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Introduction
Railway transportation is one 

of the key modes of travel today. The 
advancement in train technology leading 
to faster and faster trains is without doubt a 
positive development, which makes high-
speed rails (HSRs) more attractive as an 
alternative to other modes of transportation 
for long distance travel.

The HSR has been investigated as 
a track beam resting on a visco-elastic 
foundation subject to moving loads 
varying both in time and space. For 
example, as early as 1974, Timoshenko 
[1] derived the solutions for the dynamic 
analysis of a simply supported beam 
resting on a Winkler foundation subject 
to moving loads by means of the mode 
superposition method. Mathews [2] and 

Jazequel [3] studied the problem using 
Fourier Transformation Method (FTM). 
The FTM may give accurate solutions 
but becomes cumbersome when dealing 
with complicated coupled system, such 
as multi-degrees of freedom system with 
multiple contact points or where there are 
moving loads that involve acceleration/
deceleration. The Finite Element Method 
(FEM) is well established and known to 
solve many complicated problems. Many 
researchers, such as Filho [4], Hino [5] 
and Olsson [6], have adopted the FEM 
to determine the dynamic response of 
simply supported beams subject to moving 
constant loads. 

Various researchers have investigated 
the problem of loads travelling at non-
uniform velocities. Suzuki [7] employed 
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the energy method to derive the governing 
equation of a finite beam subject to 
traveling loads involving acceleration. 
Involved integrations are carried out using 
Fresnel integrals and analytical solutions 
are presented. The vibration response of 
a train-track-foundation system resulting 
from a vehicle travelling at variable 
velocities has been investigated by Yadav 
[8]. Analytical solutions were obtained 
and the response characteristics of the 
system were examined. Karlstrom [9] 
used an analytical approach to investigate 
ground vibrations due to accelerating and 
decelerating trains. The solution is based 
on Fourier transforms in time and along 
the track. 

In dealing with moving load 
problems, the FEM encounters difficulty 
when the moving load approaches the 
boundary of the finite domain and travels 
beyond the boundary. These difficulties 
can be overcome by employing a large 
enough domain size but at the expense of 
significant increase in computational time. 
In an attempt to overcome the complication 
encountered by FEM, Krenk et al. [10] 
proposed the use of FEM in convected 
coordinates to obtain the response of an 
elastic half-space subject to a moving 
load. The key advantage enjoyed by this 
approach is its ability to overcome the 
problem due to the moving load travelling 
over a finite domain. Andersen et al. [11] 
gave an FEM formulation for the problem 
of a beam on a Kelvin foundation subject 
to a harmonic moving load. Koh et al. [12] 
adopted the idea of convected coordinates 
for solving train-track problems, and 
named the numerical algorithm as moving 
element method (MEM). The method was 
subsequently applied to the analysis of in-
plane dynamic response of annular disk 
[13] and moving loads on a viscoelastic 
half space [14]. Recently, Ang et al. 
[15] applied the MEM to investigate the 

“jumping wheel” phenomenon in high-
speed train motion at constant velocity 
over a transition region where there is a 
sudden change of foundation stiffness. 
The phenomenon occurs when there is 
momentary loss of contact between train 
wheel and track. The effects of various key 
parameters such as speed of train, degree 
of track irregularity and degree of change 
of foundation stiffness at the transition 
region were examined.

This paper is concerned with a 
computational study of the dynamic 
response of HSR systems moving at 
constant and varying speeds using the 
MEM. A new formulation for calculating 
the structural matrices of the moving 
element is proposed. Parametric study 
is performed to understand the effects 
of various factors on the response of the 
train-track system, such as the severity of 
railhead roughness and the wheel load. 
In particular, the effect of above factors 
on the occurrence of the jumping wheel 
phenomenon is considered. As the dynamic 
response of the track depends significantly 
on the contact force between wheel and track, 
this study is also concerned with examining 
the suitability of two contact models. 

