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Synchronization is a ubiquitous feature in many natural 

systems and nonlinear science. This paper studies the 

synchronization incomplete network consisting of n nodes. Each 

node is connected to all other nodes by linear coupling and 

represented by a reaction-diffusion system of FitzHugh-Nagumo 

type which can be obtained by simplifying the famous Hodgkin-

Huxley model. From this complete network, the author seeks a 

sufficient condition on the coupling strength to achieve 

synchronization. The result shows that the more easily the nodes 

synchronize, the bigger the degrees of the networks. Based on this 

consequence, the author will test the theoretical result numerically 

to see if there is a compromise. 

1. Introduction 

The FitzHugh-Nagumo model was introduced as a dimensional reduction of the well-

known Hodgkin-Huxley model (see, e.g., Ermentrout & Terman, 2009; Hodgkin & Huxley, 

1952; Izhikevich, 2007; Keener & Sneyd, 2009; Murray, 2010; Nagumo, Arimoto, & 

Yoshizawa, 1962). It is more analytically tractable and maintains some biophysical meaning. 

The model has constituted a common form of two equations in the two variables u and v. The 

first variable is the fast one called excitatory which represents the transmembrane voltage. The 

second is the slow recovery variable which describes the time dependence of several physical 

quantities, such as the electrical conductivity of ion currents across the membrane. The 

FitzHugh-Nagumo equations (FHN), using the notation in Ambrosio and Aziz-Alaoui (2012); 

Ambrosio (2009); Ambrosio and Aziz-Alaoui (2013), are given by,  

 

 

  

 

where 𝑎, 𝑏 and 𝑐 are constants (𝑎 and 𝑏are strictly positive), 0 < 𝜀 ≪ 1 and𝑓(𝑢) = −𝑢3 + 3𝑢. 
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where 𝑢 = 𝑢(𝑥, 𝑡), 𝑣 = 𝑣(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛺 × ℝ+, 𝑑𝑢is a positive constant, 𝛥𝑢is the Laplace 

operator of 𝑢, 𝛺 ⊂ ℝ𝑛 is a regular bounded open set and with Neumann zero flux boundary 

conditions. This system allows the emergence of a variety of patterns and relevant phenomena 

in physiology (see, e.g., Ambrosio & Aziz-Alaoui, 2012; Ambrosio & Aziz-Alaoui, 2013). It is 

a system of two nonlinear partial differential equations of the incomplete parabolic type which 

describes the action potential and the recovery variable in the whole set of neurons. Note that 

the first equation is similar to the so-called cable equation, which describes the distribution of 

the potential along the axon of a single neuron (see, e.g., Ermentrout & Terman, 2009; 

Izhikevich, 2005). For example, in figure 1, we have two solutions of system (1) corresponding 

to different values of t on space 𝛺 = [0; 100] × [0; 100].  Figure (a) represents, for 𝑡 = 0, the 

iso values 𝑢(𝑥1, 𝑥2, 0) of one solution of system (1). Figure (b) represents, for 𝑡 = 190, the iso 

values 𝑢(𝑥1, 𝑥2, 190) of one solution of system (1). Such a solution is called spiral one obtained 

by a particular choice of initial conditions. 

Figure 1. (a) represents, for t=0, the iso values u (x1 , x2 ,0) of one solution of system (1). (b) 

represents, for t=190, the iso values u (x1 , x2 ,190) of one solution of system (1). Such a 

solution is called spiral one obtained by a particular choice of initial conditions 

 

After having the model of a neuron, we consider a network of n coupled systems (1) 

based on FHN type as follows: 

 

 

 

where (𝑢𝑖, 𝑣𝑖), 𝑖 = 1,2, . . . , 𝑛 is defined by (1). 

The function h is the coupling function that determines the type of connection between 

neurons i and j. Connections between neurons are essential of two types: a chemical which is 

(1) 

(2) 
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much more abundant, and electrical. If the connections are made by electrical synapse, the 

coupling is linear and given by the function: 

 

 

𝑔𝑠𝑦𝑛 represents the The parameter 

coupling strength. The coefficients 𝑐𝑖𝑗 are the elements of the connectivity matrix 𝐶𝑛 =

(𝑐𝑖𝑗)𝑛×𝑛, defined by: 

 

 

 

A neural network describes a population of physically interconnected nerve cells. 

Communication between cells is mainly due to electrochemical processes. In this article, we 

focus on analyzing the behavior of a set of neurons connected with a given topology by 

electrical signals. Thus, we consider a complex system based on a network of interactions 

between neurons in which each network node is modeled by a PDE of FHN type. The article 

contains the following sections: (1) introduction; (2) definition of synchronization, especially 

identical synchronization. Here, we seek sufficient conditions for a certain type of 

synchronization in our network; (3) investigation of minimal value of coupling strength for 

synchronization incomplete network to occur and numerical experiments that give an insight 

into the influence of neurons on minimal coupling strength needed to obtain synchronization in 

network. Our numerical simulations show that when the number of nodes in the graph grows, 

the network becomes easier to synchronize; and (4) conclusion.  

