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Accurate soil classification is imperative for determining 

land suitability for various construction projects in construction 

and geotechnical engineering. The physical and mechanical 

properties of soil significantly influence the design of 

foundations, the assessment of landslide risks, and the overall 

stability of structures. Recognizing the limitations of traditional 

soil classification methods, which are often labor-intensive and 

time-consuming, this research introduces machine learning as a 

transformative tool for enhancing soil classification processes. 

Utilizing K-Nearest Neighbors (KNN) and Support Vector 

Machine (SVM) algorithms, this study analyzes 5,869 soil 

samples collected from 39 construction projects in Ho Chi Minh 

City, Vietnam, to evaluate the efficacy of machine learning 

techniques in classifying construction soils. The study identifies 

optimal strategies that significantly improve classification 

accuracy through a methodical investigation that includes varying 

training set sizes and integrating directly obtained and indirectly 

derived soil features. The findings underscore the importance of 

incorporating liquid and plastic limits and their derived indices, 

with the KNN model demonstrating superior performance in 

specific scenarios. This research highlights the potential of 

machine learning to revolutionize traditional soil classification 

methods. It provides foundational insights for future 

advancements in geotechnical engineering, aiming to achieve 

safer, more efficient, and sustainable construction practices.  

1. Introduction 

Soil classification is fundamental in the construction industry, providing critical 

insights for foundation design, risk assessment, and project cost estimation. In construction, 

soils are primarily categorized into cohesive and non-cohesive types. In Vietnam, soil 

classification commonly follows the TCVN 9362:2012 standard (Cong thong tin dien tu Bo 

Xay dung, 2012), alongside other internationally recognized systems such as USCS (Unified 

Soil Classification System), AASHTO (American Association of State Highway and 

Transport Officials), and ASTM (American Society for Testing and Materials). These 

classification systems generally rely on particle size distribution and Atterberg limits to 

determine soil properties (Casagrande, 1948; Das & Sobhan, 2013). Obtaining these values 

necessitates laboratory experiments, including sieve and sedimentation tests for particle 
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composition, tests for moisture content, and determining liquid and plastic limits. Despite 

their critical importance, these conventional methods are often time-consuming and labor-

intensive, leading to a demand for more efficient approaches. 

The rise of Artificial Intelligence (AI) across various sectors, from autonomous 

vehicles and facial recognition systems to virtual assistants and content recommendation 

systems, has opened up new possibilities for geotechnical engineering. Early AI applications 

in this field addressed diverse challenges, such as soil parameter prediction (Mollahasani et 

al., 2011; Nguyen et al., 2020; Pham et al., 2020; Pham, Mahdis, et al., 2021; Zhang, Wu, et 

al., 2021), pile load-bearing capacity estimation (Momeni et al., 2020; Pham et al., 2022; 

Singh & Walia, 2017; Tran et al., 2024), retaining wall design (Ghaleini et al., 2018; Gordan 

et al., 2019; Koopialipoor, Murlidhar, et al., 2020), TBM operational parameters 

(Koopialipoor, Fahimifar, et al., 2020; Ninić et al., 2017; Zhou et al., 2021), stratigraphy 

thickness prediction (Zhou et al., 2019), landslide susceptibility (Pham et al., 2016; Shirzadi 

et al., 2017; Wang et al., 2021; Xiao et al., 2018), and properties of rocks analysis (Armaghani 

et al., 2014; Karimpouli & Tahmasebi, 2019), leveraging techniques like neural networks and 

Machine Learning (ML) algorithms. Despite the initial scarcity of deep learning applications 

in geotechnical research, recent years have witnessed an increasing number of studies (Zhang, 

Li, et al., 2021), underscoring the potential of AI to advance geotechnical practices.  