Formulation and methodology
The HSR system comprises of a train 

traversing over a rail beam in the positive 
x -direction. The origin of the fixed x
-axis is arbitrarily located along the beam. 
However, for convenience, its origin is 
taken such that the train is at 0x =  when 

0t = . The velocity and acceleration 
of the train at any instant are v and a, 
respectively. The railhead is assumed to 
have some imperfections resulting in the 
so-called “track irregularity”. The moving 
sprung-mass model, as shown in Figure 
1, is employed to model the train. The 
topmost mass 1m  represents the car body 
where the passengers are. The car body is 
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supported by the bogie of mass 2m  through 
a secondary suspension system modeled 
by the spring 1k  and dashpot 1c . The 
bogie is in turn supported by the wheel-
axle system of mass 3m  through a primary 
suspension system modeled by the spring 

2k  and dashpot 2c . The contact between 
the wheel and rail beam is modeled by 

the spring 3k  and dashpot 3c . The rail 
beam rests on a viscoelastic foundation 
comprising of vertical springs k  and 
dashpots c. The vertical displacement 
of the track is denoted by y , while the 
vertical displacements of the car body, 
bogie and wheel-axle are denoted by u1,
u2  and u3 , respectively.

Figure 1. Moving sprung-mass model by Koh et al. [12]

The governing equation of motion of 
the rail beam, which is modeled as an Euler-
Bernoulli beam resting on a viscoelastic 
foundation subject to a moving train load, 
is given by

4 2

4 2 ( )c
y y yEI m c ky F x s

ttx
δ∂ ∂ ∂

−+ =++
∂∂∂    

(1)

where E , I  and m  are the Young’s 
modulus, second moment of inertia, 
mass per unit length of the rail beam, 
respectively; t  denotes time; cF  the 
dynamic contact force exerted between the 
wheel and track; s  the distance traveled 

by the train at any instant t ; and δ  the 
Dirac-delta function.

The moving element method was 
first proposed with the idea of attaching 
the origin of the spatial coordinates 
system to the applied point of the moving 
load. Figure 2 shows a travelling r-axis 
moving at the same speed as the moving 
load. The relationship between the moving 
coordinate r  and the fixed coordinate x  is 
given by 

      r x s= −                                            (2)
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By adopting Galerkin’s approach and 
procedure of writing the weak form in term 
of the displacement field, the formulation 

for general mass eM , damping eC  and 
stiffness eK  matrices of the moving 
element can be proposed:

Figure 2. Coordinate systems for moving load problem

In view of Eq. (3), the governing equation in Eq. (1) may be rewritten as
4 2 2 2

2
4 2 22 ( )c
y y y y y y yEI m v v a c v ky F r

tr tr tr rr
δ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + =+ −+−−+   ∂∂ ∂∂ ∂∂ ∂∂                    
(3)

( )

T

0

T T

0 0

T 2 T T T

0 0 0 0

d

dd2

d ddd

L

e

L L

e r

L L L L

e rr rr rr r

m r

mv r c r

EI r mv r ma cv r k r

=

= − +

+− += +

∫
∫ ∫

∫ ∫∫ ∫

,

, , , ,

M N N 

C N N  N N 

K N N  N N  N N  N N 
         

(4)

where ( ),r
 denotes partial derivative with 

respect to r  and ( ),rr
 denotes second 

partial derivative with respect to r. For 
beam elements, it is common to use the 

shape function N based on Hermitian 
cubic polynomials.

Considering the special case in which 
the train traverses at a constant velocity V , 
i.e. a = 0, v V= , Eq. (4) reduces to
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(5)

It can be seen that the element mass, 
damping and stiffness matrices derived in 
Eq. (5) are identical to the matrices derived 
by Koh et al. [12]. 

In general, the wheel contact force 

cF  may be written as

3 3cF c y k y= ∆ + ∆                             (6)

where the overdot operator denotes 
differentiation with respect to time and 

y∆  the indentation at the contact surface 
which can be expressed as

3r ty y y u∆ = + −                                (7)

in which ry  and 3u  denote the 
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displacements of the rail and wheel, 
respectively, and ty  the magnitude of the 
track irregularity at the contact point. Note 
that track irregularity is a major source of 
the dynamic excitation. According to the 
recommendation by Nielsen [16], the track 
irregularity profile can be written in terms 
of a sinusoidal function as follows

2sint t
t

xy a π
λ

= −
                            

(8)

where ta  and tλ  denote the amplitude 
and wavelength of the track irregularity, 
respectively.

