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Detecting and locating damage is essential in maintaining 

structural integrity. While Artificial Neural Networks (ANNs) are 

effective for this purpose, their performance can be significantly 

improved through advanced optimization techniques. This study 

introduces a novel approach using the Grasshopper Optimization 

Algorithm (GOA) to enhance ANN capabilities for predicting 

defective aluminum plates. The methodology begins by deriving 

input parameters from natural frequencies, with defect locations as 

the output. A Finite Element Model (FEM) is used to simulate data 

by varying defect locations, creating a comprehensive dataset. To 

validate this approach, experimental data from vibration analyses 

of plates with different defect locations is collected. We then 

compare the performance of our GOA-optimized ANN against 

other metaheuristic algorithms, such as the Cuckoo Search 

Algorithm (CSA), Bat Algorithm (BA), and Firefly Algorithm 

(FA). Notably, CSA’s performance is slightly close to GOA. The 

results show that our GOA-based method outperforms these 

traditional algorithms, demonstrating superior accuracy in damage 

prediction. This advancement holds significant potential for 

applications in structural integrity monitoring and maintenance. 

1. Introduction  

The evolution of optimization algorithms spans a vast array of fields, from the 

mathematical underpinnings to cutting-edge applications in engineering, healthcare, economics, 

and more. These algorithms play a pivotal role in various engineering disciplines, including civil, 

mechanical, electrical, and industrial sectors, where they are instrumental in the complex stages 

of design and optimization (Dr. Benaissa, Kobayashi, Al Ali, Khatir, & Elmeliani, 2024; Kaveh 

& Eslamlou, 2020; Nadimi-Shahraki, Zamani, Varzaneh, & Mirjalili, 2023). Inspired by 

principles from physics, swarm intelligence, and biological processes, these advanced 

methodologies have revolutionized the approach to solving real-world optimization problems 

(Achouri, Khatir, Smahi, Capozucca, & Brahim, 2023; Gad, 2022). This shift has enabled more 

efficient and innovative solutions across various industries, driving progress and facilitating 

advancements in technology and practice. 

Optimization techniques have evolved into a rich tapestry of methods, each rooted in 

unique inspirations and operational principles. At the forefront, Ant Colony Optimization (ACO) 

draws from the complex foraging behaviors and pheromone trails of ants, creating robust 

solutions through simulated collective intelligence (Nayar, Gautam, Singh, & Mehta, 2021; 
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Wang & Han, 2021). The Firefly Algorithm (FA), inspired by the bioluminescence of fireflies, 

uses light intensity as a metaphor for attractiveness in the search process (Li, Wei, Li, & Zeng, 

2022). Meanwhile, the Grey Wolf Optimization (GWO) algorithm captures the predatory and 

hierarchical dynamics observed in wolf packs during hunting (Makhadmeh et al., 2024). 

In the realm of swarm intelligence, Particle Swarm Optimization (PSO) mimics the 

coordinated movement of bird flocks and fish schools to harness the power of collective 

behavior (Khatir et al., 2023; Wang, Tan, & Liu, 2018). The Artificial Bee Colony (ABC) 

algorithm mirrors the sophisticated foraging strategies of honeybees to explore and exploit 

solution spaces (Kaya, Gorkemli, Akay, & Karaboga, 2022). 

Other notable methods include Genetic Algorithms (GAs), which utilize mechanisms of 

natural selection, crossover, and mutation to evolve solutions (Kucukkoc, Keskin, Karaoglan, & 

Karadag, 2024; Na, Zhang, Lian, & Zhang, 2022). The BAT Algorithm simulates the 

echolocation of bats to balance exploration and exploitation (Lu, Wang, & Zhang, 2021; Zenzen, 

Belaidi, Khatir, & Wahab, 2018). Lastly, the Cuckoo Search Algorithm combines strategies of 

brood parasitism and stochastic Levy flights to enhance search efficiency (Guerrero-Luis, 

Valdez, & Castillo, 2021; Le et al., 2021). These diverse approaches enrich the optimization 

landscape, offering a spectrum of techniques inspired by nature’s ingenuity. 

The deployment of Artificial Neural Networks (ANNs) marks a transformative shift in 

structural damage detection methodologies. Moving beyond traditional model-dependent 

approaches, ANNs embrace advanced machine-learning techniques, fostering a new era of 

model-free diagnostic capabilities (Neves, González, Leander, & Karoumi, 2017). The 

integration of ANNs with metaheuristic algorithms amplifies their effectiveness, creating a 

powerful hybrid approach for enhanced accuracy and efficiency in detecting structural anomalies 

across various engineering domains (Gomes, Mendez, da Silva Lopes Alexandrino, da Cunha, & 

Ancelotti, 2019).  

