem of Balancing an Inverted Pendulum will be 
presented. 

1. INTRODUCTION 

The people do thinking and reasoning to deduce conclusions and to make decision by their own 
language. Motivated by this, fuzzy sets theory was founded in 1965 by L.A. Zadeh to model 
human reasoning processes and since then it has been developed intensively and opened several 
new vast research as well as applied in various areas, in particular in the area of artifitial 
intelligence. The achievements of fuzzy sets theory in both theoretic and pratical fields are not 
controversial. However, in order to construct a new approach to human reasoning problem, we 
have to point out some shortcomings of  fuzzy sets theory based approach to this one.  

First, in order to establish a computation mechanism for a human reasoning process one has to 
embed finite linguistic domain of linguistic variables into the set of all functions F(X,[0,1]) 
defined on a universe X, that has, as it is well known, a rich computation structure. Based on 
this, one may study several methods for fuzzy reasoning. So, the structure of human reasoning 
methods, if it exists and has "may-be no" computation features, is simulated by that of 
F(X,[0,1]), but no one has justified whether such computation methods can model properly the 
way human do reasoning or not.  

On the algebraic point of view, the way we use the whole infinite structure of F(X,[0,1]) to 
model finite domains of linguistic variables is not correct, in our opinion. 

Second, it is easy to observe that one can compare meanings of linguistic terms, i.e. one can 
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discover an ordering relation on a linguistic domain, based on intuitive meaning of linguistic 
terms. For example, it is clear that true ≥ false, very true ≥ more true and approx.false ≥ false 
and so on.  However, the mentioned above embedding mapping from this domain into 
F(X,[0,1]) does not preserve the discovered ordering relation! 

Third, because we have no way to manipulate directly linguistic terms, it is neccessary in many 
applications to examine linguistic approximation algorithms, which are usually very 
complicated. 

In our investigation, we shall try to discover algebraic structures of linguistic domains or, in 
other words, to embed these domains in respective natural algebraic ordered structures in a 
suitable way so that their elements can be regarded as just linguistic terms. Then, we shall 
introduce a linguistic reasoning method handling directly linguistic terms. By equipping 
relatively definite metrics for such algebras, i.e. these metrics must satisfy certain semantic 
relationships between linguistic hedges, we can examine new methods for multiple conditional 
fuzzy reasoning, that produce more accurate results than that fuzzy sets-based methods do. 

2. HEDGE ALGEBRAS OF A LINGUISTIC VARIABLE: A SHORT OVERVIEW 

One of reasons to introduce and investigate HAs (see [9, 11, 12]), a mathematical foundation of 
our method, is that the structure of fuzzy sets does not preserve the ordering structure of 
linguistic terms determined by their natural meaning such as true > false, very true > true, very 
false < false, and so on. In this section we shall describe generally what is a HA of a linguistic 
variable. In fuzzy control ones use verbal descriptions (i.e. linguistic terms) to model a 
dependence of one physical variable on another one. We denote by Dom(X) a set of linguistic 
terms of the linguistic variable X, and it is called a domain of  X. For example, if  X is the 
rotation speed of an electrical motor and Very, More, Possibly, Little are denoted 
correspondingly by V, M, P and L, then Dom(X)  = {fast, V fast, M fast, L P fast, L fast, P fast, L 
slow, slow, P slow, V slow, ...}∪{0,W,1} is a domain of X. It can be considered as an algebra AX 
= (Dom(X),C,H,≤),  where H = {V, L, P, M} is the set of hedges, which can be regarded as one-
argument operations, ≤ is called a semantic ordering relation on Dom(X), because it is defined 
by the meaning of linguistic terms, C = {fast, slow, W, 0, 1} with W, 0, 1 in Dom(X) interpreted 
as the neutral, the least and the greatest ones, respectively. The result of applying an h∈H to an 
x∈Dom(X) is denoted by hx. We denote by H(x) the set of all u∈Dom(X) generated algebraically 
from x by using hedges in H. That is every u can be expressed in the form u = hn...h1x, where h1, 

...,hn ∈ H. 

As pointed out in [9], the structure of AX can be built from semantic properties of terms that 
may also be expressed in term of the semantic ordering relation ≤. Intuitively, it is able to order 
a term-domain based on the following observations (a formal presentation of HAs can be found 
in [11,12]): 

1) Each term has an intuitively semantic tendency which can be recognised by an ordering 
relation. Two primary terms of each linguistic variable have reverse semantic tendencies: 
true has a tendency of “going up”, called positive tendency, but false has a tendency of 
“going down”, called negative one. They can be characterized by the ordering relationships  
V true > true and V false < false or simply by true >false! E.g., for the variable AGE, old is 
positive and young is negative, since old> young.  

2) Further, each hedge has an intuitive semantic tendency, which can be expressed also by an 
ordering relation. It can be seen that the one hedges increase the semantic tendency of the 
primary terms (called positive hedges), while the other ones (called negative hedges) 
decrease this meaning. For example, the inequalities V old > old  and V young < young 
mean that V increases the semantic tendency of both terms “old” and “young” and so V is 
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positive. But, the hedge L has a reverse effect and hence it is negative. Denote by H− the set 
of all negative hedges and by H+ the set of all positive ones under consideration. If both 
hedges h and k do not belong to the same H+ or H−, then they have reverse effect and hence 
they are said to be converse. In the cotrary, they are said to be compatible. In latter case it 
may happen that one hedge changes the terms more strongly than the other. For example, L 
and P are compatible and L > P, since  L false > P false > false. Note that I < P and I < M, 
where I, as an artificial hedge, is the identity, i.e. for any term x, Ix = x. But, it is obvious 
that L and V are incompatible, i.e. they are converse! 

