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effective for this purpose, their performance can be significantly
improved through advanced optimization techniques. This study
introduces a novel approach using the Grasshopper Optimization
Algorithm (GOA) to enhance ANN capabilities for predicting
defective aluminum plates. The methodology begins by deriving
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other metaheuristic algorithms, such as the Cuckoo Search
Algorithm (CSA), Bat Algorithm (BA), and Firefly Algorithm
(FA). Notably, CSA’s performance is slightly close to GOA. The
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ANN: defect prediction: GOA. tradl_tlo_nal algorlthms, demonstrating superior accuracy in Qamage
optimization algorithms: prediction. This advancement holds significant potential for
vibration analysis applications in structural integrity monitoring and maintenance.

1. Introduction

The evolution of optimization algorithms spans a vast array of fields, from the
mathematical underpinnings to cutting-edge applications in engineering, healthcare, economics,
and more. These algorithms play a pivotal role in various engineering disciplines, including civil,
mechanical, electrical, and industrial sectors, where they are instrumental in the complex stages
of design and optimization (Dr. Benaissa, Kobayashi, Al Ali, Khatir, & Elmeliani, 2024; Kaveh
& Eslamlou, 2020; Nadimi-Shahraki, Zamani, Varzaneh, & Mirjalili, 2023). Inspired by
principles from physics, swarm intelligence, and biological processes, these advanced
methodologies have revolutionized the approach to solving real-world optimization problems
(Achouri, Khatir, Smahi, Capozucca, & Brahim, 2023; Gad, 2022). This shift has enabled more
efficient and innovative solutions across various industries, driving progress and facilitating
advancements in technology and practice.

Optimization techniques have evolved into a rich tapestry of methods, each rooted in
unique inspirations and operational principles. At the forefront, Ant Colony Optimization (ACO)
draws from the complex foraging behaviors and pheromone trails of ants, creating robust
solutions through simulated collective intelligence (Nayar, Gautam, Singh, & Mehta, 2021;
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Wang & Han, 2021). The Firefly Algorithm (FA), inspired by the bioluminescence of fireflies,
uses light intensity as a metaphor for attractiveness in the search process (Li, Wei, Li, & Zeng,
2022). Meanwhile, the Grey Wolf Optimization (GWO) algorithm captures the predatory and
hierarchical dynamics observed in wolf packs during hunting (Makhadmeh et al., 2024).

In the realm of swarm intelligence, Particle Swarm Optimization (PSO) mimics the
coordinated movement of bird flocks and fish schools to harness the power of collective
behavior (Khatir et al., 2023; Wang, Tan, & Liu, 2018). The Artificial Bee Colony (ABC)
algorithm mirrors the sophisticated foraging strategies of honeybees to explore and exploit
solution spaces (Kaya, Gorkemli, Akay, & Karaboga, 2022).

Other notable methods include Genetic Algorithms (GAs), which utilize mechanisms of
natural selection, crossover, and mutation to evolve solutions (Kucukkoc, Keskin, Karaoglan, &
Karadag, 2024; Na, Zhang, Lian, & Zhang, 2022). The BAT Algorithm simulates the
echolocation of bats to balance exploration and exploitation (Lu, Wang, & Zhang, 2021; Zenzen,
Belaidi, Khatir, & Wahab, 2018). Lastly, the Cuckoo Search Algorithm combines strategies of
brood parasitism and stochastic Levy flights to enhance search efficiency (Guerrero-Luis,
Valdez, & Castillo, 2021; Le et al., 2021). These diverse approaches enrich the optimization
landscape, offering a spectrum of techniques inspired by nature’s ingenuity.

The deployment of Artificial Neural Networks (ANNs) marks a transformative shift in
structural damage detection methodologies. Moving beyond traditional model-dependent
approaches, ANNs embrace advanced machine-learning techniques, fostering a new era of
model-free diagnostic capabilities (Neves, Gonzélez, Leander, & Karoumi, 2017). The
integration of ANNs with metaheuristic algorithms amplifies their effectiveness, creating a
powerful hybrid approach for enhanced accuracy and efficiency in detecting structural anomalies
across various engineering domains (Gomes, Mendez, da Silva Lopes Alexandrino, da Cunha, &
Ancelotti, 2019).