The field of structural health monitoring has advanced significantly with the integration 

of ANN and various optimization algorithms. Tran, Khatir, De Roeck, Bui, and Abdel Wahab 

(2019) introduced a method combining ANN with the Cuckoo Search (CS) algorithm to improve 

accuracy and reduce computational time in damage detection. Oulad Brahim et al. (2024) studied 

pipeline stress concentration due to corrosion and used ANN with the Jaya algorithm to predict 

defect sizes, showing real-world applications. (Khatir et al., 2021) used a two-stage approach 

with an improved Frequency Response Function (FRF) indicator and ANN combined with the 

Arithmetic Optimization Algorithm (AOA) for damage detection in Functionally Graded 

Material (FGM) plates, achieving high precision and accuracy. Additionally, Khatir, Capozucca, 

Khatir, and Magagnini (2022) explored vibration-based damage detection in steel beams using 

ANN and the Butterfly Optimization Algorithm (BOA), improving crack depth prediction 

accuracy. Zara et al. (2024) investigated the optimization of multilayer composite structures, 

focusing on the influence of geometric parameters on mechanical properties. They used a hybrid 

E-Jaya-ANN technique to predict fracture toughness in bending tests, achieving higher accuracy 

compared to the Jaya-ANN method. Their study also developed and validated a numerical model 

using the Hashin damage criterion to optimize laminate layer configurations. 

The field of structural integrity faces challenges in accurately detecting and predicting 

damage, which researchers have addressed through advanced Machine Learning (ML) and 

optimization techniques (Bao & Li, 2020). Brahim et al. (2024) presented a hybrid approach 

combining YUKI-RANDOM-FOREST, PSO-YUKI, and BCMO with ANN to optimize 
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composite patch designs for damaged pipes, effectively predicting maximum principal stress 

using XFEM. Khatir et al. (2024) investigated the Near-Surface Mounted (NSM) strengthening 

technique using CFRP and GFRP rods. They used PSO and GA to optimize Gradient Boosting 

models for concrete strain prediction, achieving high accuracy with hybrid models GBPSO and 

GBGA. Azimi and Pekcan (2020) introduced a CNN-based SHM method using Transfer 

Learning (TL) techniques to process compressed response data for damage identification and 

localization in large-scale systems. The method was validated with numerical simulations and 

experimental data. 

This research pioneers the integration of ANN with the GOA algorithm, significantly 

advancing defect prediction accuracy in plate models. By utilizing experimental vibration data to 

refine damage localization, the study evaluates GOA’s performance against traditional 

optimization methods like Cuckoo Search Algorithm (CSA), BAT, and Firefly Algorithms (FA). 

The results highlight GOA’s superior effectiveness and suggest its potential to transform 

structural integrity prediction systems, paving the way for future innovations in predictive 

modeling within structural engineering. 

2. Methodology  

To enhance the precision of structural damage prediction, this innovative methodology 

integrates the Grasshopper Optimization Algorithm (GOA) with Artificial Neural Networks 

(ANNs) in a novel approach. The goal is to improve ANN performance by optimizing its 

hyperparameters using GOA. 

The process begins with a detailed problem formulation focused on predicting structural 

damage. Key data, such as natural frequencies, is collected and preprocessed, involving missing 

value management, feature normalization, and dataset partitioning into training and testing subsets. 

A customized ANN is then developed with input nodes for natural frequencies, hidden 

layers, and output nodes tailored to the prediction task. Optimal activation functions, such as 

ReLU for hidden layers and linear functions for the output, are selected. After initializing ANN 

parameters like weights and biases, the network is trained using the dataset with a specified loss 

function and backpropagation until convergence. 

GOA, inspired by the natural foraging strategies of grasshoppers, is employed as a new 

optimization method. An objective function is created to evaluate the ANN’s performance using 

a validation dataset. GOA optimizes ANN hyperparameters by adjusting parameters such as 

population size and iteration limits, guided by a fitness criterion based on ANN performance 

metrics (Meraihi, Gabis, Mirjalili, & Ramdane-Cherif, 2021). 