3) Further, we observe that each hedge has an effect of either increasing or decreasing 
semantic tendency of any others. So, if k increases the semantic tendency of h, we say that k 
is positive w.r.t. h. Conversely, if k decreases the semantic tendency of h, we say that k is 
negative w.r.t. h. For example, since the  semantic tendency of L is expressed by L true < 
true, it follows from  VL true< L true< PL true, that V is positive but P is negative w.r.t. L. 
Similarly, it is observe that V is negative w.r.t. P, but positive w.r.t. M and V, and L is 
positive w.r.t. P, but negative w.r.t. V and M. It can be seen also that the positiveness or 
negativeness of a hedge w.r.t. another one does not depend on the terms they apply to. That 
is if V is positive w.r.t. L then for any term x we have: (if x≤Lx then Lx≤VLx) or (if x≥Lx 
then Lx≥VLx).   

4) An important semantic property of hedges is the so called heredity of hedges, which stems 
from the fact that each hedge modifies only a little, while preserves the essential meaning of 
each term. This means, for every h term hx inherits the meaning of x. This property may 
also be formulated in term of ordering relation: if the meaning of hx and kx can be 
expressed by hx ≤ kx, then h’hx ≤ k’kx, (i.e. h’ and k’ preserve and hence they can not 
change the semantic ordering relationship between hx and kx) and so we have H(hx) ≤ 
H(kx). For example, it can be seen intuitively that from L.true ≤ P.true it follows that 
P.L.true ≤ L.P.true, or more generally that H(L.true) ≤ H(P.true). 

Now, we can intuitively order any domains of physical linguistic variable linearly. For example, 
the domain of the variable SPEED of a motor considered above can be ordered as follows: V 
slow < M slow < slow < P slow < L slow < L fast < L P fast < P fast < fast < M fast < V fast 
and so on.  

Formally, as proved in [11,12], that each linguistic domain can be axiomatized, denoted by AX = 
(Dom(X),C,H,≤), and is called a hedge algebra (HA), and is a complete lattice with unit and zero 
elements 1, 0 under assumption that H−+I and H++I are lattices of hedges. Particularly, we have 

Theorem 2.1 ([11]): Let AX = (X,C,H,≤) be a HA. Then, the following  statements hold: 

(i)  If x∈X is a fixed point of an h in H, i.e. hx = x, then it is also a fixed point of the other ones. 

(ii) If x = hn...h1u, then there exists an index i such that the suffix hi...h1u of x is a canonical 
representation of x w.r.t. u (that is x = hi hi-1...h1u and hi hi-1...h1u ≠ hi-1...h1u) and  hjx = x, for all 
j>i. 

(iii) If  h ≠ k and hx = kx then x is a fixed point.  

For convenience in the sequel, we recall here the criteria for comparing any two elements in 
Dom(X): 

Theorem 2.2 ([11]). Let x=hn...h1u and y=km...k1u be two canonical representations of  x and y  
w.r.t. u, respectively. Then there exists an index j ≤ min{m,n}+1 (here as a convention it is 
understood that if j = min{m,n}+1, then either hj = I for j = n+1 ≤ m or kj = I for j= m+1 ≤ n) 
such that hj' = kj', for all  j'< j  and 
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(1) x=y  iff  m = n  and hjxj = kjxj;            

(2) x < y  iff   hjxj < kjxj; 

(3) x and y are incomparable iff hjxj and kjxj are incomparable.   

Theorem 2.3. (Th.4 [11]) Let H− and H+ of AX = (Dom(X),C,H,≤) be linearly ordered. Then, we 
have: 

(i) For every u∈Dom(X), H(u) is a linearly ordered set; 

(ii) If C is linearly ordered, then so is Dom(X). Moreover, if u ≤ v and u and v are independent, 
i.e. u ∉ H(v) and v ∉ H(u), then H(u) ≤ H(v).  

3. DISTANCE AND FUZZINESS MEASURE OF TERMS IN LINEAR HEDGE 
ALGEBRAS 

It is worth to emphasise that HAs provide an intuitive basis to define fuzziness and then 
fuzziness measure of terms and hedges suitably. We hope that a more exact mathematical 
foundation of these notions will be established in the near future. It is well known that one of the 
important features of linguistic terms is qualitative characteristic. However in many applications 
we need  quantitative characteristic. Therefore, in this section we shall introduce a notion of 
fuzziness measure and quantitative semantics of terms, which was examined step by step in [6], 
[10] and [16]. A function ρ(x,y) from Dom(X) into [0,1] is said to be a metric in an HA, AX = 
(Dom(X),C,H,≤), if it satisfies the following axioms for all x, y ∈ X: 

Axiom 1. ρ(x,y) ≥ 0 and ρ(x,x) = 0.    

Axiom 2.  ρ(x,y) = ρ(y,x). 