As the dynamic response of the train-
track system depends significantly on the 
accuracy in modeling the contact between 
the wheel and track, this study will evaluate 
two contact models. In these models, Hertz 
contact theory [17] is employed to account 
for the nonlinear contact force cF  between 
the wheel and rail as follows

where
 

3
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Hc
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in which HK  denotes the Hertzian 
spring constant; wheelR  and railprofR  the radii 
of the wheel and railhead, respectively, 
and υ  the Poisson’s ratio of the material.

To avoid high computational cost and 
complexity of the nonlinear contact problem, 
many researchers have adopted a simplified 
approach based on a linearized Hertz contact 
model in which cF  is given by 

0
00

L
c

K y for y
F

for y
∆ ∆ ≥

=  ∆ <            (11)

where LK  is the linearized Hertzian 
spring constant [1] computed as follows

3
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(12)

in which it is assumed that the 
reaction force at the contact point equals  
to the self-weight of the upper structure W  
of the train-track system [17].

The governing equations for the 
vehicle model are

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
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2 2 2 2 3 2 2 3 1 1 2 1 1 2 2
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    

                        

(13)

where g  denotes gravitational acceleration. 
Upon combining Eq. (13) with the 
governing equations for the rail beam given 
in Eq. (3), the equation of motion for the 
train-track system may be written as

Mz + Cz + Kz = P                          (14)

where z , z , z  denote the global 
acceleration, velocity and displacement 
vectors of the train-track system, 
respectively; M , C  and K  the global 
mass, damping and stiffness matrices, 

respectively; and P  the global load vector. 
The above dynamic equation can be solved 
by any direct integration methods such as 
Newmark-b method [18]. 

Numerical results
To verify the accuracy of the 

proposed MEM approach in obtaining 
the dynamic response of a high-speed rail 
(HSR) considering variable train velocity, 
the present solutions are compared against 
solutions obtained by Koh et al. [12] using 
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the so-called ‘cut-and-paste’ FEM. The 
latter involves updating the force and 
displacement vectors in accordance with 

the position of the vehicle while keeping 
the structure mass, damping and stiffness 
matrices constant.

 Table 1. Parameters for track-foundation model

Parameter Value Parameter Value

Flexural stiffness 6.12×106 N m2 Stiffness of foundation 1×107 N/m2 

Track section UIC 60 (60 E1) Damping ratio 0.1

For the purpose of comparison only, 
the same train speed profile adopted by 
Koh et al. [12] is employed. This speed 
profile is shown in Figure 3 where it can 
be seen that there are 3 phases of travel. 
The initial phase considers the train to 
be moving at a constant acceleration of 
travel and reaching a maximum speed 
of 20 m/s after 2 s. This is followed 
by the train travelling at the maximum 
constant speed for another 2 s during 
the second phase. In the final phase, the 
train decelerates at a constant magnitude 
to come to a complete halt after another 
2 s of travel. Values of parameters related 

to the properties of track and foundation 
are summarized in Table 1 [12]. Results 
obtained using the proposed method are 
found to be in excellent agreement with 
those obtained by the ‘cut-and-paste’ 
FEM. Figure 4 shows the displacement 
time history of the wheel obtained by the 
two methods. In view there is virtually no 
visible difference in the plots obtained by 
both methods, no other comparison plots 
are thus presented. Note that the ‘cut-and 
paste’ FEM approach requires that all the 
finite elements are identical in length in 
order for the ‘cut’ and ‘paste’ operations to 
work properly.

Figure 3. Profile of train speed for comparison purpose
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In the following sections, results 
from the study of HSR using the proposed 
MEM approach are presented. The 
case studies the response of high-speed 
train moving over a uniform Winkler 
foundation at constant speed. The effects 
of track irregularity and wheel load on the 
dynamic response of train-track system 
will be investigated using the Hertz 
nonlinear and linearized contact models. 
In the second case, the response of train-
track system moving at varying speed will 
be investigated. The aim of this study is to 
determine the effects of track irregularity 
and wheel load on the occurrence of 
the jumping wheel phenomenon and 
dynamic response of the system during the 
accelerating or decelerating phases.

