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Science” (2019). These documents, as a worldwide announce-
ment, put a final end to the use of the notion of P-values in
frequentist testing of statistical hypotheses.

Statisticians might get the impression that abandoning P-values
only affects Fisher’s significance testing, and not Neyman-
Pearson’s (N-P) hypothesis testing since these two “theories” of
(frequentist) testing are different, although they are put in a com-
bined testing theory called Null Hypothesis Significance Testing
(NHST). Such an impression might be gained because the above
documents were somewhat silent on N-P testing, whose main
messages are “Don’t say statistically significant” and “Abandon
statistical significance”. They do not specifically declare “The
final collapse of the Neyman-Pearson decision theoretic frame-
work” (as previously presented in Hurlbert and Lombard [14]).
Such an impression is dangerous as it might be thought that N-P

testing is still valid because P-values are not used per se in it.
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1 INTRODUCTION

Christensen [9] said “It is clear that
p-values can have no role in N-P testing”
and “N-P testing is not based on proof
by contradiction as is Fisherian testing”.
Worse, the author had other misun-
derstandings about hypothesis testing
which are dangerous for applied statis-
ticians, exemplified by statements such
as “One on the famous controversies in
statistics is the dispute between Fisher
and Neyman-Pearson about the proper
way to conduct a test” (wrong, they
conducted their test in the same way,
using P-values, although their “frame-
works” are different, noting that only
Bayesians conduct their Bayesian tests
differently!); “I am exposing a logical
basis for testing that is distinct from N-
P theory and that is related to Fisher’s
views” (It is clear that while Fisher’s
test and N-P’s test are different in struc-
ture, they have the same testing philos-
ophy, i.e., using the same (wrong) logic
to conduct their tests). We will elabo-
rate in details on these dangerous mis-
understandings, for the good of applied
statistics.

Thus, by “clarification” of ASA’s an-
nouncements on P-values, we specifi-
cally spell out its “implicit implication”,
loud and clear, that “N-P testing theory
dies together with P-values”.

In view of the retirement of P-values
from hypothesis testing which is the
core of statistical inference, we will also
address some “urgent” issues for ap-
plied statisticians in this 21st century
(i.e., statistics without P-values) such
as “How to test if you must?” (Answer:
Use Bayesian testing, at least for the

moment, because it is not wrong log-
ically), and “How to do covariate se-
lection in linear regression without P-
values?” (Answer: Use LASSO).

In summary, we are talking about
statistics without P-values for this 21st
century. In fact, this revolution (or
rather, this progress) in statistics, which
is at least as significant as the one
caused by the James-Stein estimator in
1961, has taken shape before the ASA’s
announcements, exemplified by publica-
tions such as “HCI Statistics without
p-values” (Dragicevis [11]).

2 NEYMAN-PEARSON TEST-
ING BASED ON P-VALUES

By now, statisticians should be, not
only, aware of the “p-value crisis” (fi-
nally revealed through the serious prob-
lem of reproducibility and replicability
of published results based on hypothe-
sis testing, see e.g., Reproducibilty and
Replicability in Science, 2019), but also
understand of what to do next.

The message in ASA (2016) and
(2019) is clear “Do not use p-values to
conduct tests”, see also Mcshan et al.
[19]. Now, although we can formulate
various kinds of testing problems, for
each of them, we still need to specify,
logically, how to carry out a test in it.
A test is trusted if at least the “rule” to
carry it out (i.e., jump to a conclusion)
is logical, as, unlike statistical estima-
tion and prediction, testing of hypothe-
ses, an inference precedure, is not based
on mathematical theorems, but only on
logic (reasoning). Clearly, there are at
least two kinds of testing frameworks:
frequentist and Bayesian, as there are
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two such “schools of thought” in statis-
tics! Bayesians do not need p-values to
carry out their tests, they use Bayes fac-
tors instead.

Thus, only frequentist testing uses
p-values to conduct frequentist testing
problems.

The first frequentist testing frame-
work is Fisher’s “test of significance”.
Its structure is this.

Suppose a student asks “what kinds
of tests do we use p-values to conduct?”.
Well, a teacher will immediately replies
“tests of significance” because, not only
the notion of p-value was born precisely
to carry out such tests, but also this
kind of tests is easy to explain why it
needs p-values!