Axiom 3. ρ(x,z) = ρ(x,y) + ρ(y,z),  for any x, z  and y such that either x ≥ y ≥ z or x ≤ y ≤ z. 

Axiom 4. For any h, k ∈ H+ or h,k ∈ H−,  
)y,ky(
)y,hy(

)x,kx(
)x,hx(

ρ
ρ

ρ
ρ

=   . 

Axiom 3 says the required quantitative model of HAs should be linear. Axiom 4 says the 
relative modification degrees of h and k do not depend on specific terms x or y. It is also 
practically reasonable.  

Let us consider a linear HA, AX = (X,C,H,≤), where H = H−∪H+, and suppose that H− = {h-1, ..., 
h-q}, where h-1<h-2< ... <h-q, and H+ = {h1,..., hp}, where h1< ...<hp, and h0 = I.  

Definition 3.1. Two linear sets (U,≤) and (V,≤) are said to be similar if  

(1) There exits a one-to-one mapping f from U onto V  such that f preserves either the ordering 
relation ≤ or the reverse one ≤* of U, where ≤* means that x ≤* y iff y ≤ x. That is, f satisfies 
either (∀x,y,z ∈U) (x < y < z  iff  f(x) < f(y) < f(z)), or (∀x, y,z ∈U) (x < y < z                         iff 
f(x)  > f(y )> f(z)).  

(2) For all x, y, z ∈U,  ρ
ρ

ρ
ρ

U

U

V

V

x y
y z

f x f y
f y f z

( , )
( , )

( ( ), ( ))
( ( ), ( ))

= .  

Lemma 3.2. Let c ∈ C and denote by H[u] the set {hu : h ∈ H}, for any u. Then, for any not 
fixed points x, y ∈ X, H[x] and H[y] are similar under the mapping f := f(hix) = hiy and, hence, so 
are H[x] and H[c].  

From (v) of Th.2.2 it follows that if hu< x = h’u< h’’u, then H[hu]<H[x]<H[h’u]<H[h’’u]. So, 
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by Lem.3.2, these sets are similar and proportions of distances between their corresponding 
elements are equal, by  Def.3.1. Therefore, Lem.3.2 provides us a basis for constructing metrics 
in X. However, in applications we prefer to use a mapping fs from X into the set of the non-
negative real numbers such that ρ(x,y) = |fs(x) - fs(y)|, called a quantitative semantic mapping 
(SQMp) of X. So, instead of determining the distance ρ(x,y), we construct a SQMp fs from X  
into [0,1].  

First of all, we introduce an intuitive notion of fuzziness measure of terms, which seems not 
easily to be defined in the framework of fuzzy sets reasonably. Consider the set H(x) consisting 
of all elements in X generated from x by using hedges. Semantically, it means that H(x) consists 
of all vague concepts which still contain a definitive essential meaning of the concept x but not 
of the others. It will be useful to use the sets H(x), x ∈ X, to model the fuzziness degree of x, 
since they have the following properties: 

+ If x is a crisp element such as 0, 1 or W, then H(x) = {x}; 

+ If x = hu, where h is a hedge (and it means that x = hu is more specific than u), then          
H(hu) ⊆ H(u), that seems to correspond to the fact that the more specific a term is, the less 
fuzziness it is. 

+ We have also that H(u) = ∪{H(hu) : h ∈H} and H(hu) ∩ H(ku) = ∅ for any hedges h and k.  

It suggests us to use the “size” of H(x) to express the fuzziness measure of term x. In order to 
define it, let consider a mapping f from X into the unit interval [0,1], which preserves the 
semantic ordering relation of X. Then, “fuzziness measure” can be defined as follows. By 
fuzziness measure of term x, denoted by fm(x), we mean the diameter of the set f(H(x)) = {f(u): 
u∈H(x)}. To illustrate this notion, consider an HA, AX=(X,C,H,≤), where H++I= {V,M,I} with 
L>M>I, H− = {L P,I} with I<P<L, I is identity,  and C = {0, False, W, True, 1}. Then, the 
fuzziness measure of x can be figured out in Fig. 1.  

 

Diameter of f(H(True))

Diameter of 
f(H(VeryTrue))Diameter of 

f(H(LittleTrue))

Diameter of 
f(H(PossTrue))

Diameter of 
f(H(MoreTrue))

True

VeryTrueLittleTrue 

Poss. 
True More

Trueθ    1

Fig. 1 

 

 

 

 

 

 

 

 

 

 

To establish some constraints of  fuzziness measure, we need study the following facts. 

Suppose fm(c) is the fuzziness measure of a primary term c ∈ {c−, c+}. Since c−, c+ have no 
common meaning, it is natural that fm(c−)+ fm(c+) ≤ 1. What do we mean when fm(c−)+ fm(c+) < 
1? It means that {c−, c+} is not a complete set of primary terms. Since, if fm(c−) + fm(c+) < 1 then 
it may be understood that there should be still another primary term c’ different from c−, c+ so 
that fm(c−) + fm(c+) + fm(c’) ≤ 1.So, in many applications, we should have fm(c−) + fm(c+) = 1. 