Applying ML to soil classification has emerged as a promising area for improving 

efficiency and accuracy. Early research by Cal (1995) using neural networks laid the 

groundwork for AI in soil classification. Subsequent studies have explored a variety of ML 

algorithms, including neural networks (Goktepe et al., 2010), K-Nearest Neighbor (KNN) 

(Carvalho & Ribeiro, 2019), SVM (Kovačević et al., 2010; Ma, 2005), and advanced 

ensemble methods like Multilayer Perceptron (MLP), Random Forest (RF), AdaBoost, Tree 

Modeling, Gradient Boosting, XGBoost, and LightGBM (Gambill et al., 2016; Kang et al., 

2022; Nguyen et al., 2022; Pham, Nguyen, et al., 2021). These studies demonstrate ML’s 

capability to handle complex soil datasets, offering highly accurate classifications aligned 

with established standards and real-world conditions. Notably, integrating operational 

parameters from Tunnel Boring Machines (TBM) and other advanced data sources has further 

expanded the potential of ML in soil classification, underscoring the versatility and 

adaptability of ML algorithms in addressing geotechnical challenges. 

The review highlights the growing but limited body of research utilizing AI and ML in 

geotechnical engineering, focusing on soil classification. The wide range of ML algorithms 

available demonstrates the potential for customized solutions tailored to specific research 

goals. However, despite the advancements, the application of ML in soil classification, 

especially using Vietnamese standards for construction projects (TCVN 9362:2012 - Cong 

thong tin dien tu Bo Xay dung, 2012), remains underexplored. This gap presents an 

opportunity for further research, aiming to harness the full capabilities of AI and ML to 

enhance the accuracy, efficiency, and cost-effectiveness of soil classification and, by 

extension, foundation design and risk management in construction projects. 

In summary, integrating traditional soil classification methods with advanced Machine 

Learning (ML) and Artificial Intelligence (AI) techniques represents a pivotal shift toward 

more data-driven, analytical approaches in geotechnical engineering. This evolution promises 

to refine existing practices and unlock new opportunities for innovation and increased 

efficiency in construction and related fields. 
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2. Data collection and methods 

This study applies machine learning algorithms to classify construction soils. Data for 

training and testing were collected from soil investigation reports across 39 construction 

projects in Ho Chi Minh City, Vietnam, focusing mainly on cohesive soils like clay and silty 

clay. 5,869 soil samples were analyzed, focusing on 13 soil parameters obtained directly from 

laboratory experiments and indirectly through calculations. These parameters include sample 

depth, clay content, moisture content, bulk unit weight, particle density, liquid limit, plastic 

limit, and others related to soil’s physical properties. The study classifies soils into nine types 

per Vietnamese Standard TCVN 9362:2012 (Cong thong tin dien tu Bo Xay dung, 2012), 

ranging from silty sand to various clay types. 

2.1. Data 

Soil data in this research were sourced from investigation reports on 39 construction 

projects across different Ho Chi Minh City districts. The sampling data, which includes a 

depth ranging from 50m to 100m, revealed approximately 05 to 07 soil layers at each 

borehole. The primary focus was on cohesive soils, such as clay, silty clay, and silty sand, 

with a minor presence of non-cohesive soils like sand, which were not within the scope of this 

study. A total of 5,869 soil samples were collected and analyzed. 

2.1.1. Data collection 

The dataset comprises 5,869 soil samples, classified into nine different types according 

to the Vietnamese Standard TCVN 9362:2012 (Cong thong tin dien tu Bo Xay dung, 2012). 

The number of samples and the percentage of each soil type are as in Table 1. These figures 

illustrate the diversity of soil types encountered in the collected dataset, providing a 

comprehensive foundation for applying machine learning algorithms for soil classification. 