Roughly speaking, a statistical hy-
pothesis is an assertion about the dis-
tribution of a random variable. As the
distribution of a random variable plays
the role of the law governing its dy-
namics, an analogy with physics is ob-
vious. However, except quantum me-
chanics, natural science is determinis-
tic, whereas in social sciences, we face
uncertainty.

In “significance testing”, we wish to
find out whether a claim, called a hy-
pothesis, can be confirmed. For that,
we consider its negation, called a null
hypothesis, denoted by H, under which
the distribution of the random variable
of interest is known. Thus, we have
one hypothesis with known distribution.
We gather data from the variable and
wish to find a way to “infer” that the
data tell us that H, could be “rejected”
or not. If H, is rejected, then we declare
that our original claim is “significant”,
i.e., believable. This is a test about the

“significance” of a claim.

The problem is “how to carry out
such a test?”. Fisher told us to do the
following (such as in his “Lady tasting
tea” story). Choose a statistic T(X) to
see whether its observed data is “con-
sistent” or not with the known distri-
bution of X under H,. This “consis-
tency” is measured by the probability
p(x) = P(T'(X) > T(x)|H,), where x
is the observed data and the notation
(.|H,) refers to “under H,”, i.e., when
H, is true (and not a conditional dis-
tribution!). This probability is called
the p-value (of T'(X) when we observe
x, where of course, p stands for prob-
ability). In general, the statistic T'(X)
is chosen so that its large values reflect
somehow the inconsistency of the data
with respect to H,.

Remark. Since

p(x) = P(T(X) = T(x)|Ho)
= P(-T(X) < -T(x)|H,)

where P(-T(X) < -T(z)|H,) is
the value of the distribution function
of the random variable —7'(X), un-
der H,, evaluated at —T(x), ie., =
Firxm) (=T (x)), p(X) is a statis-
tic (taking values in [0,1]) equal to
the statistic F{_r(x)my) (=T (X)) which
is the probability integral transform of
the random variable —7'(X), and hence
stochastically dominates the uniform
random variable on [0, 1], i.e., under H,,
we have P(p(X) < alH,) < «, for any
a € [0,1]. See also Casella and Berger
(2002), Rougier (2019).

Now, if the observed event is rare,
i.e., has a very small chance to occur
under H,, and we got it, then it is not
consistent with H,, and that could “in-
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dicate” that H, is not true. This type
of reasoning can be rephrased as:

“If H, is true, then the event is
unlikely to occur, The event occured,
then H, is false”.

which at first glance seems similar
to a proof by contradiction in mathe-
matics (or modus tollens in 0 — 1 logic).
Note right away that, it is well-known
by now, among other reasons, the main
one which destroys p-value as an infer-
ential engine to conduct tests is that
this “proof by contradiction” is not valid
outside of binary logic. See also Nguyen
[22].

To implement this (wrong) logic,
Fisher first “defuzzified” the linguistic
(fuzzy) term “unlikely” by putting a
threshold « € [0, 1], some small (proba-
bility) number representing the chance
of occurence for an event which can be
considered as “rare”. A threshold such
as « is called a significance level, e.g.,
a = 0.05.

The Fisher’s testing procedure (i.e.,
jump to conclusion/make a decision)
just consists simply of comparing the
observed p-value (of the test statistics)
with the given significance level, for ex-
ample, if p < «a, reject H, and declare
that the test is (statistically) significant,
so that the original “claim of interest”
can be believed to be confirmed. Oth-
erwise, the claim cannot be confirmed.

Fisher’s testing is viewed as an “in-
ference” since it leads to confirmation
of a claim from data. Note however,
while the focus is only on one hypothesis
H,, though in practice but not in theory
there is a hidden hypothesis in the back-
ground, namely the negation H of H,,
but Fisher’s program is not about choos-

ing between these two hypotheses, a de-
cision (or selection) problem (a behavior).

This point is crucial to understand.
Under Fisher’s tests of significance there
is “only one hypothesis”, as Christensen
9] emphasizes. This means something
like the following. Suppose we know
that under the model H, the chance of
seeing x is as small as you like, but not
impossible. We see . what can we con-
clude? Nothing, except the tautology,
that since H, is given, H, is (locally)
true.