Now,  we  consider a term  u  and a hedge  h.  The term  x = hu is called a particularised term of 
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u. Consider a term u = good and a set of hedges {L, P, M, V}. Similarly as above, we find that if 
there is no more hedges and, hence, the set {L good, P good, M good, V good} is “a complete 
particularisation system” of the term good, then we should have fm(L good) + fm(P good) + 
fm(M good) + fm(V good) = 1. In general, if {hu : h ∈ H} is a complete fuzzy particularisation 
of concept u, then we should have )(}:)({ ufmHhhufm =∈∑  and we say that  fm is a  full 
measure of the fuzziness of the linguistic terms. 

Motivated by this, we give the following definition.  

Definition 3.3.  fm : X → [0,1] is called a fuzziness measure on X, if it satisfies the following 
conditions: 

1) fm  is a full measure on X; 

2) If x is a crisp concept, i.e. H(x) = {x}, then fm(x) = 0. So, fm(0) = fm(W) = fm(1) = 0; 

3) For all x, y ∈ X and h ∈ H, we have 
)y(fm
)hy(fm

)x(fm
)hx(fm
= , i.e. this ratio does not depend on 

elements x and y and, hence, it can be denoted by μ(h) and called the fuzziness measure of hedge 
h.  

Fuzziness measure on X has the following properties:  

Proposition 3.4.  For each fuzziness measure fm the following statements hold: 

1)   fm(hx) = μ(h)fm(x), for every x ∈ X; 

3) , where c ∈{c− , c+}; )()(
0,

cfmchfm
p

iqi
i∑

≠−=

=

2)   fm(c−) + fm(c+) = 1; 

4)   ; )()(
0,

xfmxhfm
p

iqi
i∑

≠−=

=

5)  μ  must satisfy the following equations:                              and ,                       where α, β > 0 
and  α + β = 1. 

αμ     )h( i∑ = βμ =∑ i )h(
q

1i

−

−= =

p

1i

Now, it is easy to check the validity of the following: 

Theorem 3.5. Let a fuzziness measure μ of hedges be given such that it satisfies the equalities     
in 5) of Proposition 3.4 and let fm(c−) and fm(c+) be such that fm(c−)>0,  fm(c+)>0 and fm(c−) + 
fm(c+) = 1. Then, the mapping fm on X  defined recursively by the equation fm(z) = fm(hx) = 
μ(h)fm(x), for all z of the form hx, and fm(z) = 0, for  z ∈ {0,W,1}, is a fuzziness measure on X. 

4. BUILDING SEMANTICALLY QUANTIFYING MAPPINGS OF LINGUISTIC 
VARIABLES 

On account of the above examination, we have a reasonable way to construct SQMps on 
linguistic domains.  

Definition 4.1. (Sign function). The function Sign: X  → {-1,0,1} is a mapping defined 
recursively as follows, where the hedges h and h’ are arbitrary and c ∈ {c−,c+}: 

a) Sign(c−) = −1, Sign(c+) = +1,  

b) Sign(h'hx) = -Sign(hx) if  h’hx ≠  hx and  h'  is negative w.r.t. h  

       (or w.r.t. c, if h = I and  x = c); 

c)  Sign(h'hx) =  Sign(hx) if  h’hx ≠  hx and  h' is positive w.r.t. h  

       (or w.r.t. c, if  h = I and x = c); 
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d) Sign(h'hx) =   0  if   h’hx = hx. 

Proposition 4.2. For any h and x, if   Sign(hx) = +1 then hx > x , and if  Sign(hx) = −1  then    hx 
< x.  

Definition 4.3 . Let fm be a fuzziness measure on X. A quantitative semantic mapping (SQMp) v 
on X  (associated with fm) is defined as follows: 

1)   v(W) = θ  = fm(c−), v(c−) =  θ - αfm(c−) , v(c+) = θ αfm(c+); 

2)   v(hjx) = v(x)+                                                                                    ,   for 1 ≤ j ≤ p, and   )}()()(){(
1

xhfmxfmSign ω−

       v(hjx) = v(x)+                                                                                      ,   for −q ≤ j ≤ −1,   

that can be written in one formula as follows: for j ∈ [-q^p], where [-q^p] = { j : −q ≤ j ≤ p} and  
j ≠ 0, 

hxhxh jj

j

ij ∑
=

)}())(){(
1

hhhh jj

j

i
ij ∑

−=

i

( xfmxxfmxSign ω−

 

},{)])(xhh(Sign)xh(Sign[

)xh(where)},xh(fm)xh()xh(fm){xh(Sign)x(v)xh(v

jpj

jjj

j

)j(signi
ijj

βααβ

ωω

∈−+

=−+= ∑
=

1
2
1 

 

Lemma 4.4. Let fm be a fuzziness measure on X. For each SQMp v on X associated with fm 
defined as above, there exists an fm-decomposition system ℑ  associated with X such that the 
following statement holds for all x ∈ X: 

v(x) ∈ ℑ(x) and v(x) divides the interval ℑ(x) into two subintervals in proportion α to β. 
Moreover, if Sign(hpx) = +1, then the subinterval of the length βfm(x) is greater than the other 
one of the length αfm(x); And if Sign(hpx) = −1, then the subinterval of length βfm(x) is less than 
the other one. 

Proposition 4.5. For all x∈X,   0 ≤ v(x) ≤ 1 and for all x,y∈X ,  x < y  implies v(x) < v(y). 