Table 1 

Number of Soil Samples 

No Soil types Number of samples Proportion (%) 

1 Plastic silty sand 1,957 33.34 

2 Semi-hard silty clay 219 3.73 

3 Hard plastic silty clay 429 7.31 

4 Soft plastic silty clay 236 4.02 

5 Hard clay 569 9.70 

6 Semi-hard clay 640 10.90 

7 Hard plastic clay 790 13.46 

8 Soft plastic clay 227 3.87 

9 Liquid clay 802 13.67 

 Total 5,869 100 

Source. Data analysis result of the research 

2.1.2. Input features 

The study considers 13 input features representing specific soil characteristics from 

both laboratory experiments (Directly Obtained Features: X1, X2, X3, X4, X5, X6, X7) and 

calculations (Indirectly Obtained Features: X8, X9, X10, X11, X12, X13). The statistical 

summary of all input variables is presented in Table 2 below, which includes the mean, 

standard deviation, minimum, and maximum values. 
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Table 2 

Statistical Summary of Input Variables 

 Variable Mean Standard deviation Min Max 

X1 Sample depth 31.07 20.90 0.50 99.80 

X2 Clay content 29.04 18.38 1.80 85.00 

X3 Moisture content 31.36 22.25 11.40 118.93 

X4 Bulk unit weight 1.92 0.19 1.34 2.33 

X5 Particle density 2.69 0.04 2.53 3.40 

X6 Liquid limit 39.44 17.28 13.80 102.59 

X7 Plastic limit 21.91 8.37 7.60 63.80 

X8 Dry unit weight 1.51 0.31 0.64 2.06 

X9 Void ratio 0.90 0.57 0.40 3.13 

X10 Porosity 44.15 11.11 28.60 75.80 

X11 Degree of saturation 90.99 6.49 58.30 100.00 

X12 Plasticity index 17.53 10.43 2.83 51.40 

X13 Liquidity index 0.47 0.45 -0.71 2.75 

Source. Data analysis result of the research 

To clearly understand the data distribution, we have included histograms for each 

input variable (Figure 1 to Figure 13). These histograms illustrate the frequency distribution 

of each variable, highlighting the range, central tendency, and variability within the dataset. 

Below are the directly obtained features. 

(1) Sample depth (X1): The depth at which the soil sample was taken, ranging from 

0.5m to 99.8m. This parameter is crucial as it reflects the soil layer’s position, which could 

influence its properties due to varying pressure and environmental conditions. 

Figure 1 

Histogram of Sample Depth (X1) 

 

Source. Data analysis result of the research. 
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(2) Clay content (X2): The percentage of particles in the soil sample smaller than 

0.002mm, indicating the presence of clay. It ranges from 1.8% to 85%, highlighting the soil’s 

fine-grained nature and its potential impact on compressibility and plasticity. 

Figure 2 

Histogram of Clay Content (X2) 

 
Source. Data analysis result of the research 

(3) Moisture content (X3): Represents the water content in the soil, affecting its 

strength and compaction. It varies from 11.4% to 118.93%, showcasing the samples’ wide 

range of water saturation levels. 

Figure 3 

Histogram of Moisture Content (X3) 

 

Source. Data analysis result of the research 

(4) Bulk unit weight (X4): The weight of the soil per unit volume, which includes the 

weight of solids and the weight of the voids (air and water), ranging from 1.34 to 2.33 g/cm³. 

It’s indicative of the soil’s density and compaction level. 

Figure 4 

Histogram of Bulk Unit Weight (X4) 

 
Source. Data analysis result of the research 
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(5) Particle density (X5): Reflects the density of the soil particles, excluding the pore 

spaces, ranging from 2.53 to 3.4. 

Figure 5 

Histogram of Particle Density (X5) 

 

Source. Data analysis result of the research 

(6) Liquid limit (X6): The moisture content at which soil changes from a plastic to a 

liquid state, varying from 13.8% to 102.59%. 

Figure 6 

Histogram of Liquid Limit (X6) 

 

Source. Data analysis result of the research 

(7) Plastic limit (X7): The moisture content at which soil changes from semi-solid to 

plastic, ranging from 7.6% to 63.8%. 