Case 1: Train travels at constant speed
The MEM model adopted in the study 

comprises of a truncated railway track of 
50 m length discretized non-uniformly 
with elements ranging from a coarse 1 
m to a more refined 0.1 m size. Note that 
refined element sizes are employed in the 
vicinity of the moving train load in order to 

capture accurately the maximum response 
of the train-track system. The equations 
of motion are solved using Newmark’s 
constant acceleration method employing a 
time step of 0.0005s. This small time step 
size is necessary in view of the inherent 
high natural frequency of the train-track 
system. Values of parameters related to 
the properties of track and foundation are 
summarized in Table 1 [12]. In analyses 
involving the Hertz nonlinear contact 
model, Newton-Raphson’s method [18] is 
employed to solve the resulting nonlinear 
equations of motion. Note that the radii of 
the wheel wheelR , railhead railprofR  and the 
Poisson’s ratio of the wheel/rail material 
υ  used in determining the nonlinear and 
linearized Hertz spring constants are 
taken to be 460 mm, 300 mm and 0.3, 
respectively. The wavelength of all track 
irregularities considered is taken to be 0.5 
m. In reality, there is a varying range of 
wheel loads. Typical passenger vehicles 
range from about 40 to 60 kN while loaded 
vehicles have wheel loads in excess of 
130 kN. Therefore, two wheel loads are 

Figure 4. Comparison of wheel displacements between present study
and Koh et al. (2003)
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considered in the calculations, W = 41 kN 
for a lightest load [12] and 81 kN for an 
average passenger vehicle. 

Figure 5, Figure 6 and Figure 7 show 
the variation of dynamic amplification 
factor (DAF) in wheel-rail contact force 
against track irregularity amplitude for 
various train speeds typically associated 
with today’s HSR travels. All analyses 
are carried out twice, each using the 
nonlinear and linearized contact models. 
Note that DAF is defined as the ratio of 
the maximum dynamic contact force to the 
static wheel load which is the sum of the 
self-weights of car body, bogie and wheel-
set. For the perfectly smooth ( 0ta =  mm) 
track, the DAF is found be 1. It means that 
the linearized contact spring properties 
computed in Eq. [12] according to the static 
wheel load condition [17] can be used. As 
to be expected, it can be seen that increasing 
amplitude of track irregularity and train 
speed has the effect of increasing the DAF. 
It also can be found that the DAF obtained 
using the linear contact model were found 
to agree well with those obtained by the 
nonlinear contact model at low vehicle 
speeds and small track irregularities. 
The well agreement also can be found at 

higher speeds when the amplitudes are 
smaller than 0.7 mm ( 70v =  m/s) and 0.4 
mm ( 90v =  m/s). However, the difference 
between the DAFs given by the two 
contact models is no longer negligible at 
relatively high speeds and/or where there 
are significant track irregularities, i.e. the 
amplitudes are larger than 0.7 mm and 0.4 
mm for train speed 70 m/s and 90 m/s, 
respectively. Therefore, the response of 
train-track system strongly depends on 
the irregularity amplitude and train speed. 
Also, the simpler linearized contact model 
is not suitable to account for the wheel-rail 
interaction when two above factors are not 
considered to be small enough. 

These figures also show the effect 
of wheel load on the DAF of HSRs when 
increasing the track irregularity amplitude. 
It can be found that the lighter the wheel 
load is, the larger the DAF is. On physical 
nature, it is not surprising that the vibration 
of structure is large when the mass is small. 
Also, the DAF is found to be nearly 1.0 
when the irregularity amplitudes are small 
than 0.1 mm for all cases. As the amplitude 
increases, the DAF is noted to increase 
rapidly with increasing train speed.
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Figure 5. Effect of wheel load, track irregularity amplitude
on the DAF (train speed is 50 m/s)

Figure 6. Effect of wheel load, track irregularity amplitude
on the DAF (train speed is 70 m/s)
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Figure 7. Effect of wheel load, track irregularity amplitude
on the DAF (train speed is 90 m/s)

Moreover, the difference between two 
contact models also depends on the wheel 
load. Excellent agreement can be found at 
low vehicle speeds and small irregularity 
amplitudes. For higher train speed, the 
lighter the wheel load is, the larger the 
difference is. At low train speed, it can be 
seen that well agreements between two 
contact models are given in Figure 5. At 
higher train speed, the difference between 
two contact models depends strongly on 
track irregularity amplitude and wheel 
load. For lighter wheel load 41 kN, the 
difference between the DAFs given by the 
two contact models is larger than the one 
at higher wheel load for track irregularity 
amplitudes are larger than 0.7 mm. More 
details are given in Figure 6 and Figure 
7. Also, at higher train speed and larger 
wheel load 81 kN, it can be seen that large 
difference between two contact models 
occurs at irregularity amplitudes 1.6 mm 

and 1.3 mm for train speed 70 m/s and 90 
m/s, respectively.