5. INTERPOLATION REASONING METHOD BASED ON DISTANCE ON HEDGE 
ALGEBRA  

Let us consider a fuzzy model:     if      X = A1  then   Y = B1 

                   . . . . . . .        (5.1) 

          if      X = A            then   Y = Bn 

where Ai and Bi , i=1,n  are verbal descriptions of physical variables X and Y, respectively. It is 
known that each FMCR method provides a mechanism for computing an output B0, for an input 
A0. 

The effectiveness of each method in applications depends in general on several factors such as 
fuzzy sets expressing verbal descriptions; implication operators in interpreting the semantics of 
if-then statements; the aggregation of the obtained if–then fuzzy relations to compute the one 
representing a certain semantics of the fuzzy model (5.1); the manner of computing composition 
rule to produce fuzzy output for a given input fuzzy set A0; the method of defuzzification. So, 
although the general idea of FMCR methods is simple, these factors make the methods very 
difficult to handle and to recognise their behaviour and so make engineers losing intuition in 
determining effectively methods in applications. 

Another method which is more suggestive for solving the above problem is to apply the fuzzy 
interpolation theory, which investigated firstly by Koczy et al [3,4] and then by Y. Shi, M. 
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Misumoto and Z.Q. Wu [13 - 15] and W.H. Hsiao et al [2] and so on. However, these methods 
seem still to be complicated, e.g. one should apply traditional interpolation methods (INTMd) at 
each α-level of fuzzy sets to compute the output; or some restrictions on fuzzy sets under 
consideration must be taken to ensure that output results of the method are also, for example, a 
triangular or normal fuzzy set; or also another restriction is that the fuzzy rules bases must be 
sparse.  

To show the applicability of HAs, we apply traditional INTMd based on quantifying the 
structure of these algebras to solve FMCR problems. The idea is simply as follows: 

Since the fuzzy model (5.1) describes a dependency of Y on X, we can regard every if-then 
statement as a point and hence the given fuzzy model describes a linguistic curve C in X×Y, 
where X = Dom(X) and Y = Dom(Y) are considered as HAs. So, the FMCR problem above can 
be considered as “a linguistic INTPr” for the curve C. Therefore, if we can define distances in X 
and Y, or, equivalently, certain quantitative semantic mappings (SQMps) from X and Y into 
[0,1], we are able to transform C to a real curve Cr in [0,1]×[0,1] and, then, apply usual INTMds 
to Cr to compute real value output results. 

In Section 2 we shall give a short overview on linear HAs. The notion of distances and fuzziness 
measure of terms will be introduced and investigated in Section 3. In Section 4 we shall give a 
definition of SQMps and establish a way to compute SQMps for given fuzziness measure of 
hedges and primary terms. A method of interpolation to solve FMCR problems is presented in 
Section 5. In order to show besides the effectiveness of the new method, we shall re-examine 
the same examples examined in [1].  

Our method has some advantages. (i) Based on Hedge Algebras of term-domains, it is able to 
define suitably fuzziness degree of terms and, especially, hedges and quantitative semantic 
mappings (SQMp) of a term-domain; (ii) FMCR Pr. can be solved by classical INTMds and it 
seems to be much more suggestive, simple and produces more accurate and real-value results, 
i.e. defuzzification is not necessary;  (iii) Because SQMps are one-to-one, linguistic 
approximation problems become simple. Note that fuzziness measure of hedges and primary 
terms, and especially the real value θ of the neutral element, which is chosen arbitrarily in [0,1], 
considered as the parameters will make the method also flexible. 

In fuzzy control, we often deal with FMCR problems. The physical variables of these problems 
are normally modelled by linguistic variables, whose real domains usually are linearly ordered 
sets. So, HAs as models of physical variable must be linear sets as well. This suggests us to deal 
with a new INTMd to solve FMCR problems, based on quantitative semantic mappings 
(SQMps) examined above. 

Consider a fuzzy model (5.1). Using fuzzy sets-based methods in fuzzy multiple conditional 
reasoning, we should carry out many tasks: To determine an appropriate reasoning method (a 
generalised Modus Ponens) or a fuzzy interpolation reasoning methods ([2 - 4, 13 - 15])); To 
determine fuzzy sets, membership functions of which should represent suitably the meaning of 
terms; To find a reasonable defuzzification method; and so on. Since the results depend on 
several factors, using these methods ones lose intuition and encounter difficulties to recognise 
their behaviour.  

Here we introduce a more suggestive approach based on INTMds. The idea is as follows: For a 
given fuzzy model as (5.1), we interpret each if-then statement of this model as defining a point 
and, therefore, this model defines a fuzzy curve Cf in the Cartesian product X×Y , where X and Y 
are considered as HAs of the linguistic variables X  and Y, respectively. Then, the FMCR 
problem saying that "For a given fuzzy model (5.1) and an input A, find an output B 
corresponding to A" may be understood as an INT Problem for the given fuzzy curve Cf  in X×Y.  

So, the main steps of our method simply are the following:  
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1) Construct SQMps vX and vY, which map X and Y into the interval [0,1], respectively. These 
mapp-ings are computed by Def.4.3 and, by Th.3.5, based on users parameters μ(h) with h∈ H, 
μ(c+) and θ. 