Figure 7 

Histogram of Plastic Limit (X7) 

 

Source. Data analysis result of the research 
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Below are the indirectly obtained features. 

(8) Dry unit weight (X8): Calculated from the bulk unit weight and moisture content, this 

indicates the weight of solids per unit volume, essential for compaction and stability analyses. 

Figure 8 

Histogram of Dry Unit Weight (X8) 

 

Source. Data analysis result of the research 

(9) Void ratio (X9): The volume of voids to the volume of solids in the soil, 

indicating porosity and permeability. 

Figure 9 

Histogram of Void Ratio (X9) 

 

Source. Data analysis result of the research 

(10) Porosity (X10): The percentage of the soil volume that is voids, affecting water 

and air movement through the soil. 

Figure 10 

Histogram of Porosity (X10) 

 

Source. Data analysis result of the research 
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(11) Degree of saturation (X11): The ratio of the volume of water to the volume of 

voids in the soil, indicating how saturated the soil is with water. 

Figure 11 

Histogram of Degree of Saturation (X11) 

 

Source. Data analysis result of the research 

(12) Plasticity index (X12): Calculated from the liquid and plastic limits, it measures 

the moisture content range over which the soil remains plastic. 

Figure 12 

Histogram of Plasticity Index (X12) 

 

Source. Data analysis result of the research 

(13) Liquidity index (X13): This index provides insight into the soil’s current state 

relative to its liquid and plastic limits. 

Figure 13 

Histogram of Liquidity Index (X13) 

 

Source. Data analysis result of the research 
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The correlation among these features is significant in understanding soil behavior and 

properties. For instance, the clay content (X2), moisture content (X3), liquid limit (X6), and 

plastic limit (X7) are closely related, providing insights into the soil’s consistency and 

susceptibility to deformation (Figure 14). Similarly, the dry unit weight (X8) and void ratio 

(X9) are interrelated, reflecting the soil’s density and compaction levels (Figure 14). These 

correlations are essential for constructing predictive models in soil classification, enabling 

engineers to effectively infer soil behavior and suitability for construction projects. 

Figure 14 

Correlation of Input Features 

 

Source. Data analysis result of the research 

2.2. Data analysis and classification model 

The study follows a structured approach to build accurate soil classification models. 

The process consists of five main steps: 

(1) Step 1: Data collection 

The initial phase involves collecting a dataset comprising 5,869 soil samples from soil 

investigation reports of 39 construction projects in various Ho Chi Minh City districts. This 

dataset is pivotal as it forms the foundation for the entire classification model. The collection 

process focused on gathering data that accurately represents the diversity of soil types within 

the targeted urban area, emphasizing cohesive soils like clay, silty clay, and silty sand. 

(2) Step 2: Data preprocessing 

Upon collecting the dataset, data preprocessing becomes the subsequent critical step. 

This phase begins with a statistical description, which involves a descriptive statistical 
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analysis of all 13 input features to understand their distribution, mean, standard deviation, and 

range. This step is vital to grasp the overarching characteristics of the dataset. Following this, 

outlier removal is conducted to eliminate anomalies from the dataset. This is crucial to 

prevent skewed results and enhance the model’s accuracy, as outliers may result from data 

collection errors or reflect rare soil conditions that are not the focus of this study. Finally, 

normalization is applied to standardize the input features to a standard scale, typically within 

the range of [0, 1]. This process ensures the machine learning models function optimally by 

preventing any single feature from disproportionately influencing the outcome due to its scale, 

thereby maintaining the integrity of the model’s predictive capability. 

(3) Step 3: Construction of classification models 

During the construction of soil classification models, this research leverages 

MATLAB’s computational capabilities and flexibility to implement two core machine 

learning algorithms: K-Nearest Neighbors (KNN) and Support Vector Machine (SVM). These 

algorithms are selected for their unique and complementary approaches to handling 

classification tasks. 