The field of structural health monitoring has advanced significantly with the integration
of ANN and various optimization algorithms. Tran, Khatir, De Roeck, Bui, and Abdel Wahab
(2019) introduced a method combining ANN with the Cuckoo Search (CS) algorithm to improve
accuracy and reduce computational time in damage detection. Oulad Brahim et al. (2024) studied
pipeline stress concentration due to corrosion and used ANN with the Jaya algorithm to predict
defect sizes, showing real-world applications. (Khatir et al., 2021) used a two-stage approach
with an improved Frequency Response Function (FRF) indicator and ANN combined with the
Arithmetic Optimization Algorithm (AOA) for damage detection in Functionally Graded
Material (FGM) plates, achieving high precision and accuracy. Additionally, Khatir, Capozucca,
Khatir, and Magagnini (2022) explored vibration-based damage detection in steel beams using
ANN and the Butterfly Optimization Algorithm (BOA), improving crack depth prediction
accuracy. Zara et al. (2024) investigated the optimization of multilayer composite structures,
focusing on the influence of geometric parameters on mechanical properties. They used a hybrid
E-Jaya-ANN technique to predict fracture toughness in bending tests, achieving higher accuracy
compared to the Jaya-ANN method. Their study also developed and validated a numerical model
using the Hashin damage criterion to optimize laminate layer configurations.

The field of structural integrity faces challenges in accurately detecting and predicting
damage, which researchers have addressed through advanced Machine Learning (ML) and
optimization techniques (Bao & Li, 2020). Brahim et al. (2024) presented a hybrid approach
combining YUKI-RANDOM-FOREST, PSO-YUKI, and BCMO with ANN to optimize
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composite patch designs for damaged pipes, effectively predicting maximum principal stress
using XFEM. Khatir et al. (2024) investigated the Near-Surface Mounted (NSM) strengthening
technique using CFRP and GFRP rods. They used PSO and GA to optimize Gradient Boosting
models for concrete strain prediction, achieving high accuracy with hybrid models GBPSO and
GBGA. Azimi and Pekcan (2020) introduced a CNN-based SHM method using Transfer
Learning (TL) techniques to process compressed response data for damage identification and
localization in large-scale systems. The method was validated with numerical simulations and
experimental data.

This research pioneers the integration of ANN with the GOA algorithm, significantly
advancing defect prediction accuracy in plate models. By utilizing experimental vibration data to
refine damage localization, the study evaluates GOA’s performance against traditional
optimization methods like Cuckoo Search Algorithm (CSA), BAT, and Firefly Algorithms (FA).
The results highlight GOA’s superior effectiveness and suggest its potential to transform
structural integrity prediction systems, paving the way for future innovations in predictive
modeling within structural engineering.

2. Methodology

To enhance the precision of structural damage prediction, this innovative methodology
integrates the Grasshopper Optimization Algorithm (GOA) with Artificial Neural Networks
(ANNS) in a novel approach. The goal is to improve ANN performance by optimizing its
hyperparameters using GOA.

The process begins with a detailed problem formulation focused on predicting structural
damage. Key data, such as natural frequencies, is collected and preprocessed, involving missing
value management, feature normalization, and dataset partitioning into training and testing subsets.

A customized ANN is then developed with input nodes for natural frequencies, hidden
layers, and output nodes tailored to the prediction task. Optimal activation functions, such as
ReLU for hidden layers and linear functions for the output, are selected. After initializing ANN
parameters like weights and biases, the network is trained using the dataset with a specified loss
function and backpropagation until convergence.

GOA, inspired by the natural foraging strategies of grasshoppers, is employed as a new
optimization method. An objective function is created to evaluate the ANN’s performance using
a validation dataset. GOA optimizes ANN hyperparameters by adjusting parameters such as
population size and iteration limits, guided by a fitness criterion based on ANN performance
metrics (Meraihi, Gabis, Mirjalili, & Ramdane-Cherif, 2021).

The optimized ANN model is then evaluated on a separate testing dataset to assess its
accuracy, using metrics like Mean Square Error (MSE). Depending on the performance results,
further adjustments and iterations may be performed. The mathematical formulation governing
GOA’s solution space exploration involves dynamically adjusting the parameter ¢ according to
the iteration count, as expressed by following Equation (1):

Cmax—Cmin (1)

c=c — iter
max MaXijter

Where ¢4, and c,,in, are the upper and lower bounds values of c, respectively, iter is the
actual iteration, and Max;.,, is the upper bound number of iterations.
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The Mean Squared Error is done by Equation (2):

MSE = =1L, (y; — 71)? 0

Where y; represents the actual value, y; signifies the forecasted one, with n denoting the
total number of instances.

