
Introduction
The finite element method (FEM) 

is well known as the most powerful 
and reliable tool for computation and 
simulation of all engineering problems. 
In the standard FEM, a mesh generation 
needs to be used to transform the physics 
domain into an analysis-suitable geometry, 
i.e. a finite element mesh with the simple 
shapes (e.g. straight line; triangles, 
quadrilaterals; tetrahedral, hexahedral, etc, 
for 1D, 2D, 3D problems, respectively). 
Such finite element (FE) meshes are only 
an approximation to the original geometry 
and they lead to the geometrical error 
with curved domains. To overcome this 
disadvantage, Hughes et al. have recently 

proposed a novel computational method of so-
called Isogeometric Analysis (Hughes, 2005). 

The IGA uses basis functions which 
exactly describe the geometry to the 
approximate solutions. Being different 
from basis functions of the standard 
FEM based on Lagrange polynomial, 
isogeometric approach utilizes more 
general basis functions such as B-splines 
or Non-Uniform Rational B-splines 
(NURBS) that are common in Computer 
Aided Design (CAD) (Piegl,1997). The 
exact geometry is therefore maintained at 
the coarsest level of discretization and the 
re-meshing is performed on this coarsest 
level without any communication with 
CAD geometry. Isogeometric analysis has 
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been widely applied to various practical 
problems such as linear and non-linear 
elasticity and plasticity behavior (Lguedj, 
2008), structural vibrations (Cottrell, 
2008), the plates and shells (Beirão da 
Veiga, 2012; Benson, 2010; Kiendl, 2010; 
Thai, 2012), structural shape optimization 
(Wall, 2008), and further improved 
NURBS approaches (Nguyen-Thanh, 
2011), etc. 

Beams – the most famous and 
simplest structures are widely used in civil 
and aerospace engineering. Among various 
beam theories, Euler - Bernoulli beam 
theory - EBT (also called as engineer’s 
beam theory) was firstly established around 
in 1750 by Leonard Euler and Daniel 
Bernoulli with assumption that plane 
sections remain plane and perpendicular 
to the neutral axis during bending. In 
EBT, C1-continuity of the approximation 
fields across element boundaries is 
needed and cubic Hermitian basis 
functions are therefore used. As a result, 
the conforming FE approximation has in 
general two degrees of freedom per each 
node: deflection and slope. In this paper, 
we study numerically Euler–Bernoulli 
beams using B-spline-based isogeometric 
approach combined with a rotation-free 
technique (Cottrell, 2006; Benson, 2012). 
The method uses only deflection degrees 

freedom (without rotational degrees of 
freedom). It is then applied for nonlinear 
and dynamic analysis of thin beams.

The paper is outlined as follows: in the 
next section the beam formulation based 
on B-spline basis function is presented. 
Section 3 devotes two benchmark 
numerical examples: geometric nonlinear 
analysis considering von Kármán strain 
for cantilever beam and dynamic analysis 
of simply supported beam undergoing 
harmonic excited force. Section 4 closes 
some remarking conclusions.

A novel beam formulation based 
B-spline basis function

Brief on the Euler – Bernoulli beam 
theory 

In the Euler- Bernoulli theory of an 
isotropic beam, the von Kármán strains 
consist of an axial strain defined as (Reddy, 
2004):
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where w  is the transverse deflection of the 
mid-plan of the beam; and all other strains 
are zeros. 

Due to the assumption small strains, 
the Cauchy stress tensor will be used 
here. So the virtual strain energy can be 
expressed as:
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where material components are defined as
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The virtual work done by the externally applied load

                    d
L
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(4)

where q  is the distributed transverse load (measured per unit length).
Kinetic energy is given as:
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where , Sρ are the mass density and 
area of cross section, respectively.

The Hamilton’s principle for an 
elastic body (Reddy, 2004) forms:
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Integrating by parts of Eq. (6) yields
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B-spline basis function
To build a B-spline in one dimension, 

we need to define two things. The first 
one is two positive integers: a polynomial 
degree p and number of control point 

n. And the second one is a knot vector 
 which is a non-

decreasing sequence of parameter values

iξ  with 1,...i n p= + . Where iξ ∈R called ith 
knot lies in the parametric space. If the 
first and the last knots are repeated p+1 
times, the knot vector is called open. A 
B-spline basis function is C∞ continuous 
inside a knot span and Cp-1 continuous at 
a single knot.

The B-spline basis functions 
Ni,p(ξ ) are defined recursively on the 
corresponding knot vector start with order 
p = 0 as follows:

( ) 1
,0

1
0 otherwise

i i
i

if
N

ξ ξ ξ
ξ +≤ < 

= 
 

and for 1p ≥ :  ( ) ( ) ( )1
, , 1 1, 1

11

 i pi
i p i p i p

ii p ii p

NNN
ξξξ ξ

ξξξ
ξ ξ ξ ξ

+ +
− + −

+ ++ +

−−
= +

− −   
                    (8)

Figure 1 illustrates a set of one-
dimensional linear, quadratic, cubic and 
quartic B-spline basis functions according to 
open uniform knot vectors  Ξ={0,0,0.5,1,1}, 
Ξ={0,0,0,0.5,1,1,1}, Ξ={0,0,0,0,0.5,1,1,1,1}, 

Ξ={0,0,0,0,0,0.5,1,1,1,1,1}, respectively. 
It is clear that the basis functions are Cp-1 
continuous. Thus, as 2p ≥ , the present 
approach always satisfies C1-requirement in 
approximate formulations based on the EBT.