2. Identical synchronization of a complete network of n systems of reaction-

diffusion on FitzHugh-Nagumo type 

Synchronization is a ubiquitous feature in many natural systems and nonlinear science. 

The word "synchronization" is of Greek origin, with syn as “common” and chronos as “time”, 

which means having the same behavior at the same time. Therefore, the synchronization of two 

dynamical systems usually means that one system copies the movement of the other. When the 

behavior of many systems is synchronized, these systems are called synchronous. Studies by 

Aziz-Alaoui (2006) and Corson (2009) suggested that a phenomenon of synchronization may 

appear in a network of many weakly coupled oscillators. A broad variety of applications have 

emerged to increase the power of lasers, synchronize the output of electric circuits, control 

oscillations in chemical reactions or encode electronic messages for secure communications. 

Here are some synchronization regimes (Aziz-Alaoui, 2006): 

• Identical (or complete) synchronization, which is defined as the coincidence of states 

of interacting systems; 

• Generalized synchronization, which extends the identical synchronization 

phenomenon and implies the presence of some functional relation between two coupled 

systems; if this relationship is the identity, we recover the identical synchronization; 

(3) 

(4) 
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• Phase synchronization, which means driving of phases of chaotic oscillators, whereas 

their amplitudes remain uncorrelated; 

• Lag synchronization, which appears as a coincidence of shifted-in-time states of two 

systems. 

In this article, we are interested in the identical synchronization (Ambrosio & Aziz-

Alaoui, 2013) incomplete network which means that each node connects to all other nodes of 

the network. For example, Figure 2 showed the complete graphs from 2 to 10 nodes and 

complete graphs of 40 nodes. In this study, each node represents a neuron modeled by a system 

of reaction-diffusion equations on FHN type and each edge represents a synaptic connection 

modeled by a coupling function. 

Definition 1: Let 𝑆𝑖 = (𝑢𝑖, 𝑣𝑖), 𝑖 = 1,2, . . . , 𝑛 and 𝑆 = (𝑆1, 𝑆2, . . . , 𝑆𝑛) be a network. We 

say that 𝑆 is identical synchronization if,  

 

 

Figure 2. Complete graphs from 2 to 10 nodes and complete graphs of 40 nodes. In our study, 

each node represents a neuron modeled by a system of reaction-diffusion equations on FHN 

type and each edge represents a synaptic connection modeled by a coupling function. 

We consider a system of n "neurons" (1) bi-directionally coupled with the electrical 

synapses, based on FHN, as follows: 

 

 

 

where 𝑔𝑛 is the coupling strength between 𝑢𝑖 and 𝑢𝑗. 

 

 

(5) 

(6) 
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Theorem 1: Suppose that: 

 

𝑔𝑛 >
𝑀

𝑛
𝑎𝑛𝑑𝑑𝑢𝑖

= 𝑑𝑢𝑗
, 𝑖, 𝑗 = 1,2, . . . , 𝑛, 

where 𝑀 = 𝑠𝑢𝑝
𝑢∈𝐵,𝑥∈ℝ

∑
𝑓(𝑘)(𝑢)

𝑘!
𝑥𝑘−13

𝑘=1 , B is a compact interval including u and 𝑓(𝑘)(𝑢) is the kth 

derivative off with respect to𝑢. Then the network (4) synchronizes in the sense of definition 1. 

Proof: Let 𝛷(𝑡) =
1

2
[∑ (𝑎𝜀 ∫ (𝑢𝑖 − 𝑢1)2𝑑𝑥

𝛺
+ ∫ (𝑣𝑖 − 𝑣1)2𝑑𝑥

𝛺
)𝑛

𝑖=2 ].    

By deriving the function𝛷(𝑡), we have the following, 

 

If n

M
g

n
 , we have 

 

( )
( ) ( ) (0) ,td t
t t e

dt

 −
 −     

where min 2 , 2 .nng M
b



− 
=  

 
 Thus, we have the synchronization if the coupling strength 

verifies n

M
g

n
 . 

If f is a cubic, we deduce the following corollary. 

Corollary 1: Suppose that f is a cubic function, 3 2

3 2 1 0( ) ,f u m u m u mu m= + + + where 

3 2 1 0, , ,m m m m  are constants with 3 0m   and if, 

2

2
1

3

1
,

3
n

m
g m

n m

 
 − 

 
 



50          Phan Van Long Em. Ho Chi Minh City Open University Journal of Science, 8(2), 45-53 

the network ( )1 1 2 2( , ), ( , ),..., ( , )n nS u v u v u v=  synchronizes in the sense of definition 1. 