Case 2: Train travels at varying speed
The proposed model adopted in the 

study comprises of a truncated railway track 
of 50 m length uniformly discretized into 
250 moving finite elements. Using a time 
step of 0.0005s which is smaller than the 
recommended one-tenth the natural period 
of the rail beam on the Winkler foundation 
for a good compromise between accuracy 
of results and required computational 
effort, the equations of motion are solved 
using Newmark’s constant acceleration 
method. Values of parameters related to 
the properties of track and foundation are 
summarized in Table 1 [12]. The Hertz 
nonlinear contact model is employed in this 
study. Solving the nonlinearity of contact 
equation, Newton-Raphson’s method [18] 
is employed. Typical vehicle speed profile, 
as shown in Figure 8, is considered. 
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Figure 9 shows the effect of track 
irregularity amplitude and wheel load on 
the DAF in contact force, respectively. As 
the amplitude increases, the DAF is noted 
to increase rapidly with lighter wheel 
load, but the DAF almost do not change 
when wheel load is large. Note that the 
DAF is similar for all cases when the 
track irregularity amplitude is smooth. It 
is also interesting that the DAFs during the 
accelerating or and decelerating phases are 

always larger than ones during constant 
phase. Moreover, it can be found that the 
lighter the wheel load is, the larger the DAF 
is. On physical nature, it is not surprising 
when the vibration of structure is large 
because of the small mass. Clearly, the 
effect of the track irregularity and wheel 
load is significant on the design of the 
high-speed rail system when train travels 
at varying speed.

Figure 8. Profile of train speed

Figure 9. Effect of wheel load and track irregularity amplitude to DAF 
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As aforementioned, the contact 
force between the wheel and rail strongly 
depends on track irregularity and wheel 
load. Therefore, these factors will also 
affect the jumping wheel phenomenon 
where there is the loss of contact between 
the wheel and rail. Using various train 
speeds, track irregularity amplitudes and 

wheel loads, Table 2 shows the occurrence 
or non-occurrence of the jumping wheel 
phenomenon which is denoted “N” or 
“Y”, respectively. Note that three typical 
track irregularities with a wavelength of 
1 m and the nonlinear contact model are 
only considered.

Table 2. Occurrence of the jumping wheel phenomenon

Phase

Track irregularity amplitude (mm)

0.01 0.5 2

Wheel load

41 kN

Wheel load

81 kN

Wheel load

41 kN

Wheel load

81 kN

Wheel load

41 kN

Wheel load

81 kN

Acceleration N N N N Y N

Constant N N N N N N

Deceleration N N N N Y N

As to be expected in considering 
low wheel load, when the small track 
irregularity amplitude is considered, 
the jumping wheel is unlikely to occur 
during all phases. It can be seen that 
the wheel easily jumps when the large 
track irregularity amplitude is studied 
during the accelerating or decelerating 
phases. For less large track irregularity 
amplitude, there is also a good possibility 
for the occurrence of the phenomenon. 
Considering high wheel load, it can be 
found that the jumping wheel phenomenon 
easily occurs during the accelerating or 
decelerating phases when the very large 

track irregularity amplitude is considered. 
In other cases, there is non-occurrence 
of the phenomenon. As compared with 
larger wheel load, it can be said that the 
smaller the wheel load, the easier the 
jumping wheel phenomenon is. It means 
that the result is reasonable to the real 
physical nature. It is necessary to control 
above factors to avoid the occurrence of 
the jumping wheel phenomenon for high-
speed rail system, which is helpful for 
safety of passengers. Figure 10 shows 
typical contact forces between the wheel 
and rail when train travels at decelerating 
phase.
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