If there truly is no alternative hy-
pothesis, it is impossible to conclude
anything except that H, is true. One
possible alternative hypothesis often
considered is that “Something other
than H, is true” or its negation HS. But
we do not consider this alternative hy-
pothesis under Fisher. Fisher says there
are no alternative hypothesis, not even
HS. We start with H,; H, is all there
is; we cannot move from H,. Using a p-
value is nothing but an act of will. This
was Neyman’s original critiscism, and
which is formally proved in Briggs [4].

Obviously, people do consider alter-
native hypothesis , even informal ones
like HS. This is to say, nobody treats
Fisherian tests in a logical manner. H{
is incredible vague; in cases with contin-
uous parameterized probability models,
it is infinitely vague. Suppose H, insists
a certain parameter in the model un-
der consideration equals 0. This means,
and here is a subtle point, that the
vagueness is not-0 (say), but where the
parameter is thought to be in definite
range or value.

That means nobody really believes
in a blanket HS, but in a much more
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concrete alternative, even if this alterna-
tive is “the parameter is greater than 0”.
Once that is done (mentally), testing
becomes of the Neyman-Pearson type,
as shown on paper. Thus every use of
Fisherian testing is by use or in prac-
tice a form of N-P testing. Again, this
must be so. For if all we believe or know
or are considering is H,, then H, is all
we have. The moment we allow for hy-
potheses that are different from H,, we
chuck out p-values and test in a differ-
ent way.

A follow-up on Fisher’s test of sig-
nificance is Neyman-Pearson’s “test of
hypotheses” which is formulated in a de-
cision framework. It is a problem of
choosing between two hypotheses H,
and H,, again using a data-based pro-
cedure T'(X), where H, needs not be
H¢. The new ingredient in the frame-
work is two types of error, designed to
control error in making decsions “in the
long run”. Note right away that such
a decision-framework seems appropiate
for situations such as in statistical qual-
ity control where a decision must be
made which could be wrong, and some
“guarantee” is needed.

Thus, consider two types of error
when making decisions: the type-I error
a = P(Reject H,|H, is true), and type-
IT error = P(Accept H,|H, is false),
and find a way to conduct the test, i.e.,
a decision rule of rejecting or accepting
H, based on a statistic T'(X).

The N-P testing procedure is this.
Specify in advance a € [0,1], find a
test statistics T'(X) so that 1 — 5 =
P(Accept H,|H, is false) is as large
as possible. This amounts to define
a rejection region R, determined by

P(T(X) € R,|H,) < a, so that the de-
cision rule (i.e., the way to carry out the
test) : If T(X) € R,, reject H, (hence,
choose H,); otherwise choose H,.

What is the difference with Fisher’s
significance testing that is often re-
ferred to as the “incompatibility” among
the two types of testing framework
(an argument against putting these two
frameworks together to form the Null
Hypothesis Significance Testing/ NHST
that text books even did not mention in
their chapter on hypothesis testing)?

That difference is simply between
Fisher’s level of significance a, and N-
P’s type-I error a (N-P should not use
the same notation a !). But what is the
big deal about that? Suppose we use
N-P framework with type-I error a. To
conduct a N-P test means to determine
the rejection region R,. Once R, is de-
termined, the statistician looks at the
value T'(z): If T(z) € R,, she rejects
H, and takes H,, protecting her from
making the wrong decision with proba-
bility « (in a long run).

But, for example, for a rejection
R, of the form R, = {T(X) > t.},
ie., PUT(X) > tu}H,) = «, it is
determined simply by t, which is the
a— quantile of the distribution of T'(X)
under H, (i.e., the distribution of the
statistic T'(X) when H, is true), result-
ing in rejecting H, when T(x) > t,,
and this is strictly equivalent to p-value
= P(T(X) > T(x)|H,) < a, regardless
the meaning of « (it is just a number in
[0,1] ). « is just a threshold. See also
Lehmann [18] and Kennedy-shaffer [16].
As as matter of fact, McShane et al.
[19] stated “We propose to drop NHST
paradigm-and the p-value threshold in-
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trinsic to it”.

In summary, the logic of N-P testing
is based on P-value with threshold «,
and hence it is based on a wrong “proof
by contradiction”, just like Fisher’s sig-
nificance testing.

In other words, while the frame-
works and purposes are different,
Fisher’s test and N-P’s test use the same
logic to conduct their tests, namely us-
g p-values.