K-Nearest Neighbor (KNN): The K-Nearest Neighbor algorithm operates on a simple yet 

effective principle: it assigns a class to each soil sample based on the predominant class among 

its ‘k’ nearest neighbors in the feature space. The determination of ‘k,’ the number of neighbors, 

and selecting the distance metric (commonly the Euclidean distance) are pivotal in optimizing 

the KNN model’s performance. For our study, the MATLAB implementation of KNN is 

employed with default parameters, providing a straightforward yet powerful means of classifying 

soil samples. The simplicity of KNN, combined with its reliance on feature space proximity for 

classification, makes it exceptionally suitable for analyzing the complex, multi-dimensional data 

characteristic of soil properties. In the context of our research, KNN offers the advantage of 

intuitive understanding and implementation, allowing for the nuanced relationships between 

different soil features to be effectively captured and utilized for classification. 

The Support Vector Machine (SVM) takes a more structured approach by constructing 

a hyperplane (or a set of hyperplanes in higher-dimensional space) that best separates the soil 

samples into their respective categories. The core objective of SVM is to maximize the 

margin between the closest points of the classes (support vectors) and the separating 

hyperplane, thereby enhancing the model’s generalizability and predictive capability. 

Utilizing MATLAB’s default SVM implementation, our research leverages this algorithm’s 

robustness in dealing with complex feature spaces and its capacity to identify the optimal 

boundary between differing soil types. This method is particularly effective in scenarios 

where the decision boundary is not immediately apparent or when the dataset contains a high-

dimensional feature space, as is often the case with soil classification tasks. 

By utilizing these algorithms within MATLAB’s robust computational environment, 

this study gains the ease of model construction and evaluation and leverages the platform’s 

extensive library and machine learning tools. The use of default parameters for both KNN and 

SVM in MATLAB ensures a consistent and reproducible framework for model comparison, 

allowing for a focused investigation into the algorithms’ effectiveness in classifying soils 

based on their intrinsic properties as defined by the Vietnamese Standard TCVN 9362:2012 

(Cong thong tin dien tu Bo Xay dung, 2012). This method simplifies the development 

process, allowing for a direct evaluation of the algorithms’ suitability for the intricate 

demands of soil classification in geotechnical engineering. 
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(4) Step 4: Model evaluation and optimization 

This step is pivotal in the research process, systematically analyzing and optimizing 

the constructed machine-learning models for soil classification. It consists in executing three 

specific problem-solving tasks aimed at refining the models and evaluating their performance: 

Problem 1 - Training set size analysis: The initial challenge in optimizing the machine 

learning models for soil classification lies in determining the ideal training set size. Problem 1 

methodically increased the training set size from a mere 2% to 98% of the total dataset in 

increments of 2%. This comprehensive exploration spanned three scenarios: the first utilized 

all 13 input features for model training, the second used only the 07 features directly obtained 

from experiments, and the third employed the six features that were derived indirectly. The 

goal was to discern how varying amounts of training data and different feature combinations 

could influence the models’ accuracy. This critical step guided the appropriate training set 

size for more detailed analyses of the subsequent problems. 

Problem 2 - Feature combination analysis: With an optimal training set size established 

from Problem 1, Problem 2 sought to delve deeper into the impact of feature combinations on 

model accuracy. This problem was divided into two sub-problems, each concentrating on a 

distinct set of features: Directly obtained from experiments and those derived indirectly. The 

analysis proceeded under four distinct groups (groups 1 and 2, featuring either X6 or X7; 

groups 3, which includes both X6 and X7; group 4, lacking both X6 and X7), categorized by the 

presence or absence of key features - the liquid limit and the plastic limit - known to be crucial 

for cohesive soil classification. Sub-problem 1 combined various direct features to assess their 

individual and collective influence on accuracy. Sub-problem 2, on the other hand, evaluated 

the utility of indirect features in isolation, determining their contribution to the model’s 

predictive power without relying on direct experimental data. 