The optimized ANN model is then evaluated on a separate testing dataset to assess its 

accuracy, using metrics like Mean Square Error (MSE). Depending on the performance results, 

further adjustments and iterations may be performed. The mathematical formulation governing 

GOA’s solution space exploration involves dynamically adjusting the parameter c according to 

the iteration count, as expressed by following Equation (1): 

           
         

       
                                                       (1) 

Where      and      are the upper and lower bounds values of c, respectively, iter is the 

actual iteration, and         is the upper bound number of iterations. 
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The Mean Squared Error is done by Equation (2): 

             
 

 
∑      ̅  

  
                                                          (2) 

Where    represents the actual value,  ̅  signifies the forecasted one, with n denoting the 

total number of instances. 

The following Figure 1 illustrates the GOA-ANN model flowchart: 

 

Figure 1. GOA-ANN training model flowchart 

3. Numerical simulation and data acquisition  

The structural modeling was conducted using ABAQUS 16.4 with free-free boundary 

conditions. Finite element analysis was performed with eight-node C3D8R brick elements to 

capture the three-dimensional behavior of the beam, incorporating six degrees of freedom per 

node (rotational and translational movements). 

Two distinct defect scenarios were analyzed to test the accuracy of the GOA-ANN 

system in detecting defect locations. In the first scenario (D1), a defect was placed at the beam’s 

center and incrementally moved along the central axis towards the edges in 10mm steps. In the 

second scenario (D2), an off-center defect was similarly introduced and shifted. Figure 2 shows 

the aluminum plate model with various defect positions. Table 1 details the geometric and 

mechanical properties of the model. Figure 3 presents the first four mode shapes derived from 

the simulation, which served as input parameters for natural frequencies. 

Start 

Initialize Grasshopper 

Population 

Check the boundry for searsh 

space 

Calculate error for each searsh 

agent 

Update position of current 

searsh agent 

Maximum 

generation 

Output the best solution 

Yes 

N
o 

Yes 

H
o

le
 l

o
ca

ti
o
n
 



 

70           Abdelwahhab Khatir et al. HCMCOUJS-Advances in Computational Structures, 14(2), 66-80 

 

Figure 2. Numerical representation of damaged aluminum plate model 

Table 1 

Physical characteristics of undamaged aluminum plate  

Length L [m] Width b [m] Thickness h [m] E [MPa] 
Density ρ           

[g/cm
3
] 

0.4 0.075 0.0055 70000 2.7 

Source: Author 

  

a- f= 184.76 Hz b- f= 512.10 Hz 

  

c- f= 1004.9 Hz d- f= 1666.2 Hz 

Figure 3. The four vibrations considered modes:  

(a) Mode 1, (b) Mode 2, (c) Mode 3, and (d) Mode 4 

4. Results and discussion 

The dataset was compiled from the results of analytical simulations for defect scenarios 

D1 and D2, aimed at predicting the precise locations of centralized and off-centerlized defects 

illustrated in Figure 2 of the plate model. For training the GOA-ANN system, the architecture 

was set with a static configuration of 04 neurons. 

L = 450mm 

W = 75mm 
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The algorithm’s parameters were finely tuned through an iterative process of 

experimentation and optimization. Initially, a broad range of parameter values was chosen based 

on insights from previous research and expert knowledge. Extensive experiments were then 

conducted to test various combinations of these parameters, ensuring optimal algorithm 

performance. The population size was maintained at a constant 100 throughout these trials. 

To assess the GOA’s effectiveness in training ANNs, it was compared with other 

approaches, including ANN trained with CSA, BAT, and FA. This comparative study aimed to 

determine the superiority of the GOA method in enhancing ANN training efficiency.  

4.1. Defect case D1 

In this case, the hybrid GOA-ANN model was employed to predict the exact positions of 

central defects within the plate model at specified X coordinates: 30; 60; 100; and 150mm. This 

approach aimed to enhance the accuracy and reliability of damage localization. Figures 4 and 5 

illustrate a detailed comparative analysis of the regression results, showcasing the performance 

of the GOA-ANN system in contrast to alternative methodologies, including CSA, BAT, and FA 

models. All neural network models were uniformly designed with a hidden layer size fixed at 04 

neurons to ensure consistency in the evaluation. 

To validate the effectiveness of the GOA-ANN model, extensive simulations and 

performance tests were conducted, highlighting its superior predictive capabilities. The 

summarized outcomes of these tests are presented in Table 2, providing a clear overview of the 

model’s accuracy and efficiency.  

 

Figure 4. System training analysis for centered defect proposal using GOA, CSA, BAT and FA 
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Figure 5. Performance of considered algorithms 

The results demonstrate that integrating the GOA with ANN produces significantly 

better outcomes compared to using ANN alone. This hybrid approach achieves almost 

perfect alignment between predicted and actual values, with discrepancies being minimal. 