2) Under mappings vX and vY, the fuzzy curve Cf in X×Y is transformed into a real curve Cr in 
[0,a]×[0,b], where [0,a] and [0,b] are the given domains of the basic variables of X and Y, 
respectively. 

3) Aply linear INTMd to the obtained Cr curve to compute the output corresponding to  a given 
input. 

To evaluate the method, we have studied the same 7 examples examined in [1], fuzzy models of 
which are given in the Appendix. The maximal model error of these fuzzy models has been 
defined in [1] to be equal to 400, while our maximal model error defined in [5] is equal 200. 

For each fuzzy model, using our method the corresponding output values of N, for the given real 
values of I are computed and the results are given in row No. 6 of Tab.1. The maximal errors are 
two large in EX2 (Error = 800) and rather large (greater than 300) in EX1, 3, despite our effort 
to find several systems of parameters θ, μ(c+) and μ(h) of hedges. The reason of this may due to 
the fact that the fuzzy models describing real world curves are not appropriate, because 
according to our intuition the right-end triangular μVLarge, with μVLarge(2000) = 1, defined on the 
basic variable domain [400,2000] of N for ‘V Large’, should represent a meaning of another 
term which is clearly greater than VLarge, e.g. it is ‘VV Large’. A similar comment can be made 
for the terms Null and Zero. Therefore, before performing our method, unsuitable linguistic 
descriptions in the fuzzy models should be changed as follows:  

Null:=VV Small, Zero:=V M Small, V Large:= V V Large. The other verbal descriptions remain 
unchanged.  

Table 1 

 
 Methods EX1 EX2 EX3 EX4 EX5 EX6 EX7 

1 Max error of Cao-Kandel method with operator 5* 200 300 400 400 400 80 400 
2 Max error of Cao-Kandel method with operator 22* 200 350 400 400 400 80 200 
3 Maxi error of Cao-Kandel method with operator 8 300 350 200 150 200 100 200 
4 Max error of Cao-Kandel method with operator 25 300 400 200 200 200 100 200 
5 Max error of Cao-Kandel method with operator 31 300 400 200 200 200 100 200 
6 Maximal error caused by our method with    
θ = 0.5, α = 0.4, μ(L) = μ(P) = 0.2, μ(M) = μ(V) = 
0.3, for I 

353 800 412 229 248 200 229 

7 Maximal error caused by our method with          
θ = 0.628, α = 0.4, μ(L) = μ(P) = 0.2, μ(M) = μ(V) 
= 0.3, for I 

254 228 104 104 77 66 104 

8 Maximal error caused by our method with 
θ=0.628, α=0.4, μ(L)=0.22, μ(P)=0.18, μ(M)=0.28 
μ(V)=0.32, for I 

236 197 102 80 77 47 80 

 

The second negative effect is causing by parameter θ. Usually, ones choose θ = ½. However we 

 9



 
 
Ho N.C. and Lan V.N.                                                   Hedge algebras: an algebraic approach to domains… 

recognise that it depends on the shape of the curve under consideration. For example, if we 
change the value of θ to be 0.628 and μ(h) of hedges of variable I are chosen the same as those 
given in row No.6 and the user parameters for N are chosen the same in all examples. The 
results given in row No 7 of Tab.1 are obviously much improved. Note that the implication 
operators 5*, 22*, 8, 25 and 31 were shown in [1] to be the best applicability ones.  

Comparing the computing results in rows No 7 and 8, it is shows that fuzziness measure of 
hedges also have an significant influence on the output results.  

6. ALGORITHM OF CONTROL BASED ON HEDGE ALGEBRAS 

Let us consider a general Fuzzy Associate Memory (FAM) in the following form:  

If X1 = A11  and ... and Xm = A1m   then Y = B1 

If X1 = A21 and ... and Xm = A2m    then Y = B2 

. . . . . . . . . . . . . . . .                         (6.1) 

If X1 = An1 and ... and Xm = Anm   then Y = Bn 

where Aij and Bi, i = 1, n  and j = 1,m  are verbal descriptions of physical variables Xj and Y, 
respectively. In fuzzy control, these verbals, which are linguistic terms, are regarded as labels of 
designed fuzzy sets, which describe real values of variables.  

However, computations based on fuzzy sets seem to be complecated and loosing intuition. 
Based on hedge algebras approach, these labels are regarded as just linguistic terms and, by 
SQMs, viewed as just real values of variables. Therefore, hedge algebras may provide simpler 
computation. 

Based on this new idea, we introduce a general fuzzy control model based on the theory of 
hedge algebras, called Hedge Algebras-based Controller (HAC). Figure 2 shows the general 
schema of  HAC, where r is reference, e is error and  u is control action, P is plant. 

 

 

 

 

 

 

 
Computing process of the control algorithm is illustrated in Fig.3 

 

Fig. 2:  Hedge Algebras-based Controller   
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Step1: Semantization.  Fig. 3:  Computing process of the HAC algorithm  
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Because the basis knowledge data are given by FAM, we should define SQMs, which map 
terms into a semantic range of [0,1]. To comput this value, we choose a suitable semantic 
operating range [s0,s1] and determine carefuly a universe of discourse (domain interval ) of the 
considered variable. 

Step 2 : Build quantified Rule Based System based on  SQM & Reasoning.  