Figure 1. Some B-spline basis functions: linear, quadratic, cubic and quartic functions.

p=1 

p = 2

p = 4p = 3
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approximatebasedB-spline
formulation 

In the isogeometric analysis, the 
B-spline basis functions are used to describe 
the geometry and the deflection field:

( ) ( )
n

h
A A
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(9)

where Aw  is the deflection degree of 
freedom associated to control point A.

Substituting Eqs. (2), (4), (9) into 
Eq.(7) and noting that wδ  is arbitrary for 
any [ ]1 2,t t t∈  thus, the Hamilton’s principle 
can be rewritten as:

( )l nl+ + =Mw K K w F 	 (10)

where w  is the vector of nodal degrees of 
freedom and stiffness matrix, mass matrix 
and force vector are defined, respectively:
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Numerical results
Elastostatic analysis 
Let consider firstly a cantilever 

beam shown in Figure 2a, subjected 
to uniformly distributed load. In this 
example, the parameters are taken as 
EI=1, the length of beam L=1 and q=5. 
Because the beam involves no motion 
and the applied forces are independent 

of time, the inertia forces are negligible. 
Hence, Eq. (10) reduces to

( )l nl+ =K K w F  	 (12)
It can be seen that, the stiffness matrix 

in Eq. (12) associated with only deflection 
variables. As a result, the size of stiffness 
matrix is reduced significantly. This is 
more benefit for solving the nonlinear 
problem through the Newton-Raphson 
iteration procedure (Reddy, 2004).

Figure 2. Cantilever beam: (a) model; (b) meshing.

(a)

(b)

Figure 2b illustrates quadratic 
elements with each DOF per each control 
point (in circle). The displacement of 
the cantilever beam is plotted in Figure 
3. As seen, the obtained result is in very 

excellent agreement with analytical 
one. As considering the nonlinear strain 
component in Eq. (1), the stiffness matrix 
is stiffer with the additional Knl term. It 
makes therefore the deflection is reduced. 
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Figure 4 shows the variation of 
the deflection w  at the free end of beam 
according to level of load. It can be 
recognized that the geometrically nonlinear 
results produce a stiffer reaction of the 

beam compared with the linear results. 
The stiffer behavior is explained by the 
additionally induced membrane stresses 
near the clamping point, which cannot be 
predicted by any linear theory.

Figure 3. The deflection of cantilever beam

Figure 4. The relationship between displacement at x=L and applied load

Force vibration analysis 
In this section, we study a pined-

pined thin beam (see Figure 5a) with the 
parameters given in the previous example. 

By removing the nonlinear part in Eq. (10), 
the dynamic equation of Euler-Bernoulli 
beam can be written as:

l+ =Mw K w F     (13)
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By removing the nonlinear part in Eq. (10), 
the dynamic equation of Euler-Bernoulli 
beam can be written as:

l+ =Mw K w F     (13)

Figure 5. Pinned-pinned beam: (a) model; (b) meshing

(a)

(b)

If the external force is zero, Eq. (13) 
becomes eigenvalue problem which finds 
the natural frequency ω ∈ RR  satisfying the 
general free-vibration equation form

2 0l ω− =K M    	 (14)

The first six frequencies of pined-
pined thin beam are revealed in Figure 
6. The general observations are: (1) with 
the same of degree of freedom (DOFs), 
the Hermitian element using cubic shape 
functions (Young, 2000) gains slightly 

more accurate solution than that of the 
quadratic element of IGA and worse 
than that of the cubic element with 7 
subdivisions depicted as Figure 5b. (2) 
the present method can provide accurately 
high frequencies while using only coarse 
mesh with few DOFs. Figure 7 plots the 
first six mode shapes. It can be seen that 
the shapes of mode described through 
the control points in circle and are very 
smoothing. 

Figure 6. The first six frequencies ω  of the pined-pined thin beam 
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Figure 7. The first six mode shapes of the pined-pined beam

Now, let us consider a harmonic force 
excitation sin(20 )P t=  applied at the middle 
of the beam. This problem is solved using 
the Newmark method (Chopra, 2007) 
with time step 310t −∆ = s. Figure 8 reveals 

the deflection at x=L/2 of the pined-pined 
thin beam. It is seen that solution of the 
cubic element is a good competitor to the 
Hermitian finite element.

Figure 8. Deflection at x=L/2 of the pined-pined beam subjected harmonic force 
excitation

Conclusion
In this work, we used B-spline basis 

functions to analyze the Euler–Bernoulli 
beam problems. The control variable 
of the isogeometric element is only 
deflection degrees of freedom. With a half 
reduction of total of DOFs compared with 

the Hermitian element, the present method 
obtains very excellent agreement results 
without increase of computational cost. In 
addition, the described mode shapes are very 
smoothing even though a few control points 
are used. It is thus very promising to model 
more complicated structures in practice.
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