Problem 3 - Comprehensive feature analysis: The investigation culminated in Problem 

3, which built upon the high-performing scenarios identified in Problem 2. The focus here 

was on the potential of integrating additional features with those already proven effective. 

This comprehensive analysis was conducted to ascertain whether including previously 

omitted features could enhance model performance. The approach involved a detailed 

examination of various feature combinations, concentrating on previously demonstrated 

promising results. This process aimed to identify the most potent feature set for soil 

classification, marking a pivotal step towards developing highly accurate machine learning 

models for geotechnical applications. 

(5) Step 5: Output analysis 

The final step involves analyzing the classification results against the predefined labels 

based on TCVN 9362:2012 (Cong thong tin dien tu Bo Xay dung, 2012) standards for 

cohesive soils. The performance of each model is evaluated based on its accuracy in correctly 

classifying the soil samples into one of the nine categories. The research aims to identify the 

most effective model and feature combination for soil classification, contributing valuable 

insights for geotechnical engineering applications in construction. 

2.3. Evaluation metrics 

Throughout the evaluation and optimization phases of this study, the performance of 

the machine learning models for soil classification is measured using accuracy as the principal 

metric, as outlined by Equal (1): 
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              (1) 

where TP represents true positives, TN stands for true negatives, FP denotes false 

positives, and FN signifies false negatives. 

3. Results and discussion 

This study applied machine learning techniques to classify soils for construction, 

assessing the performance of SVM and KNN models under various conditions. The 

investigation was organized into three main problems, each addressing different aspects of 

model performance based on training set size and feature combinations. 

 3.1. Problem 1 

The analysis in Problem 1 explored the impact of training set size on the performance 

of SVM and KNN models for soil classification. This analysis aimed to identify the optimal 

training size for achieving high classification accuracy and understand how input feature 

choice impacts model performance. The training set sizes were incrementally increased from 

2% to 98% of the total dataset, with 2% increments under three distinct scenarios involving 

different combinations of input features. 

In the first scenario, all 13 input features (both directly and indirectly obtained) were 

used. The gradual increase in training set size demonstrated a consistent improvement in 

model accuracy for both KNN and SVM (Figure 15 and Figure 16). Notably, the KNN model 

exhibited significant gains in accuracy with increased training data, suggesting its sensitivity 

to the amount of training data. The SVM model also showed improved accuracy with larger 

training sets but to a lesser extent, indicating its robustness to varying training sizes. Both 

models reached a plateau in accuracy improvements beyond a 40% training set size, 

suggesting diminishing returns with further increases in training data. 

Figure 15 

Performance of The KNN Model in 3 Scenarios 

 

Source. Data analysis result of the research 
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Figure 16 

Performance of The SVM Model in 3 Scenarios 

 

Source. Data analysis result of the research 

The second scenario focused on the 07 features obtained directly from laboratory 

experiments. This set of features includes fundamental soil properties such as sample depth, 

clay content, moisture content, bulk unit weight, particle density, and Atterberg limits. Under 

this scenario, the KNN model’s performance slightly lagged compared to when all 13 features 

were used, indicating the importance of the additional indirect features for this algorithm 

(Figure 15). Conversely, the SVM model’s accuracy showed less variability, maintaining a 

relatively consistent performance across different training sizes (Figure 16). This observation 

underscores the SVM model’s capacity to leverage the directly obtained features effectively. 

In the third scenario, the models utilized only the 06 features derived indirectly. 

Interestingly, this scenario revealed a notable increase in the KNN model’s accuracy, 

surpassing its performance in the previous two scenarios (Figure 15). This suggests that the 

indirectly obtained features, which include parameters like dry unit weight, void ratio, 

porosity, degree of saturation, and indices related to soil’s plasticity and liquidity, are 

particularly informative for the KNN model. While showing respectable accuracy, the SVM 

model did not surpass the performance observed in Scenario 1, indicating a balanced 

dependence on direct and indirect features (Figure 16). 