Using SQMs defined in Step 1, transform FAM into a table with numerical data, called 
Semantical Associate Memory (SAM) and define the quantified semamtic curve by an 
interpolation function. 

Step 3: Desemantization. 

It simply a mapping which assigns each semantic value in the semantic range of the control 
action  with a real value in the operating range.    

From Step 1 to Step 3 one can see that the proposed algorithm for fuzzy control is more simple 
than conventional one in the sence that it does not require defuzzification strategy, since it 
requires a careful choice of: 

1. The number of membership functions 

2. The shape of membership functions 

3. The definition of fuzzy implication 
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4. A measure of central tendency (center of mass) of the membership functions; 

Hence, Hedge Algebras approach has  some advantages over the fuzzy approach, namely, it  
quick to be constructed, more intuitive and more exact. 

To explain these, we reconsider one of classical problems which has been an interesting case in 
the study of nonlinear systems for many years, it is the inverted pendulum. The control problem 
is to regulate the position of the pendulum. The differential equation describing the simplest 
inverted pendulum in [28] is given below: 

 

 

 

 

 

 

     dψ/dt 

ψ

u

Fig. 4: Inverted pendulum control problem 

m 

                                                                                 (6.2)                                          ψ u(t)mlgsin/dtd 222 =+− ψml

where : 

m    is the mass of the pole located at the tip point of the pendulum 

l      is the lenght of the pendulum 

Ψ    is the deviation angle from vertical in the clockwise direction 

u(t) is the torque aplied to the pole in the counterclockwise direction – (u(t) is the control action)  

 t      is time  

g      is the gravitational acceleration   constant 

Assuming that x1 = Ψ and  x2 = dΨ/dt are state variables. The state-space representation for the 
nonlinear system defined by (6.2) is given by  

               dx1/dt = x2                                               (6.3) 

             dx2/dt = (g/l)sin x1 – (1/ml2)u(t)                                                          (6.4) 

It is known that for very small rotation, or Ψ, we have sinΨ =Ψ, where Ψ is measured in 
radians. This relation is used to linearize the nonlinear state-space equation and we get 

              dx1/dt = x2                                              (6.5) 

              dx2/ dt = (g/l)x1 – (1/ml2)u(t)                   (6.6) 

If x1 is measured in degrees and x2 is measured in degrees per second, by choosing l =g  and     
m = 180/πg2 , the linearized and discrete state-space equations can be represented as matrix 
difference equation 

            x1(k+1) = x1(k) + x2(k)                  (6.7)             
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            x2(k+1) = x1(k) + x2(k) –u(k)                 (6.8) 

For this problem we assume that the universe of discourse for the two variables are as follows:  

           -20 ≤ x1(k) ≤ 20      ;     -5 dps ≤ x2(k) ≤5 dps   (dps=degree per second) 

and the universe of discourse for the control is  -24 mA ≤ u(k) ≤ 24 mA.. 

The goal of the controller design is to seek a control signal u that will keep the inverted 
pendulum just in or closely to the vertical stable position ( i.e. it is defied by e = 0 and  Δe = 0 ). 
To synthesize a controller using hedge algebras we, firstly determine a common SQM for both 
variables e  and  Δe as follow: 

Let  AX = (X, C, H+ ∪ H-, ≤) be a hedge algebra, where  

C = { 0, Small, θ, Large, 1} 

H- = { Little} = {h-1} ; q = 1 

H+ = {Very} = { h1} ; p = 1 

Assume that θ = 0.5 and the fuzziness measure of primary terms and hedges are give by  

      μ(Very) = 0.5 = μ(h1)   ; (β = 0.5) 

       μ(Little) = 0.5 = μ(h-1) ; (α = 0.5) 

fm(Small) = θ  = 0.5 

fm(Large) = 1-fm(Small) = 1-0.5 = 0.5 

So, SQM is defined by the following recursive formulaes:  

1) ν(Small) =θ -αfm(Small)=0.5–0.5 x 0.5 = 0.25   

2) (j=1); ν(Very Small)=ν(Small)+ Sign(Very Small) x 

0.1250.5}0.50.5-0.5(-1){0.5 0.25})(5.0)({ 1

1

1i
i =×××+=−∑

=

SmallhfmSmallhfm 

 

3) (j=-1); ν(Little Small)  = ν(Small) + Sign(Little Small) x 
-1

 { 0.3750.5}0.50.5-0.51){0.5( 0.25})Smallh(fm5.0)Smallfm(h
 

4) ν(Large) = θ  + α fm(Large) = 0.5 + 0.5 x 0.5 = 0.75 

5) (j=1); ν(Very Large)  = ν(Large) +  Sign(Very Large) x 

 {
 

6) (j=-1); ν(Little Large)  = ν(Large) + Sign(Little Large) x 

 {
 i

1
1i

i =×××++=− −
−=
∑

1

1

1i
i =×××++=−∑

=

eLhfmeL

1

-1

1
i =×××−+=− −

−=
∑

0.8750.5}0.50.5-0.51){0.5( 0.75})arg(5.0)argfm(h

0.6250.5}0.50.5-0.51){0.5( 0.75})eargLh(fm5.0)eargLfm(h

To start the simulation by the algorithm using hedge algebras, we will use the following crisp 
initial conditions given by eo = x1(0) = 10  and Δeo =x2(0) = -4dps 

