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Introduction 
Limit analysis provides a direct tool 

for structural design and safety assessment 
of ductile structures containing of cracks, 
e.g. pressure vessels and reactors. 
Analytical upper-bound solutions of 2D 
cracked structures were originally reported 
by Hill [1], Ewing et al. [2, 3], in which 
slip-line method was employed to assume 
possible collapse mechanisms.  However, 
the analytical method is not applicable 
for complicated problems in engineering 
practice, for which an appropriate failure 
mechanism may not be presupposed in 
advance. Consequently, various numerical 
procedures based on finite elements and 
bound theorems have been developed by 

Yan [4] and Vu [5]. These methods, known 
as finite element limit analysis, do not 
require assumptions to be made about the 
mode of failure, and require only simple 
strength parameters. However, in these 
numerical procedures the finite element 
meshes need to match the geometry of 
the cracks or discontinuities and mesh 
refinement near a crack tip must be made 
in order to achieve accurate solutions. 

Recently, the extended finite element 
method (XFEM), which was originally 
proposed by Belytschko and Black [6], has 
been developed to overcome the above-
mentioned shortcomings. In this method, 
discontinuities are permitted to cross 
elements, and are often realised by the 
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level-set method. Therefore, it is relevant 
to investigate the performance of XFEM in 
the context of limit analysis of structures 
involving cracks or discontinuities. 

In this paper, we extends a numerical 
procedure for limit analysis based on 
extended finite element method (XFEM) 
and second-order cone programming 
(SOCP) to plane strain cracked 
structures. The displacement fields with 
discontinuities and strong singularity at 
crack tip are approximated by XFEM 
shape functions which includes Heaviside 
functions (for introducing discontinuities) 
and asymptotic functions near tip field 
(dealing with singularity). The second-
order cone programming (SOCP) is also 

combined with the XFEM based limit 
analysis problem so that engineering 
problem with a large number of variables 
can be solved using highly efficient primal-
dual interior point algorithms. Numerical 
examples are presented to demonstrate the 
effectiveness of the proposed method.

Brief of the XFEM
The key idea of XFEM is to add an 

enrichment function to the standard finite 
element basis approximation using the 
partition of unity concept [8]. The enriched 
basis shape functions are associated to 
additional degrees of freedom, and the 
displacement field can be represented as [7].
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where
N is the set of the standard finite element nodes,
Nc is the set of nodes whose support is entirely split by the crack (circled nodes in 

Figure 1),
fN is the set of nodes which contain the crack tip (square nodes in Figure 1),

( )iN x  is the shape function associated with node i,

iu , ja , α
Kb  are the displacement and enrichment nodal variables, respectively,

( )H x  is the modified Heaviside function which equal is 1 if  x is above the crack 
and -1 if x is under the crack,

( )αB x  is a basis that spans the near tip asymptotic field:

[ ]
2 2 2 2α
θ θ θ θθ θ =   

sin , cos , sin sin , cos sinr
                                     

(2)

Figure 1. An arbitrary crack placed on a mesh-enrichment strategy
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In order to derive the strain-
displacement matrix, it is convenient to 
rewrite the enriched approximation as 
follows:

( ) ( ) ( ) ( )ψ
∈ ∈

= +∑ ∑
c

h
i i j j

i N j N

u x N x u N x x a
     

(3)

Note that in Eq.(3), the interpolation 
property, i.e. ( )h

i iu x u= , is not valid. In 
order to retain this, the enriched part of  
Eq.(3) must be vanished at nodes. The 
following shifting is often made:
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                                                                          (4)

As a result, the finite element matrix 
B can be expressed as 

fem enrB= B B                                     (5)

where Bfem is the standard finite element 
matrix B, and in two dimensions B reads:
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and Benr is the enriched part of the finite 
element matrix B:
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Limit analysis based on XFEM 
and SOCP

Kinematic formulation
Let Ω denote the domain of a 

rigid-perfectly plastic body defined in a 
domain with a boundary Γ of continuous 
and discontinuous parts such that 

u tΓ = Γ Γ Γ  c  u tΓ Γ Γ = ∅ , c as shown 
in Figure 2. The body is subjected to body 
forces f and to surface tractions g on the 
free portion Γt  of  Γ .