3 HOW TO TEST WITHOUT P-
VALUES IF YOU MUST?

One fact is do not test in the con-
ventional sense and to cast problems in
their predictive sense. If the statisti-
cian has two (or more) competing mod-
els for an observable y in mind, there are
only two possibilities. The first is that
uncertainty in not-yet-seen (usually fu-
ture) values of y needs to be quantified.
The second is guessing which process or
cause was responsible for observed re-
sults. Both arfe predictions. See also
Billheimer [1].

Suppose two models are under con-
sideration, H, and H,.If there is no
other prior information other than there
are only these two possibilities, an-
donly these two possibilities, then by
the statistical syllogism P(H,|B) =
P(H,|B) = 1/2. Of course, the back-
ground information (B) could be differ-
ent such that one model more receives
more weight. Then

Ply € s|B) = P(y € s|H,B)P(H,|B)
+ P(y € s|H,B)P(H,|B)(1)

where s is a subset of interest of the ob-

servable y. If data D has been taken,
then (1) becomes

P(y € s|DB) =
P(y € s|DH,B)P(H,|DB)

+ P(y € s|DH,B)P(H,|DB) (2)

Either (1) or (2) can be expanded in
the obvious way for more than two mod-
els. In other words, the full uncertainty
of the situation is considered and used
to make predictions of the observable y.
No choice need be made of any model;
i.e.,no testing need be done.

The second idea is to calculate
P(H,|DB) and P(H,|DB), which is ex-
tensible to more models in the obvious
way. To decide between them is not
solely a matter of picking which has the
higher probability, for to make a deci-
sion requires considering cost and loss.
If the cost-loss is symmetric, then pick-
ing the model with the highest posterior
probability it the best bet.

For a handy, but potentially mis-
leading, one number summary, the
probability ration can also be calcu-
lated:

P(H,|DB)

P(H,|DB) 3)

and this is equivalent to a Bayes factor
(BF). See, e.g., Kock [17] for Bayesian
Statistics, and Nguyen [23].

The BF is
P(D|H,B) _ P(HDB) P(HJB)
P(D|H,B) ~ P(H.DB) " P(H,|B)

If P(H,|B) = P(H,|B) = 1/2 then
(3) is equivalent to (4). Now the model
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posterior for H, is
P(D|H,B)P(H,|B)

P(D|H,B) = == pprm= (5)

A similar calculation gives the posterior
for H,. Thus (3) is equivalent to

P(H,DB) _ P(DH,B)P(H,IB)
P(H,1DB) ~ P(D|H.B)P(H,1B)

There is thus no logical difference in
using the PR (probability ratio) or BF.
The difference is emphasis, or in the
ease of cinveying understanding. The
PR is stated directly in terms of the
probabilities of the models, which is af-
ter all what the decision is about: which
is most likely true given the evidence?
The BF is motivated by p-value like
thinking. It asks for the probability of
the observations, which while it is the
same, puts the question the wrong way
around because our goal is to make a
decision about the model, not the data.

The warning about the real goal of
the analysis cannot be understated. Of-
ten testing is done when what is re-
ally desired is quantifying uncertainty in
the observable y. In that case, no test-
ing is needed at all. The first method
is applicable, and should be used. Too
often scientists and statisticians think
that they must always select between
alternatives, even when the goal is not
to pick the one best model. Picking the
best model (in the sense of most likely,
or by other decision analysis) is thus
bound to led to over-certainty, even dra-
matic over-certainty when the number
of models considered is greater than
two. Which is most often the case in
most problems.

Often what’s really wanted is the

ability, as in regression below, to make
statements P(y € s|tDB) where x =
(1,9, ..., 7)) are covariates of y. How
much does the probability of y change
for a change in some x;? That’s almost
always the science under question. The
model doesn’t appear in that statement
unless there is only one model or hy-
pothesis under consideration, in which
case we write P(y € sltHDB). If there
is more than one model, then we have
(1), or the version of that equation ex-
panded for more than two models with
the conditioning on z, i.e.,

P(y € s|lzB) = ZP(y € s|lzH;B)

x P(Hi|B) (7

In the best scientific sense, there is
no sense in throwing out via testing any
H; that is implied by the background in-
formation B. This is discussed in more
depth in Briggs [4]. See also Nuitj [24].