3. Numerical simulations 

In the following, we present the numerical results obtained by integrating the system (4) 

where 
33, ( ) 3n f u u u= = − + , and with the following parameter values: 

1, 0.001, 0, 0.1, 0.05.ua b c d= = = = =  The integration of system was realized by using C++, 

on         0; 0;200 0;100 0;100 .T  =    

Figure 3 illustrates the phenomenon of synchronization. The simulations show that the 

system synchronizes from the value 3 0.025g = . In the figures (a), (b), (f), (g), (k), (l), (p), (q), 

we represented the phase portraits ( )1 1 2 2 1 2( , , ), ( , , )u x x t u x x t  and ( )2 1 2 3 1 2( , , ), ( , , )u x x t u x x t  for 

 0;t T  and for all 1 2( , )x x  . We observe (figure (p) and (q)) that for 3 0.025g = ,

1 1 2 2 1 2( , , ) ( , , )u x x t u x x t  and 2 1 2 3 1 2( , , ) ( , , )u x x t u x x t  for all  0;t T  and for all 1 2( , )x x  . 

In the figures (c), (d), (e), (h), (i), (j), (m), (n), (o), (r), (s), (t), we represented the iso values of 

1 2( , ,190), 1,2,3iu x x i = . The results show that 3 0.025g = the obtained patterns are "identical". 

 

Figure 3. Synchronization of a complete network of three linearly coupled "neurons"   with
3( ) 3 , 1, 0.001, 0, 0.1, 0.05.uf u u u a b c d= − + = = = = = The synchronization occurs for 3 0.025g = . 

Before synchronization, 3 0.005g =  figure (a) represents the temporal dynamic of 2u with 

respect to 1u , for all 1 2( , )x x  ; figure (b) represents the temporal dynamic of 3u  with respect 

to 2u ; the figure (c) represents the iso values of 1 1 2( , ,190)u x x ; similarly the figures (d) and (e) 

represent the iso values of  2 1 2( , ,190)u x x  and 3 1 2( , ,190)u x x ; the similar simulations are 

reproduced for 3 0.01g =  (figures (f), (g), (h), (i), (j)), 3 0.023g =  (figures (k), (l), (m), (n), (o)) 

and 3 0.005g =  (figures (p), (q), (r), (s), (t)).  For the value 3 0.005g = , we observe the 

synchronization of three “neurons" 
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We are interested in the minimal values of coupling strength ng  to observe a 

phenomenon of synchronization between n subsystems modeling the function of a neuron. 

Thus, in the case of three linearly coupled neurons, we note that for the coupling strength over 

or equal to 3 0.005g = , these neurons have asynchronous behavior (Figure 3). By doing 

similarly for the complete networks of linearly identical coupled neurons, we obtain the values 

of coupling strength reported in Table 1. 

Table 1 

This table gives the minimal coupling strength necessary to observe a phenomenon of 

synchronization of n linearly coupled neurons, with the parameters:
3( ) 3 , 1, 0.001, 0,f u u u a b c= − + = = = 0.1, 0.05.ud = =  

 

n  3 4 5 6 7 8 9 10 11 

ng
 0.025 0.015 0.012 0.009 0.008 0.007 0.006 0.005 0.0045 

n  12 13 14 15 16 17 18 19 20 

ng
 0.004 0.0038 0.0035 0.0032 0.003 0.0028 0.0026 0.0024 0.0023 

Source: The researcher’s data analysis 

Following these numerical experiments, we see that the coupling strength required for 

observing the synchronization of n neurons depends on the number of neurons. Indeed, the 

points in Figure 4 represent the coupling strength of synchronization according to the number 

of neurons incomplete network, and the red curve represents the representative one, 

 

 

where n is the number of neurons in the network. Thus, the coupling strength necessary to 

obtain the synchronization of n neurons follows this law. 

 

Figure 4. Figure 4 showed the evolution of the coupling strength  ng  for which the 

synchronization of n neurons takes place according to the number n linearly coupled neurons 

incomplete network.  Thus, this evolution follows the law  
0.051

0.00041.
1

ng
n

= −
−
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4. Conclusion 

This study investigated a phenomenon of synchronization incomplete network of n 

coupled systems of reaction-diffusion on Fitzhugh-Nagumo type. From theorem 1, we got 

n

M
g

n
  which shows that the bigger the value of n , the smaller the ng . Numerically, we found 

that the synchronization is stable when we exceed a certain threshold of coupling strength and 

depends on the number of "neurons" in graphs. The bigger the number of "neurons" is, the 

easier the phenomenon of synchronization will be obtained. Then, a compromise between the 

theoretical and numerical results can be reached. In addition, it is necessary to conduct further 

studies on the identical synchronization incomplete network coupled with chemical synapse. 
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