Figure 2. Structural model

Introducing the kinematically 
admissible velocity fields u  and strain 
rates ε , the external work rate can be 
expressed in the linear form as

( )u f u g u
Ω Γ

= Ω + Γ∫ ∫  d d
t

T TF
           

(8)

The kinematic principle states that 
the minimum value of load multiplier 
λ  can be determined by the following 
mathematical programming (Martin [])

( )λ +

Ω
= Ω∫ min dD ε (a)
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where ( )D ε  is the plastic dissipation 
per unit domain and L is the differential 
operator
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Without loss in generality, the 
kinematically admissible fields u· and ɛ· can 
be normalized such that

( )u 1=F                                         (11)

Finally, the limit load multiplier 
can be obtained by solving the following 
optimisation problem (in normalised form)
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Although, there are many 
optimization techniques can be applied to 
solve the above problem. Unfortunately, 
the objective function in the associated 
optimization problem is not differentiable 
everywhere while powerful optimization 
algorithms require their gradients to be 
available everywhere. Various techniques 
have been proposed in the literature 
to overcome this singularity problem. 
These include linearization of the yield 
condition, regularization of the plastic 
dissipation function, and a direct iterative 
algorithm. Perhaps the SOCP is one of 
the most robust and efficient algorithms 
to overcome this difficulty because of 
efficient algorithms and implementations 
exist, and hence it is relevant to extend 
its use to our problem. Moreover, most 
commonly used yield criteria can be cast in 
the form of conic constraints, and therefore 

the plastic dissipation (objective function) 
can be formulated as conic constraints. 
In next section, a numerical procedure 
using SOCP in combination with XFEM 
is introduced to solve the limit analysis of 
cracked structures. 

XFEM discretization and solution 
procedure

The nature of limit state is 
characterized by localized plastic 
deformations, meaning that plastic 
deformation exists at some elements. 
However, in numerical solution procedure 
these localized region is not known a 
priori, and hence we assume plastic strain 
rates to be existing at all elements in the 
formulation. When the structure reaches 
to limit state, the optimal solution of the 
discretization optimization problem, 
the collapse mechanism is formed. 
Consequently the associated velocity field 
includes rigid and plastic regions can be 
determined. Therefore, if the problem 
variable fields are approximated using the 
XFEM, and the von Mises failure criterion 
is employed, the plastic dissipation (12) 
can be expressed as
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where
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for plane stress3
0 0 1
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1 1 0 for plane strain
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D

and 0s  is the yield stress, ne and NG are 
the number of elements and total Gauss 
points, respectively.

The problem (12)  is a non-linear 
optimization problem with equality 
constraints. In fact, the objective function 

of this problem, i.e. the plastic dissipation, 
can be formulated in the form of a sum of 
norm as

0
1
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where ρi  are additional variables defined by
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to a reduction in the available number of 
degrees of freedom, and therefore the true 
velocity field cannot be exactly described. 
To overcome such a problem, in this paper 
reduced integration technique [10] will be 
used.

Numerical examples
In this section, the performance of the 

proposed solution procedure is illustrated 
via various benchmark problems in which 
analytical and other numerical solutions 
are available. 

 Simple-edge notched plate problem
The first example deals with a single-

edge cracked plate under tension, which is 
often used for fatigue-crack propagation 
tests. The problem geometry, loadings and 
finite element mesh are shown in Figure 3a.

Introducing auxiliary variables t1, t2, 
. . .tNG, optimization problem (12) can be 
cast as a SOCP problem:

0
1

λ σ+

=

= ∑min
NG

i i
i

w t
                      

(16)

Note that for plane strain problems, 
incompressibility conditions must be 
introduced in order to ensure that the 
plastic dissipation D is finite. Furthermore, 
to ensure that strict upper bound can be 
obtained, this condition has to be satisfied 
everywhere. However, when low-order 
finite elements are used, the condition leads 

Figure 3. Single-edge cracked plate under tension

(a) Geometry and loading (b) Element mesh
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Analytical solution of this problem 
was proposed by Ewing and Richards 
[3], where a slip-line method was used. In 

plane stress condition, the limit load factor 

defined by 
0

σλ σ= lim it can be computed as

	
(17)

2 for short-cracked plate x 1 )61 0.( 4λ = − ≤−x x  for short-cracked plate (x ≤ 0.146)	 (18)
where = ax b  and 

2
3γ =  .

