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ABSTRACT 
This paper extends a numerical procedure for limit ananlysis of 3-D structures using node-based 

smoothed finite element method (NS-FEM) in combination with second-order cone programming (SOCP). 
The obtained discretization formulation is then cast in a form which involves second-order cone 
constraints, ensuring that the underlying optimization problem can be solved by highly efficient primal-
dual interior point algorithm. Furthermore, in the NS-FEM, the system stiffness matrix is computed using 
the smoothed strains over the smoothing domains associated with nodes. This ensures that the size of the 
resulting optimization problem is kept to a minimum. Moreover, it can alleviate volumetric locking for 3-
D problem effectively. The efficiency of the present approach is illustrated by examing a benchmark 
example. 

Keywords: Limit analysis (LA), the node-based smoothed fem (NS-FEM), Second-order cone 
programming (SOCP). 

 
 

1. Introduction  

Limit state criteria have been used to 
design and asses the safety of many 
engineering components and structures, 
from simple metal forming problems to 
large-scale engineering structures and 
nuclear power plants. A complete elasto-
plastic analysis is generally quite 
complicated due to the need to specify 
initial stress conditions and to then carry 
out an analysis in an iterative manner. 
Difficulties in elasto-plastic analysis and 
its applications have motivated the 
development of a simplified direct method, 
limit analysis, which can be used to 
identify the collapse load (also known as 
the limit load, or load carrying capacity, or 
maximum load intensity) of a structural 

problem in a simple and more direct 
manner.  

Current research in the field of limit 
analysis is focussing on the development of 
numerical tools which are sufficiently 
efficient and robust to be of use to 
engineers working in practice. Various 
numerical procedures for limit and 
shakedown analysis problems have been 
developed for decades. One of the most 
robust and popular discretisation methods 
is the finite element method (FEM). 
However, there are still many aspects 
which are in need of improvement, for 
instant locking problems, mesh distortion 
and highly sensitive to the geometry of the 
original mesh… 
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Moreover, in limit analysis 
procedures one must solve optimisation 
problems involving either linear or non-
linear programming. When a non-linear 
yield condition is used, the resulting 
optimisation problem is non-linear, which 
presents major diffculties in the solution 
process. A traditional way of addressing 
the drawback is to linearise non-linear 
convex yield criteria, so that the resulting 
optimisation problem reduces to a linear 
program. Although this classical linear 
program can be solved effciently using 
Simplex Error! Reference source not 
found., 2] or interior-point Error! 
Reference source not found.] algorithms, 
a large number of constraints generated in 
the linearisation process would be needed 
in order to provide accurate solutions 
(especially for three-dimensional 
problems), thereby increasing the 
computational cost. Attempts have also 
been made to solve problems involving 
exact convex yield function using non-
linear programming packages. However, 
non-linear programming problems are 
often computationally expensive to solve, 

with the consequence that often only 
relatively small problems can be tackled. 

To overcome these above 
shortcomings, the strain smoothing 
technique (the node-based SFEM) is used 
to to remove locking problems for 3D 
structures. Moreover the resulting 
optimization problem is cast in the form of 
a second-order cone programming problem 
so that a large-scale problem can be solved 
efficiently [Error! Reference source not 
found., Error! Reference source not 
found.]. 

2. Kinematic formulation of limit analysis 

Consider a rigid-perfectly plastic 
solid subject to body forces F in its volume 
V and surface tractions f on the free 
portion fG  of its boundary. The 
constrained boundary uG  is fixed. The 
basic values of external loads F and f are 
affected by a common multiplier α, and the 
value   of α for which collapse is attained 
(collapse multiplier) is sought. Let the 
vectors 

 

 σ     
t

x y xy z xz yz  (1a) 

 ε             x y xy z xz yz  (1b) 

 u    x y zu u u  (1c) 

 
collect the stress, strain rate and velocity 
components, respectively (for shear strains 
the engineering definition is adopted). The 

fields (1b) and (1c) are related by 
compatibility, which is symbolically 
written as 

 
0  uV,ε u   us onin

 
 (2a,b) 

  
The rigid-perfectly plastic assumption 

for the material implies that stresses are 
confined within the convex domain 

( ) 0f s £ . If von Mises’ criterion is 
considered, one has 
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( ) ( ) 0
f sf s s -=  (3a) 

  
          

1
2 2 2 22 2 21 6

2
σ                 x x y z z x xy yz zxf

 for 3D (3b) 

 

wherer 0s  is the tensile yield stress. Deformations in the solid can only consist of plastic 
flow governed by the normality rule. 
 