For more additional recent discus-
sions on p-values and hypothesis test-
ing, see e.g., Briggs ([3], [5], [6]), and
Briggs, Nguyen and Trafimow [7].

4 LINEAR REGRESSION ANAL-
YSIS WITHOUT P-VALUES

The ASA’s documents (2019) mark
the new statistics for this 21st century,
a statistics without P-values. Let the
past rest in peace. As already stated in
recent literature, from now on we will
not see publications involving statistics
with hypothesis testing using P-values
anymore. Let’s move ahead to make the
public trust scientific results based on
statistics.
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The lesson learned is simply this.
Statistical methods need to be trusted.
They should be founded upon logical
reasoning, and empirical results com-
ing out from them must be cleanly ex-
plained.

Having said that, we face an ur-
gent task facing both education and re-
search, namely how to “handle” linear
regression analysis, the Bread-and- But-
ter (BB) tool of applied statistics, once
P-values can be no longer “allowed” to
use to conduct tests (for covariate selec-
tion)?

Clearly, testing in linear models is
a typical situation where statisticians
usually have to face. As we will see, it
turns out that it seems that we are
somewhat lucky to answer the question
“How to test in linear regression?” sim-
ply as “Do not test, you don’t have to”.
And that is because we have a modern
method of estimation in linear models,
called LASSO (Least Absolute Shrink-
age and Selection Operator), due to
Tibshirani [27]. Thus, in a sense, in the
search for ways to do linear regression
without p-values, we encounter mod-
ern estimation methods improving tra-
ditional Ordinary Least Squares (OLS)
method of classical statistics.

In this section, we will be a bit tu-
torial on the road leading to LASSO,
a type of supervised machine learning
method to do parametric linear regres-
sion without p-values.

One popular situation in (statisti-
cal) model building is this. We have
a response (scalar) variable Y of inter-
est, for the sake of simplicity, and wish
to describe, explain, predict and inter-
vene (the four main goals of a scien-

tific investigation, as spelled out in the
US National Academy of Science’s re-
cent “Reproducibility and Replicability
in Science”, 2019). For that, we look for
covariates (factors, not necessarily the
causes) which, we “think” | could affect
Y. Suppose the covariates that we can
consider are X 1, X ..., X . Of course
we are not sure either they are all “rele-
vant”, i.e., really contribute to Y or not,
or there are other “relevant” covariates
that we did not include in this set of
covariates. The former issue is termed
“covariate selection problem” (or subset
selection), in the spirit of the princi-
ple of parsimony (Occam’s razor), nec-
essary especially for high-dimensional
data (much more covariates than sam-
ple size); the latter is another effort to
possibly improve a given model (in the
context of nested models).

One thing at a time! Let’s see
first how we can come up with a
“good” model for prediction purposes,
even temporarily (to be improved later),
when we have at our disposal, the set
{X1,Xo.., Xk} of covariates. Since
we are going to predict Y based on
X1,Xo9...,X ), we could consider the
conditional mean E(Y|X 1, X ..., X ),
which is a function of the covariates, i.e.,
a statistic), if it exists of course! Sup-
pose E(Y|X 1, X ..., X ) exists and we
take it as our predictor. Just like an
estimator, we need to judge its per-
formance which is its prediction er-
ror. Suppose, in addition, that all vari-
ables involved have finite second mo-
ments, so that the prediction error of
E(Y|X1,X2...,X) can be taken as
its mean squared error (MSE). In this
case, it is a mathematical theorem that
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E(Y|X1,X2...,X ) is the best predic-
tor in the MSE sense.

An obvious approximation to
E(Y|X1,X2...,X;) 1is the linear
model X'3 = 2521 BrX ;, where 8 =
(B1, Bay ..., B)" € RF (where (.)" denotes
transpose), X = (X 1, X.Q,...,X.k)/, with
by abuse of language, or refering to his-
tory (F. Galton’s early work on hered-
ity), we call this linear model a lin-
ear regression model. To accomodate
for possible deviations from the true
relationship, we add a random compo-
nent e to obtain our statistical linear
regression model Y = X'/ 4 e with the
assumption E(X|e) = 0, so that we do
have E(Y|X) = X'p.