The comprehensive analysis identified an optimal 40% training set size, balancing 

model accuracy and resource efficiency. This suggests that directly obtained features provide 

a solid baseline, while indirectly derived features can enhance KNN model accuracy, giving 

valuable insights into feature selection for soil classification. 

3.2. Problem 2 

Problem 2 focused on feature combination effects on model accuracy, divided into two 

sub-problems. In sub-problem 1, the analysis tested the importance of the liquid limit (X6) 

and plastic limit (X7) features. Group 3, using both X6 and X7, achieved the highest 

classification accuracy, highlighting the critical role of these features (Figure 19). Conversely, 

Groups 1 and 2, which included either X6 or X7 alone, demonstrated only moderate 

classification accuracies (Figure 17 and Figure 18). This finding highlights the individual 

value of the liquid and plastic limits, but it also points to the fact that their combined presence 
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is far more impactful for classification accuracy. Meanwhile, Group 4, which excluded both 

X6 and X7, had the lowest accuracy (Figure 20), underlining the indispensable nature of these 

features for precise soil classification. 

Figure 17 

Performance of SVM and KNN Models of Group 1, which included X6 

 
Source. Data analysis result of the research 

Figure 18 

Performance of SVM and KNN Models of Group 2, which included X7 

 
Source. Data analysis result of the research 

Figure 19 

Performance of SVM and KNN Models of Group 3, which included Both X6 and X7 

 
Source. Data analysis result of the research 
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Figure 20 

Performance of SVM and KNN Models of Group 4, which excluded Both X6 and X7 

 
Source. Data analysis result of the research 

The sub-problem 2 examined the impact of indirect features on model performance. 

Certain combinations, especially those incorporating features like the plasticity index (X12) 

and liquidity index (X13), led to significant improvements in classification accuracy (Figure 

21). These results, depicted in the performance figures, suggest that features representing the 

soil’s physical structure and its relationship with water content, such as dry unit weight, void 

ratio, and indices related to soil plasticity and liquidity, have a substantial influence over the 

model’s ability to classify soils accurately. The analysis provided in this sub-problem marks 

the indirect features as critical enhancers of the machine learning model's performance in soil 

classification tasks. 

Figure 21 

Performance of SVM and KNN Models of Indirectly Obtained Feature Combinations 

 

Source. Data analysis result of the research 

Overall, Problem 2 confirmed that combining directly and indirectly obtained features 

is essential for accurate soil classification, particularly soil plasticity and liquidity features. 

These findings guide future research towards optimized feature selection in machine learning 

applications for geotechnical engineering. 

3.3. Problem 3 

In Problem 3, the KNN model achieved its highest recorded accuracy of 96.71% using 

features such as particle density (X5), plasticity index (X12), and liquidity index (X13) 
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(Figure 22). While this did not exceed the peak accuracy in Problem 2, it surpassed Problem 1 

results, affirming the value of specific feature combinations. The SVM model showed a 

modest enhancement, reaching an accuracy of 85.83% when leveraging a broad array of 

features, including moisture content (X3), particle density (X5), plastic limit (X7), void ratio 

(X9), plasticity index (X12), and liquidity index (X13), indicating a slight accuracy advantage 

over the previous problems (Figure 23). The findings also revealed the impact of feature 

presence, where the KNN model’s performance was comparable to that of Problem 2, even 

without the liquid and plastic limits. In contrast, the SVM model improved slightly with 

additional features such as dry unit weight (X8), void ratio (X9), porosity (X10), and water 

saturation degree (X11), highlighting the nuanced influence that different features have on the 

predictive capability of soil classification models. 