0ε ;
 






  (4a,b) 
 

 The plastic multiplier   can be positive only if the current stress point lies on the 
limit surface ( q =0). For von Mises’ materials, this establishes that the deformation 
process is isochoric, i.e. strain rates obey the condition 
 

0      x y z  (5) 
which can be written as 

 1 1 0 1 0 00 χχ ε ; tt   (6) 

Then the power of dissipation ( )D̂ &e  can be formulated as a function of strain rates as [6] 

 
1

2222220 22
3 x

ˆ
zyzxyzyxD


                 for 3D (7a) 

The kinematic theorem of limit analysis can now be cast in the well known format 

  



  min ˆ dD  (8a) 

                                    
subject to

 
 

    
0   V, uε u   us in on

 
(8b) 

       
0 Vχ ε t in

 
(8c) 

    
1


   F u f u 

f

t t

V
dV d

 
(8d) 

 
The problem (8) is a convenient basis 

for finite element computations. Its 
objective function (8a) is convex; the 
compatibility conditions are accounted for 
automatically by a displacement model; the 
incompress-ibility constraint (8c) is linear 
and can be eliminated, thus reducing the 
number of free variables; Eq (8d) is easily 

dealt with by introducing a single 
Lagrangean multiplier, so that the problem 
is brought to the search of the minimum of 
an unconstrained convex function. 

3. A brief on the formulation of NS-
FEM 

 In NS-FEM, using the mesh of 
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elements we further discretize the problem 
domain into smoothing domains based on 
nodes of the elements such that 

 
1

nN k
k 

    and    i j   , i j , in 
which Nn is the total number of nodes of all 
elements in the entire problem domain. 
Moreover, NS-FEM shape functions are 
identical to those in the FEM. However, 
instead of using compatible strains, the 

NS-FEM uses strains smoothed over local 
smoothing domains. These local smoothing 
domains are constructed based on nodes of 
elements as shown in Error! Reference 
source not found.. A strain smoothing 
formulation is now defined by the 
following operation: 

 

 
Figure 1. Three-node triangular mesh and smoothing domains 

   ( ) ( )d ( ) ( )dε ε x x u x x
 

       k k
hh

s kkk    (9
) 

 
where ( ) x is a given smoothing function that satisfies at least unity property  

  ( )d 1x


   k  (10) 
 
and in this work ( ) x is assumed to be a step function given by  

   

 
1( )  

0
xx
x







 



kk

k
V  (11) 

where  kV  is the ‘volume’ of the smoothing domain   k  and is calculated by 

 
 

 
 

1

1d
4

k
e

k

N
k j

e
j

VV




     in which  k
eN  is the number of elements connected to the node k 

and   j
eV  is the volume of the jth element around the node k. 

 In term of nodal displacement vectors dI, the smoothing strains kε can be written as 

 
 

ε B d


 
k

n

I Ik k
I N

x   
(12) 

41Ho Chi Minh City Open University Journal of Science–No.4(1) 2014



 
    

where  k
nN   is the number of nodes that are directly connected to node k, and  BI kx is 

the smoothed strain-displacement matrix on  k the domain which is calculated 
numerically by an assembly process similarly as in the standard FEM  

   
 

1

1 1
4

k
eN j e

e jI k k j
x V

V

 
 
 


 B B  (13) 

 

in which matrix BB


 
j

e

e
j I

I S
is the 

compatible strain-displacement matrix for 
the jth element around the node k. It is 
assembled from the compatible strain-
displacement matrices  B xI of nodes in the 

set j
eS  which contains nnel nodes of the jth 

linear element. Since linear shape functions 
are used, the entries of Be

j  are constants 

and therefore of  B I kx are also constants.   

 
 The smoothed domain stiffness matrix is then calculated by 

 
 

 
k

kk TT
I I I Id V


 K B CB B CB  (14) 

 
where C is the matrix of material 

constants, note that due to the smoothed 
strains εk  in Eq. 
(Error! Reference source not found.) are 
constants, the stresses σ = Cεk k  are also 

constants in the smoothing domain   k . 