In plane strain condition the limit load factor can be computed as
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for short-cracked plate (x ≤ 0.146)

Numerical solutions were also 
investigated by other authors e.g. Yan [4], 
Khoi [5] in which special elements is used 
to capture the singular strain field around 
crack tips. In our study, the full cracked 
plate is modelled with variation of NxM 

(number of nodes per short edge and length 
edge respectively) as shown in Figure 3b. 
Numerical results for different ratios a

b  
are shown in Figure 4 for both plane stress 
(PS) and plane strain (PD).

Figure 4. Limit load factor of single-edge cracked plate; PS – Plane stress;
PD – Plane strain

From the results, it can be observed 
that the present solution converges to the 
exact solution with the error less than 
2.5% for PS condition and 3.9% for PD 
condition. When compared with solution 
previously obtained in [5], very good 
agreements can be observed in both PS 

and PD conditions. For case 0 5= .a
b  with 

plane strain condition, the upper bound 
result with dual algorithm [5] 0 3729λ + = .
only error of 0.4% compared to the present 
solution. Although present solution is a 
little higher than the previous solutions, 
in the present procedure mesh generation 
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is simple and cracks are realised by 
means of level set method. Moreover, the 
underlying optimization problem is cast 

in a suitable form so that it can be solved 
using highly efficient primal-dual interior 
point algorithms.

Double-edge notched plate problem
Figure 5. Single-edge cracked plate under tension

               
Finally, the double-edge notched 

tensile plate is consider, as shown Figure 5. 
The problem was first given by Nagtegaal 
et al. [1] in order to illustrate the locking 

phenomena in strain problem. It has 
become a popular benchmark for various 
numerical models in the field of rigid-
plastic limit analysis. 

Figure 6. Collapse mechanisms and plastic dissipation distribution for
 

1
2=a

(a) Collapse mechanisms (b) Plastic dissipation distribution

Again taking advantages of the 
XFEM, the full cracked plate is modelled 
with variation of NxM. In order to shown 
the effectiveness of the present method, 
the obtained results will be compared 
with upper bound solutions [12, 13], 
lower bound solutions [12, 14, 15] and 
mixed solutions  [16, 17]. These methods 
do not allow discontinuities across 

elements or domains of influence, cracks 
must be recognized in advance and care 
must be made to generate mesh around 
the cracks and its tips. From Table 1, it 
can be observed from that the present 
solutions are generally in reasonably good 
agreement with those obtained previously. 
The plastic dissipation distribution for the 
case 1

2a =  are shown in Figure 6.
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Conclusion
A numerical limit analysis procedure 

that uses the extend finite element 
method (XFEM) and second-order cone 
programming (SOCP) has been proposed. 
Advantages of applying the XFEM to limit 
analysis of cracked structure problems can 
be drawn as follows:

(1) Numerical solutions of the XFEM 
are, in general, close to the exact solutions 
and show good agreement with numerical 

results available in the literature for plane 
strain condition.

(2) Numerical examples are given to 
demonstrate the efficiency of the present 
method. It is shown that the proposed 
procedure is able to solve large-scale 
problems in engineering practice.

Although only two-dimensional 
problems were considered, the presented 
method can be extended to tackle more 
complex structural configurations, subject 
to a variety of loading regimes.

Table 1. The limit load factor of the present method in comparison with those of other methods 
for the double-edge notched plate problem

Approach Author and methods a=1/3 a=1/2 a=2/3

Kinematic Ciria et al. [12] 1.1390

Le et al. [13] 0.9412 1.153 1.4097

XFEM (24x24) 0.9846 1.2198 1.4722

XFEM (48x48) 0.952 1.1747 1.4353

XFEM (96x96) 0.9373 1.1527 1.4094

Static Ciria et al. [12] 1.1315

Krabbenhoft and Damkilde [14] 1.1315

Tin-loi and Ngo [15] 0.947 1.166 1.434

Mixed solution Andersen [16] 0.9271 1.1366 1.3894

Christiansen and Andersen [17] 0.9276 1.1358 1.3884
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