Figure 22 

The Highest Performance of The KNN Model of Problem 1, Problem 2, and Problem 3 

 

Source. Data analysis result of the research 

Figure 23 

The Highest Performance of The SVM Model of Problem 1, Problem 2, and Problem 3 

 

Source. Data analysis result of the research 
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The findings reveal that KNN prefers certain feature combinations (e.g., particle density, 

plasticity, liquidity indices). At the same time, SVM benefits from a broader feature set, 

including dry unit weight, void ratio, and degree of saturation. These differences underscore the 

need for tailored feature selection to maximize model performance in soil classification. 

This study shares similarities and distinctions with prior works, such as Pham, 

Nguyen, et al. (2021) and Nguyen et al. (2022). Our study utilizes a comprehensive dataset 

comprising 5,869 soil samples from 39 construction projects in Ho Chi Minh City, Vietnam. 

In contrast, Pham, Nguyen, et al. (2021) used a smaller dataset with 440 samples, focusing on 

a more limited scope of geotechnical projects. Nguyen et al. (2022) utilized a larger dataset of 

4,888 soil samples, similar in scale to our study. The extensive dataset in our research allows 

for a more robust analysis and potentially more generalized findings. A significant difference 

lies in the soil classification standards used. Our study employs the Vietnamese Standard 

TCVN 9362:2012 - Cong thong tin dien tu Bo Xay dung (2012), which is tailored to local 

construction practices and regulations. In comparison, Pham, Nguyen, et al. (2021) and 

Nguyen et al. (2022) used the United Soil Classification System (USCS) standards. This 

distinction is crucial as it highlights the practical applicability of our research to Vietnamese 

construction projects, ensuring that the classification methodology aligns with local regulatory 

requirements and construction practices.  

Our study employed KNN and SVM for algorithms due to their simplicity and baseline 

effectiveness. Pham, Nguyen, et al. (2021) employed Adaboost, Tree, and ANN models, 

focusing on ensemble learning techniques to enhance classification accuracy. Nguyen et al. 

(2022) used Support Vector Classification (SVC), Multilayer Perceptron (MLP), and Random 

Forest (RF) models, providing a diverse approach with advanced machine learning methods. 

The differences in algorithm choices reflect various strategies to tackle soil classification 

problems, with each study contributing unique insights into model performance and 

applicability. In terms of accuracy, our KNN model achieved a maximum accuracy of 96.71%, 

while the SVM model reached 85.83%. Pham, Nguyen, et al. (2021) reported high accuracy 

with their Adaboost model, misclassifying only 11 out of 88 data points in their subset, 

suggesting robust performance. Nguyen et al. (2022) achieved an impressive average accuracy 

score of 0.968 across all models, with the SVC model achieving the highest accuracy of 0.984. 

These results indicate that while our models perform well, there is potential for further 

improvement by exploring additional algorithms and hyperparameter tuning. 

4. Conclusion 

This research comprehensively analyzes machine learning techniques - specifically, 

KNN and SVM models - for classifying construction soils in Ho Chi Minh City, Vietnam. 

Through a structured methodology encompassing data collection, preprocessing, and detailed 

analysis across three main problems, the study explores the impact of training set sizes and 

the combination of directly and indirectly derived soil features on model performance. The 

findings highlight several key insights:   

• The selection and combination of features significantly influence the accuracy of soil 

classification. Particularly, the inclusion of liquid limit (X6) and plastic limit (X7) features, 

along with their derived indices (plasticity index X12 and liquidity index X13), are crucial for 

enhancing model performance. 
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• KNN generally outperforms SVM in scenarios with carefully selected feature sets, 

indicating its suitability for soil classification tasks where nuanced feature relationships play a 

vital role. 

• The optimal training set size was identified as 40% of the total dataset, beyond which 

the improvements in model accuracy diminish. 

The research underscores the potential of machine learning in revolutionizing soil 

classification within geotechnical engineering, offering insights into the predictive capabilities 

of these models when equipped with appropriate soil parameters. 
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