4. Solution procedure with second 
order cone programming 

 If  the von Mises failure criterion is 
employed, the plastic dissipation, i.e. the 
objective function can now be written in 
the form: 

 
0

1
ρ

nN
k k

i
k

V 


  (15) 

where ρk  are additional variables defined by 

1

2

3

4

5

6

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 01
0 0 0 1 0 03
0 0 0 0 1 0
0 0 0 0 0 1

ρ ε








   
   
   
   

    
   
   
   

     


k k  (16) 

 Introducing auxiliary variables t1, t2, . . . , nNt , the optimization problem becomes: 
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min  
0

1
 




nN

k
k

k
V t  (17a) 

s.t. 
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0
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ρ
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(17b) 

(17c) 

(17d) 

(17e) 

(17f) 

 The third constraint, Eq.(17d), ensures that the incompressibility condition must 
be satisfied on all smoothing domains  

k  and Dv has the form 

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

D εv k

 
 
 
 
 
 
 
 
  

   (18) 

 
5. Numerical examples 
In this section, the performance of the 

proposed solution procedure is illustrated 
via a benchmark problem in which 
analytical and other numerical solutions 
are available.  

The example deals with a square 
plate with a central circular hole with 
constant modulus of elasticity and 
thickness under independently varying 
pressure loads p1 and p2 as in Error! 
Reference source not found.(a). The limit 
load factor was obtained analytically by 
Gaydon and McCrum Error! Reference 
source not found.] using plane stress 
hypothesis and von Mises yield criterion. 
Numerical limit analyses were also 
investigated by some authors, e.g. Garcea 
et al. Error! Reference source not 
found.] for the case of D/L=0.2 and 
Heitzer Error! Reference source not 

found.], Vu Error! Reference source not 
found.], for different ratios of D/L to 
evaluate the elastic–plastic behaviour of 
the structure. Moreover, H. Nguyen-Xuan 
Error! Reference source not found.] has 
applied the NS-FEM to limit analysis 
problems of 3D structures using Koiter’s 
theorem, in which fictitious elastic stresses 
are assumed. However, in this paper the 
NS-FEM is formulated associated with 
Markov’s kinematic theorem, and the 
resulting optimization problem is cast in 
the form of a second-order cone 
programming problem so that a large-scale 
problem can be solved efficiently Error! 
Reference source not found.]. Owing to 
its symmetry, only the upper-right quarter 
of the plate is modeled, see Error! 
Reference source not found.(b). 
Symmetry conditions are enforced on the 
left and bottom edges. 
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Figure 2. A square plate with a circular hole:  

(a) geometry and loading, (b) finite element mesh 
 
 The procedure is applied to the case 

of D/L=0.2.!Unexpected End of Formula 
compares the best solutions obtained using 
the present method with solutions obtained 
previously by different limit analysis 
approaches (kinematic or static) using 

other FEM and meshfree models for case. 
It can be seen that the NS-FEM solutions  
agree well with published ones. Specially, 
NS-FEM can effectively alleviate 
volumetric locking for 3D problem. 

Table 1. Collapse load multiplier with different loading cases and compared with 
previously obtained solutions D/L=0.2 

Loading cases 
Approach  Authors 

p2 = p1 p2 = p1/2 p2 = 0 
Silva and Antaoda Error! 
Reference source not found.] 

0.899 0.915 0.807 

Le et al. Error! Reference source 
not found.] 

0.895 0.911 0.801 

ES-FEM Error! Reference source 
not found.] 

0.896 0.911 0.801 

NS-FEM-T3 0.894 0.911 0.802 

Kinematic 
(upper bound) 

NS-FEM-T4  0.893 0.917 0.807 
     
Mixed formulation Zouain et al. Error! Reference 

source not found.] 
0.894 0.911 0.803 

Analytical solution Gaydon and McCrum Error! 
Reference source not found.] 

– – 0.800 

     
Chen et al. Error! Reference 

source not found.] 
0.874 0.899 0.798 

Gross-Weege Error! Reference 
source not found.] 

0.882 0.891 0.782 

Static 
(lower bound) 

Belytschko ReferenceError! – – 0.780 
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source not found.] 
Nguyen-Dang and Palgen Error! 

Reference source not found.] 
0.704 – 0.564 

 
6. Conclusion 

In the paper, NS-FEM associated with 
second-order cone programming has been 
further investigated in efforts to provide 
more robust and effcient procedures and 
overcome drawbacks when applying to 
limit analysis. The extension of the NS-

FEM formulation to the limit and of 3D 
problems is straightforward. It can alleviate 
volumetric locking for 3D problem 
effectively. In addition, limitation of large-
scale problems in engineering practice can 
no longer difficult because of associating 
with the MOSEK software package. 
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