Of course, we need to validate such
a linear model before using it!  Sup-
pose we observe data on the covariates
as (Y, Xi5), i =1,2,..,k;i=1,2,...,n,
so that

k
Y, = Z BiXij + e
j=1

For Y = (Yi,Y,..Y,) € R"
e = (ela627"'76n)/ S Rn,ﬁ
(B1, Ba, -, Br)’, and the (n x k) data ma-

trix

Xll X12 .. Xlk
X21

X —
an Xn2 c . Xnk

The matrix form of the above is
Y =X3+e

Having a model in place, we proceed
now to “specify” it for applications, i.e.,
to estimate the model parameter 3 from

the data matrix X.

Traditionally, for a linear model, we
estimate its parameter by OLS which
is the same as that of Maximum Like-
lihood (MLE) when the random error
is assumed to be normally distributed,
and that consists of minimizing the con-
vex objective function

B—(B) =Y — X8|

over B3 € RF where ||.||» denotes the
Ls—norm of R™.

Just like MLE where only for regu-
lar models that their MLE are “trusted”
(since at least, they are consistent esti-
mators), OLS is not applicable univer-
sally, i.e., there cases where OLS estima-
tors do not exist. Indeed, the “normal”
equation of OLS method is

(X'X)8=X'Y

There are two cases:

(i) Only if X is of full column rank
then (X'X) ™" exists, and the OLS esti-
mator B of B exists and is unique, given,
in closed form, by

6= (XX)(X'Y)

(ii) If not, we do not have OLS esti-
mator! i.e.; we cannot use OLS method
to estimate parameters in our linear
model! The “practical consequence” is
. the expression (X'X) ' (X'Y) cannot
be evaluated numerically (in software)!
For example, in high dimensional data
(k > n), model parameters cannot be
estimated by OLS.

What should we do then? Well, if
(X'X) is not inversible, you can ob-
tain a “pseudo-solution” (not unique) by
using a “pseudo-inverse” M of (X'X)
(e.g., Moore-Penrose), at the place of
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(X'X)_l, i.e., a matrix M such that
X'XMX'X = X'X. Specifically, the
solution of the normal equation is only
determined up to an element of a non
trivial space V', i.e., M(X'Y) + v, for
any v € V. Thus, there is no unique
estimator of 8 by OLS. But when so-
lutions are not unique, we run into the
serious problem of “model identifiabil-
ity”.

Roughly speaking, among all vector
B € RF which minimize |[Y = X3
(a convex function in f3), the one with
shortest norm ||3||z is B = X*Y (view-
ing as “a solution for the least squares
problem”) where X* is the pseudo-
inverse of X . Using the singular value
decomposition (SVD) of X, this pseudo-
inverse is easily computed.

Remark. In the past (where by the
“past”, we mean before 1970, the year
where Ridge Regression was discoverd
by Hoerl and Kennard [13], precisely
to handle this “non existence of OLS
solution”, but, as “usually”, awareness
of new progress in science, in general,
is slow; exemplified right now with
the “ban” of using P-values in hypoth-
esis testing!), statisticans and mathe-
maticians tried to “save” the OLS (as
a “golden culture” of statistics since
Gauss) by proposing the SVD of ma-
trices as a way to produce the pseudo-
inverse of the data matrix X, so that
you still can use OLS, even its solutions
so obtained are not unique. But, non -
uniqueness is a “big” problem in statis-
tics as it cretates the non-identifiability
problem!

Note also that there is another al-
ternative to OLS, called “Partial Least
Squares” (PLS), generalizing principal

component analysis, which seems some-
what “popular” in applied research, es-
pecially with high-dimensional data.
However, like OLS and Ridge Regres-
sion, the analysis using PLS involves hy-
pothesis testing using P-values.

Now, even in case where OLS es-
timator exists, are you really satisfied
with it? You might say “what a ques-
tion!” since by Gauss-Markov theorem,
OLS estimator is a BLUE! Well, we all
know that the notion of unbiased es-
timators was invented to have a “the-
ory” of estimation in which we can
claim there is a best estimator, in MSE
sense, and not to rule out “bad” esti-
mators, since “unbiasedness” does not
mean “good”. This is so since, afer
all, the performance of an estimator is
judged by its MSE only.

It took a research work like that of
James and Stein [15] for statisticians to
change their mind that biased estima-
tors could be even better than unbiased
ones. But that is a good sign! Statis-
ticians should behave nicely, and cor-
rectly like physicists! There should be
no “in defense of p-values”!