The following Figure 1 illustrates the GOA-ANN model flowchart:
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Figure 1. GOA-ANN training model flowchart
3. Numerical simulation and data acquisition

The structural modeling was conducted using ABAQUS 16.4 with free-free boundary
conditions. Finite element analysis was performed with eight-node C3D8R brick elements to
capture the three-dimensional behavior of the beam, incorporating six degrees of freedom per
node (rotational and translational movements).

Two distinct defect scenarios were analyzed to test the accuracy of the GOA-ANN
system in detecting defect locations. In the first scenario (D1), a defect was placed at the beam’s
center and incrementally moved along the central axis towards the edges in 10mm steps. In the
second scenario (D2), an off-center defect was similarly introduced and shifted. Figure 2 shows
the aluminum plate model with various defect positions. Table 1 details the geometric and
mechanical properties of the model. Figure 3 presents the first four mode shapes derived from
the simulation, which served as input parameters for natural frequencies.
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Figure 2. Numerical representation of damaged aluminum plate model

Table 1
Physical characteristics of undamaged aluminum plate
: . Densit
Length L [m] Width b [m] Thickness h [m] E [MPa] [0 /Cm%f]”
0.4 0.075 0.0055 70000 2.7
Source: Author
U, Magnitude U, Magnitude
+1.000€+00 +1.001e+00
+9.171e-01 +9.179-01
+8.338e-01 +8.344e-01
+7.504e-01 +7.510e-01
+6.671e-01 +6.675e-01
+5.837e-01 +5.841e-01
i \/ +5.007¢-01
+4.170e-01 +4.172e-01
+3.336¢-01 +3.338e-01
+2.503e-01 +2.503e-01
+1.669%e-01 +1.669¢-01
+8.35%¢-02 +8.344e-02
+2.405¢-04 +2.384¢-06
a- f=184.76 Hz b- f=512.10 Hz
U, Magnitude U, Magnitude
+1.003e+00 +1.004e+00
+9.190e-01 +9.204¢-01
+8.355¢e-01 +8.367e-01
+7.520e-01 +7.530e-01
+6.685e-01 +6.694¢-01
+5.850e-01 +5.857e-01
+5.014e-01 +5.020e-01
+4.179e-01 +4.184e-01
rizs-ss:SiW
+1.674¢-01 Harseor
+8.38%-02 +8.368e-02
+3.828e-04 +8.894¢-06
c- f=1004.9 Hz d- f=1666.2 Hz

Figure 3. The four vibrations considered modes:
(@) Mode 1, (b) Mode 2, (c) Mode 3, and (d) Mode 4

4. Results and discussion

The dataset was compiled from the results of analytical simulations for defect scenarios
D1 and D2, aimed at predicting the precise locations of centralized and off-centerlized defects
illustrated in Figure 2 of the plate model. For training the GOA-ANN system, the architecture
was set with a static configuration of 04 neurons.
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The algorithm’s parameters were finely tuned through an iterative process of
experimentation and optimization. Initially, a broad range of parameter values was chosen based
on insights from previous research and expert knowledge. Extensive experiments were then
conducted to test various combinations of these parameters, ensuring optimal algorithm
performance. The population size was maintained at a constant 100 throughout these trials.

To assess the GOA'’s effectiveness in training ANNSs, it was compared with other
approaches, including ANN trained with CSA, BAT, and FA. This comparative study aimed to
determine the superiority of the GOA method in enhancing ANN training efficiency.

4.1. Defect case D1

In this case, the hybrid GOA-ANN model was employed to predict the exact positions of
central defects within the plate model at specified X coordinates: 30; 60; 100; and 150mm. This
approach aimed to enhance the accuracy and reliability of damage localization. Figures 4 and 5
illustrate a detailed comparative analysis of the regression results, showcasing the performance
of the GOA-ANN system in contrast to alternative methodologies, including CSA, BAT, and FA
models. All neural network models were uniformly designed with a hidden layer size fixed at 04
neurons to ensure consistency in the evaluation.