Even with a straightforward configuration, where the hidden layer size ‘n’ is fixed at 4, the 

predicted defect positions closely match the target locations, showing an estimated error 

margin of just 0.67 percent. 

While other algorithms like CSA, BAT, and FA also show commendable performance in 

defect localization prediction, the GOA method stands out for its superior accuracy. This 

advantage arises from GOA’s ability to tolerate a broader error margin, which offers greater 

flexibility during the optimization process. Additionally, GOA’s computational efficiency is 

notable; for instance, the FA algorithm requires more iterations and a larger population size, 

resulting in longer processing times. Figure 5 provides a graphical representation of these 

comparative results. 

Furthermore, the robustness of GOA in handling complex optimization tasks is evident 

from its performance. CSA and BAT, while effective, fall short in matching the precision 

achieved by GOA. This highlights GOA’s adaptability and efficiency, making it a preferred 

choice for precise defect localization in structural health monitoring. The graphical results in 

Figure 8 further underline the superiority of GOA, showcasing its ability to consistently deliver 

accurate predictions with lower computational costs. 

4.2. Defect case D2 

In this structural damage analysis, we utilized the GOA-ANN approach to predict the 

locations of off-center defects within the plate model, specifically at coordinates X = 20; 50; 

120; and 180mm. This method was chosen to enhance the precision of defect localization. 

Figures 6 and 7 provide a comprehensive visual analysis of the regression outcomes and 

demonstrate the effectiveness of the GOA-ANN methodology compared to ANN models trained 

with CSA, BAT, and FA techniques. All models were standardized with a hidden layer size 

consistently set at 04 neurons to ensure a fair comparison. 

Extensive testing and validation were performed to confirm the robustness of the GOA-

ANN approach. The performance metrics illustrated in these figures highlight the superior 
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predictive accuracy of the GOA-ANN model. Table 2 offers a summarized overview of the 

outcomes, showcasing the efficiency and reliability of our approach. 

 

Figure 6. System training analysis analysis for Off-centered defect proposal  

using GOA, CSA, BAT, and FA 

 

Figure 7. Performance of considered algorithms 
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Upon comparing the projected outcomes with the desired objectives, it is evident that the 

GOA achieves a remarkably low maximum error margin of just 1.11 percent. This minimal error 

is accompanied by a regression value close to unity, underscoring the high accuracy of the GOA 

approach. Notably, GOA attains these results with fewer iterations, highlighting its efficiency. 

Additionally, CSA, BAT, and FA were also evaluated for their predictive performance. 

Though these algorithms performed commendably, they did not match the precision and 

efficiency of GOA. The inherent flexibility of GOA, which allows for a broader error margin, 

contributes to its superior performance. Figure 9 provides a detailed graphical representation of 

these findings. 

Table 2 

Different prediction for defect positions for defect proposals D1 and D2 using ANN optimized 

using GOA, CSA, BAT, and FA 

Defect 

scenario 
Centered defect Off-centred defect 

ANN 

trained 

with 

Real defect 

position 

(mm) 

Predicted 

defect 

position 

(mm) 

Error in 

predicted 

results (%) 

Real defect 

position 

(mm) 

Predicted 

defect 

position 

(mm) 

Error in 

predicted 

results (%) 

GOA 30 30.0007 0.01 20 20.2222 1.11 

CSA  30.1111 0.37  20.5222 2.61 

BAT  30.7878 2.63  21.0055 5.03 

FA  31.8493 6.16  22.2222 11.11 

GOA 60 60.2222 0.37 50 50.1122 0.22 

CSA  60.7011 1.17  49.8888 0.22 

BAT  61.0000 1.67  48.4534 3.09 

FA  61.2222 2.04  52.0000 4.00 

GOA 100 100.1414 0.14 120 119.8888 0.09 

CSA  100.5849 0.58  120.8585 0.72 

BAT  102.2328 2.23  122.1718 1.81 

FA  103.0000 3.00  122.9999 2.50 

GOA 150 151.0000 0.67 180 181.0000 0.56 

CSA  150.8888 0.59  179.0008 0.56 

BAT  153.0000 2.00  173.8746 3.40 

FA  152.9999 2.00  173.8900 3.39 
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Figure 8. Real and forecasted damage location for defect proposal D1 

 

Figure 9. Real and forecasted damage location for defect proposal D2 

5. Experimental model 

 The experimental process involved replicating free-free boundary conditions by 

suspending the plate models with two flexible strings, as specified in Table 1. Figure 10 visually 

represents the testing setup, illustrating the arrangement during the experiments. The impact 

hammer was fixed in place throughout the tests, providing consistent excitation to the structure at 

various points. 