Now, since an OLS estimator is a
MLE estimator, it can be improved
by the shrinkage technique of James
and Stein.  Thus, there is a hope
to improve unbiased OLS estimators
by biased shrinkage estimators. Al-
though originally considered to solve the
uniqueness of solution of OLS, namely,
replacing, in an ad-hoc manner, the pos-
sible OLS solution (X'X)~}(X"Y) by
(X'X+A) "1 (X'Y), where A > 0, and I
denotes the identity matrix of R¥, since
the matrix X’ X+ is always invertible
(adding the positive definite matrix I,
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for some A > 0, to the semi-positive def-
inite matrix X’X will make the matrix
X'X+M;, positive definite and hence
invertible), this now classic ridge re-
gression method of estimation improves
OLS since it is based on shrinkage
“technology”. Indeed, the ridge estima-
tor B.(\) = (X'X+AI)"H(X'Y), while
being the unique solution of the min-
imization of the strictly convex objec-
tive function ||Y — XB||3 + \||][3 over
B € RF, is in fact, equivalently, derived
from a minimization of |[Y — Xf||3 un-
der the constraint ||3||3 < ¢, exhibiting
the shrinkage effect for its estimator. As
such, ridge estimator, while being a bi-
ased estimator, has smaller MSE than
OLS estimator, and that is important
for prediction which is based on estima-
tion. However, like OLS, ridge regres-
sion does not do covariate selection by
itself.

How covariable selection is done in
OLS regression?

Even until quite recently, you still
see text books, lecture notes, and re-
search papers with the headline “Hy-
pothesis testing in multiple linear regres-
sion”. And then you wander “what hap-
pens to all these “stuff” once it is re-
vealed that using P-values to carry out
tests cannot be trusted?”. Well, they are
a thing of the past. We cannot blame
them (I mean lots of them!). Tt is not
easy to find ways to accept or reject hy-
potheses if we just have statistical data.
And, it is not easy to see why using P-
values to test is not OK either! But
now, it’s done: We will not ever use
P-values to test hypotheses.

Here, we ask “Why there are tests in
regression analysis, in the first place?”,

or, more directly “what for?”

Well, all tests of the form H, : 8; =
0vs H, : B # 0, or simultaneous test
H, : 1 = po = ... = B = 0 vs
H, : B; # 0 for some j, are designed to
do covariable selection, i.e., to exclude
some covariates from consideration in
the model building.

Indeed, you read (and learn!) state-
ments (from text books) like “Tests like
the above play an important role in
model building. Model building is the
task of selecting a subset of relevant pre-
dictors from a larger set of available pre-
dictors to build a good regression model.
This kind of tests is well suited for this
task, because it tests whether additional
predictors contribute significantly to the
quality of the model, given the pre-
dictors that are already included”, and
“P-values and coefficients in regression
analysis work together to tell you which
relationships in your model are “statis-
tically significant”, the p-values for the
coefficients indicate whether these rela-
tionships are “statistical significant”.

Well, as spelled, loud and clear, in
Wasserstein et al. [29], “statistically sig-
nificant: don’t say it and don’t use it”,
we could just ignore the above “recom-
mendations”! and instead, ask “If test-
ing (following OLS estimation) is not
trusted any more, what else could we
do to replace it, for the sake of the im-
portant task of performing subset selec-
tion?”.

Anyway, it is clear that, after us-
ing OLS to estimate the preliminary
model’s parameters, “statisticians of the
past” carried out tests to do subset se-
lection. Two things to note: OLS esti-
mation method does not do (by itself)
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subset selection; the subset selection is
a follow-up different procedure based
on “statistical inference” (i.e., testing),
although this statistical inference (i.e.,
the way to jump to decisions/ reject or
accept hypotheses) is based on P-values
which can be computed from statisti-
cal properties of OLS estimates. Us-
ing tests to exclude irrelevant covari-
ates, however, is not a “reliable” (or not
correct!) procedure, as “they” admitted
“when there is multicollinearity in the
data, the power of tests are very low, re-
sulting in failing to reject a null hypoth-
esis and hence exclude (wrongly) an im-
portant covariate”.

There are probability-based meth-
ods that can be used to select covariates
in regression. None of these should be
used since uncertainty in the observable
y is the main interest. As said above,
in many cases covariate selection is car-
ried out when there is no need to do so.
There simply is no good reason to re-
ject a covariate that might be informa-
tive just because a statistical threshold
has been passed.