To validate the effectiveness of the GOA-ANN model, extensive simulations and
performance tests were conducted, highlighting its superior predictive capabilities. The
summarized outcomes of these tests are presented in Table 2, providing a clear overview of the
model’s accuracy and efficiency.
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Figure 4. System training analysis for centered defect proposal using GOA, CSA, BAT and FA
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Figure 5. Performance of considered algorithms

The results demonstrate that integrating the GOA with ANN produces significantly
better outcomes compared to using ANN alone. This hybrid approach achieves almost
perfect alignment between predicted and actual values, with discrepancies being minimal.
Even with a straightforward configuration, where the hidden layer size ‘n’ is fixed at 4, the
predicted defect positions closely match the target locations, showing an estimated error
margin of just 0.67 percent.

While other algorithms like CSA, BAT, and FA also show commendable performance in
defect localization prediction, the GOA method stands out for its superior accuracy. This
advantage arises from GOA’s ability to tolerate a broader error margin, which offers greater
flexibility during the optimization process. Additionally, GOA’s computational efficiency is
notable; for instance, the FA algorithm requires more iterations and a larger population size,
resulting in longer processing times. Figure 5 provides a graphical representation of these
comparative results.

Furthermore, the robustness of GOA in handling complex optimization tasks is evident
from its performance. CSA and BAT, while effective, fall short in matching the precision
achieved by GOA. This highlights GOA’s adaptability and efficiency, making it a preferred
choice for precise defect localization in structural health monitoring. The graphical results in
Figure 8 further underline the superiority of GOA, showcasing its ability to consistently deliver
accurate predictions with lower computational costs.

4.2. Defect case D2

In this structural damage analysis, we utilized the GOA-ANN approach to predict the
locations of off-center defects within the plate model, specifically at coordinates X = 20; 50;
120; and 180mm. This method was chosen to enhance the precision of defect localization.
Figures 6 and 7 provide a comprehensive visual analysis of the regression outcomes and
demonstrate the effectiveness of the GOA-ANN methodology compared to ANN models trained
with CSA, BAT, and FA techniques. All models were standardized with a hidden layer size
consistently set at 04 neurons to ensure a fair comparison.

Extensive testing and validation were performed to confirm the robustness of the GOA-
ANN approach. The performance metrics illustrated in these figures highlight the superior
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predictive accuracy of the GOA-ANN model. Table 2 offers a summarized overview of the
outcomes, showcasing the efficiency and reliability of our approach.
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Upon comparing the projected outcomes with the desired objectives, it is evident that the
GOA achieves a remarkably low maximum error margin of just 1.11 percent. This minimal error
is accompanied by a regression value close to unity, underscoring the high accuracy of the GOA
approach. Notably, GOA attains these results with fewer iterations, highlighting its efficiency.

Additionally, CSA, BAT, and FA were also evaluated for their predictive performance.
Though these algorithms performed commendably, they did not match the precision and
efficiency of GOA. The inherent flexibility of GOA, which allows for a broader error margin,
contributes to its superior performance. Figure 9 provides a detailed graphical representation of
these findings.

Table 2

Different prediction for defect positions for defect proposals D1 and D2 using ANN optimized
using GOA, CSA, BAT, and FA

S(E)ezfg(r:;[o Centered defect Off-centred defect
ANN | Real defect P:jedicted Errorin | Real defect Predicted Error in
trained position efe_ct predicted position defe_ct predicted
with (mm) position results (%) (mm) position results (%)
(mm) (mm)
GOA 30 30.0007 0.01 20 20.2222 1.11
CSA 30.1111 0.37 20.5222 2.61
BAT 30.7878 2.63 21.0055 5.03
FA 31.8493 6.16 22.2222 11.11
GOA 60 60.2222 0.37 50 50.1122 0.22
CSA 60.7011 1.17 49.8888 0.22
BAT 61.0000 1.67 48.4534 3.09
FA 61.2222 2.04 52.0000 4.00
GOA 100 100.1414 0.14 120 119.8888 0.09
CSA 100.5849 0.58 120.8585 0.72
BAT 102.2328 2.23 122.1718 1.81
FA 103.0000 3.00 122.9999 2.50
GOA 150 151.0000 0.67 180 181.0000 0.56
CSA 150.8888 0.59 179.0008 0.56
BAT 153.0000 2.00 173.8746 3.40
FA 152.9999 2.00 173.8900 3.39
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Figure 9. Real and forecasted damage location for defect proposal D2
5. Experimental model

The experimental process involved replicating free-free boundary conditions by
suspending the plate models with two flexible strings, as specified in Table 1. Figure 10 visually
represents the testing setup, illustrating the arrangement during the experiments. The impact
hammer was fixed in place throughout the tests, providing consistent excitation to the structure at
various points.