In Figure 10, ‘h’ indicates the position of the impact hammer, while ‘Acc1’, ‘Acc2’, and 

‘Acc3’ denote the locations of the accelerometers. These accelerometers were strategically 

placed to capture the structural responses. The measurement system included signal 



 

76           Abdelwahhab Khatir et al. HCMCOUJS-Advances in Computational Structures, 14(2), 66-80 

transformation into the frequency domain using the Fast Fourier Transform (FFT) technique, 

combined with Pulse software for streamlined data collection. Each accelerometer position was 

subjected to 10 impacts, and the average values were recorded for further analysis. 

After completing the impact tests, frequencies were documented for various damage 

scenarios at specified defect locations. This extensive data collection was essential for assessing 

and analyzing the structural integrity of the specimens. The results, including natural frequency 

values, are summarized in Table 3, providing a comparison with the finite element model results 

for both intact and damaged cases. 

The setup and procedures, which ensured accurate data capture and consistency, involved 

several critical steps: 

1. Suspension of plate models using flexible strings to achieve free-free boundary conditions. 

2. Fixed placement of the impact hammer to ensure consistent excitation. 

3. Strategic positioning of accelerometers to capture structural responses. 

4. Use of FFT and Pulse software for efficient signal transformation and data collection. 

5. Repeated impacts at each accelerometer position to obtain reliable average values. 

6. Thorough documentation of frequencies under various defect scenarios for 

comprehensive analysis. 

These steps highlight the meticulous approach taken to ensure the reliability and accuracy 

of the experimental results, which are crucial for evaluating the structural integrity and 

performance of the tested models. 

 

Figure 10. Vibration analysis operating mode  
Table 3 

Frequency measurements for both intact and damaged plate models 

Natural frequencies f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) 

Undamaged plate 

 

Exp 188.10 503.71 1009.21 1660.09 

FEM 184.76 512.10 1004.90 1666.20 

Error (%) 1.776 1.67 0.427 0.368 

 

Damaged plate  

Exp 186.11 502.55 1001.34 1620.01 

FEM 182.51 505.70 993.43 1638.22 

Error (%) 1.934 0.627 0.790 1.124 
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Table 3 presents a comparative analysis of natural frequencies derived from experimental 

procedures and Finite Element Modeling (FEM) for both intact and damaged plates. The close 

match between experimental and FEM frequencies highlights the FEM’s reliability in predicting 

structural behavior, as corroborated by the experimental data. Figure 11 provides a visual 

representation of the experimental frequency response function curves. 

The minimal discrepancies between the experimental results and FEM predictions 

underscore the accuracy of the FEM simulations. This alignment between methods validates the 

FEM approach, demonstrating its effectiveness in modeling and anticipating the structural 

dynamics of the plates under various conditions. The experimental frequency response curves 

shown in Figure 11 further emphasize the consistency and precision of the experimental setup  

and measurements. 

 

(a) 

 

(b) 

Figure 11. Comparison of frequency response function envelopes for 

 intact (a) and defected (b) at accelerometer locations Acc1, Acc2, and Acc3 

6. Conclusions 

This study introduces an innovative hybrid algorithm that combines Artificial Neural 

Networks (ANN) with the Grasshopper Optimization Algorithm (GOA) to address complex 

numerical optimization problems. The primary objective is to enhance the adaptation mechanism 

within the ANN. The algorithm was rigorously tested across various defect scenarios involving 
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an aluminum plate, and its performance was compared against three other metaheuristic 

techniques: Cuckoo Search Algorithm (CSA), BAT algorithm, and Firefly Algorithm (FA). 

The comparative analysis revealed that while CSA demonstrated commendable 

performance, GOA surpassed it in terms of both accuracy and computational efficiency. The 

GOA-ANN hybrid consistently achieved faster convergence and higher precision, outperforming 

the BAT and FA algorithms as well. Experimental validation confirmed the effectiveness of the 

proposed model, showing that GOA is superior in handling numerical optimization challenges. 

In conclusion, the findings clearly indicate that the integration of GOA with ANN offers 

significant advantages over other metaheuristic techniques, particularly in convergence speed 

and computational efficiency. This positions GOA as a leading algorithm for optimizing ANN 

adaptation mechanisms and solving numerical optimization problems, as evidenced by the 

experimental results. 
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