Step 1: Construction quantified semantic intervals based on domain intervals of e, Δe and u. 
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-5  0 +5 

Domain interval x2 = Δe 

 S: 0.25 L: 0.75 M: 0.5 

Quantified semantic interval x2s= Δes 

 AL: 
   1 

VL: 
0.875 

  SM: 
  0.25 

 VS: 
  0.125 

 L: 
 0.75 

M: 
0.5 

AS: 
 0 

Quantified semantic interval us 

-12 0 12 

Domain interval u for AND= MIN 

-7.5  0 7.5 

Domain interval u for AND=PRODUCT 

 

 

 

 

 

 

 

 

 

 

Step 2: Determine the semantic value of hedge of each corresponding IF-THEN statement from 
the FAM table of [28]. 

Table 2:   Semantic Associative Memory 

 

 

 
L : 0.75 M : 0.5 S : 0.25 

L : 0.75 VL: 0.875 L :  0.75 M: 0.5 

 
x1 

M : 0.5 L : 0.75 M : 0.5 S: 0.25 

S : 0.25 M : 0.5 S : 0.25 VS: 0.125

 

Define the quantified semantic curve by an interpolation function over semantic points. 

 We have calculated the Cartesian product of two input quantified semantic values using two 
cases, in which the first is AND=PRODUCT and the second is AND=MIN to get the input real 
values in [0, 1]. 

The quantified semantic curve can be represented by the line over semantic points as shown in 
Figs. 5 and 6. 

 

 

 14 



 
 

AJSTD Vol. 23 Issues 1&2 
 

  us 
1.0 

 •
 

 

 

 

 

 

 

 

 

 

 

Table 3: The simulation results of HAC and FC 

 
Hedge Algebras-based Controller 

AND=PRODUCT AND=MIN 
Fuzzy Conventional 

Controller[28] 

k x1(k) x2(k) u(k) x1(k) x2(k) u(k) x1(k) x2(k) u(k) 
0 1 -4 -1 1 -4 0 1 -4 -2 
1 -3 -2 -6 -3 -3 -12 -3 -1 -9.6 
2 -5 1 -4 -6 6 0 -4 5.6 0.0 
3 -4 0 -5 0 0 0 1.6 1.6 5.28 
4 -4 1 -4 0 0 0 3.2 -2.08 1.12 
5 -3 1 -4 0 0 0 1.12 0 4.32 
6 -2 2 0 0 0 0 1.12 -3.2 0.8 
7 0 0 0 0 0 0 -2.08 -2.28 -9.86 
8 0 0 0 0 0 0 -4.36 5.5 0.0 
9 0 0 0 0 0 0 1.14 1.14 6.8 

 

Fig. 5 : Quantified semantic curve for AND=PRODUCT 
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Fig. 6 : Quantified semantic curve for AND=MIN 
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Step 3: With   crisp   initial   condition x1(0) = 10 and x2(0) = -4dps, the quantified semantic 
curve will produce the real control action u(k) with k = 0, 1, 2,.... Each control action u(k) after k 
= 0 will begin with the previous values of x1 and x2 as the input conditions to the next cycle of 
the recursive state equations. 

All the simulation results for the case AND=PRODUCT and AND=MIN are shown in Table 3. 
Conventional fuzzy control of [28] is shown also in Table 3. 

For the comparison purpose of HAC and FC , we define the error function of  control as follows 
(r=0 and Δr=0) 

              e(k) = [(x1(k)-r)2+(x2(k)-Δr)2]1/2                                                                        (6.9) 

The contrrol error function of the inverted pendulum by HAC and FC is represented in Fig.7. 
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Fig. 7:  Error of HAC and FC 

e(k) 

k 

+

+             Error of HAC in the case  AND=PRODUCT
            Error of HAC in the case AND=MIN 
          Error of FC [28]         

7. CONCLUTIONS 

We have presented an algebraic approach to domain of linguistic variables and some first 
application. The results of simulation specially in control problems show that the method of 
control based on Hedge Algebras is simple and exact. We believe that the basic idea behind the 
approach will have a significant influence on practice of a fuzzy reasoning and control problem 
in future.  
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APPENDIX: Fuzzy models and real data for EX1-EX7 examined in [1] 

 
EX1 EX2 EX3 EX4 

Values of I Values of N Values of I Values of N Values of I Values of N Values of I Values of N 
 Null Very_Large Null Very_Large Null Very_Large Null Very_Large 
 Zero  Large Zero Zero Zero Medium Zero Medium 
 Small Medium Small Very_Large Small Zero Small Small 
 Medium Small Medium Zero Medium  Medium Medium Small 
 Large Zero Large Very_Large Large Very_Large Large Zero 
Very_Large  Zero Very_Large Zero Very_Large Medium Very_Large Zero 

EX5 EX6 EX7 
Values of I Values of N Values of I Values of N Values of I Values of N 

Null Very_Large Null Zero Null Zero 
Zero  Very_Large Zero Zero Zero Medium 
Small Large Small Small Small Large   
Medium Large Medium Medium Medium Large 
Large Medium Large Large Large Very_Large 
Very_Large  Zero Very_Large Very_Large Very_Large Very_Large 
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