In Figure 10, ‘h’ indicates the position of the impact hammer, while ‘Accl’, ‘Acc2’, and
‘Acc3’ denote the locations of the accelerometers. These accelerometers were strategically
placed to capture the structural responses. The measurement system included signal
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transformation into the frequency domain using the Fast Fourier Transform (FFT) technique,
combined with Pulse software for streamlined data collection. Each accelerometer position was
subjected to 10 impacts, and the average values were recorded for further analysis.

After completing the impact tests, frequencies were documented for various damage
scenarios at specified defect locations. This extensive data collection was essential for assessing
and analyzing the structural integrity of the specimens. The results, including natural frequency
values, are summarized in Table 3, providing a comparison with the finite element model results
for both intact and damaged cases.

The setup and procedures, which ensured accurate data capture and consistency, involved
several critical steps:

1. Suspension of plate models using flexible strings to achieve free-free boundary conditions.
Fixed placement of the impact hammer to ensure consistent excitation.
Strategic positioning of accelerometers to capture structural responses.
Use of FFT and Pulse software for efficient signal transformation and data collection.

o M 0N

Repeated impacts at each accelerometer position to obtain reliable average values.

6. Thorough documentation of frequencies under various defect scenarios for
comprehensive analysis.

These steps highlight the meticulous approach taken to ensure the reliability and accuracy
of the experimental results, which are crucial for evaluating the structural integrity and
performance of the tested models.

2
Il
1 ]
 ——]| i
[ | | [ | |
Plate Aee 3 Aoee 2 Ace |

1 Ipact hammer o )
} > Analyeer FFT ———— Data Acquisition Systom
2 Accelerometer .

Figure 10. Vibration analysis operating mode
Table 3

Frequency measurements for both intact and damaged plate models

Natural frequencies f1 (H2) f, (H2) f; (Hz) f4 (Hz)

Exp 188.10 | 50371 | 1009.21 | 1660.09

Undamaged plate FEM 18476 | 51210 | 100490 | 1666.20
Error (%) 1.776 1.67 0.427 0.368

Exp 186.11 | 502.55 | 1001.34 | 1620.01

FEM 182.51 505.70 993.43 1638.22
Error (%) 1.934 0.627 0.790 1.124

Damaged plate
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Table 3 presents a comparative analysis of natural frequencies derived from experimental
procedures and Finite Element Modeling (FEM) for both intact and damaged plates. The close
match between experimental and FEM frequencies highlights the FEM’s reliability in predicting
structural behavior, as corroborated by the experimental data. Figure 11 provides a visual
representation of the experimental frequency response function curves.

The minimal discrepancies between the experimental results and FEM predictions
underscore the accuracy of the FEM simulations. This alignment between methods validates the
FEM approach, demonstrating its effectiveness in modeling and anticipating the structural
dynamics of the plates under various conditions. The experimental frequency response curves
shown in Figure 11 further emphasize the consistency and precision of the experimental setup
and measurements.
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Figure 11. Comparison of frequency response function envelopes for
intact (a) and defected (b) at accelerometer locations Accl, Acc2, and Acc3

6. Conclusions

This study introduces an innovative hybrid algorithm that combines Artificial Neural
Networks (ANN) with the Grasshopper Optimization Algorithm (GOA) to address complex
numerical optimization problems. The primary objective is to enhance the adaptation mechanism
within the ANN. The algorithm was rigorously tested across various defect scenarios involving
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an aluminum plate, and its performance was compared against three other metaheuristic
techniques: Cuckoo Search Algorithm (CSA), BAT algorithm, and Firefly Algorithm (FA).

The comparative analysis revealed that while CSA demonstrated commendable
performance, GOA surpassed it in terms of both accuracy and computational efficiency. The
GOA-ANN hybrid consistently achieved faster convergence and higher precision, outperforming
the BAT and FA algorithms as well. Experimental validation confirmed the effectiveness of the
proposed model, showing that GOA is superior in handling numerical optimization challenges.

In conclusion, the findings clearly indicate that the integration of GOA with ANN offers
significant advantages over other metaheuristic techniques, particularly in convergence speed
and computational efficiency. This positions GOA as a leading algorithm for optimizing ANN
adaptation mechanisms and solving numerical optimization problems, as evidenced by the
experimental results.
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