It is sometimes that covariate choice
is important. Suppose a model for some
medical observable y is conditioned on a
covariate which is an expensive test. It
would be useful to know whether adding
that covariate to the model conveys use-
ful information, conditional on the other
information already in the model. If
not, then some procedure to “reject”
it would be of great use. If the re-
searcher is merely unsure whether an
easy-to-measure covariate should be in
the model or not, then it turns out the
problem is the same, as demonstrated
next.

The first method to select covari-
ates, if covariates must be selected is the
following.

Ordinary regression for an observ-
able y the uncertainty of which is char-
acterized by a normal distribution is
written like this

M:ﬁO‘i‘ﬁlxl‘F"""ﬁpmp (1)

where the x; are the covariates under
consideration. Usually one of the z; is
under special view, the other x; thought
to be a necessary part of the model.
Without loss of generality, we consider
that problem: there may be, for in-
stance, no other z;, or other x; that are
also being considered, but this frame-
work is applicable to all these scenarios.

As above, let D be the data, x =
(21,22, ...,xp), and let M; be the model
with z; in it, and M_; the model with-
out ;. Calculate the posterior predic-
tive probabilities

P(y € s|lztDM;) (2)

and
Ply € sle_; DM_.;) (3)

If (2) equals (3), then z; is (condi-
tionally) irrelevant, and it can be ex-
cluded from the model. If the difference
of (2) and (3) is “small”, where small
is defined from researcher to researcher
depending on their cost and loss, then
x; is said to be unuseful, and again it
can be excluded from the model. If co-
variate selection must be done, then
the consequences of having or remov-
ing x; from the model are thus fully,
completely, and probabilistically given.
Probabilities can be entered into the de-
cision analysis, which might differ from
researcher to researcher. There is not,
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and should not be, a probability differ-
ence that is universally “significant”, as
with p-values.

It should be clear this procedure
works beyond just regression, but for
any probability model.

If covariate selection is not crucial,
and there is (as there will always be)
prior knowledge on whether z; should
be in the model, then we use the full
uncertainty of the situation. Calculate:

P(y € sjxDB) =
P(y € S|:17DMjB) X P(Mj|atDB)
+ P(y € S|I_jDM_j) X P(M_J|.TDB)

where the posteriors on the model
P(M;|xDB) and P(M_;|xDB) are cal-
culated as in (3) etc. above.

This approach will help stem the ris-
ing tide of over-certainty, which has led
to the so-calle replicability crisis. Hav-
ing covariate selection where none is
needed, or in failing to state the full
uncertainty of covariates always causes
over-certainty.

Now, there is another shrinkage
method for estimating parameters in
linear regression models, due to Tibshi-
rani [27], call Least Absolute Shrinkage
and Selection Operator (LASSO), sim-
ilar to ridge regression, but having the
additional advantage of being able to do
covariate selection by itself (i.e., the co-
variate selection is obtained simultane-
ously with the estimation process, and
not as a follow-up one based on test-
ing), see Hastie et al. [12]. As Boelaret
and Ollion [2] declared, it is a Great
Regression: Parametric models without
p-values. Roughly speaking, it is so,
since instead of just finding the param-

eters that minimize the sum of squared
errors, the LASSO also seeks to limit
the complexity of the fitted model, by
forcing some parameter estimates to be
equal exactly to zero, correponding to
irrelevant covariates (to be exclude from
the final model building).

In the same “spirit” of ridge regres-
sion, i.e., shrinkage estimation, LASSO
is an estimation method for estimating
parameters in linear regression models,
but by shrinking the parameters with
respect to another norm, namely L'—
norm, rather than L?—norm.

Specifically, LASSO provides a so-
lution to the minimization under con-
straint problem

(1Y = XBl3]  subject to |||, <t

min
BERF

Note that the objective function is
the same, but the constraint is different
than that of a ridge regression.

It is the change from L?—norm to
L'— norm which provides the automatic
covariate selection. Some elaborations
are as follows.

Similar to ridge regression, an equiv-
alent formulation of this optimization
under constraint is

min{[l[Y - XBIE] + MBI}

for some tunning parameter A > 0.

However, since ||8]]; = Z?Zl 1551
the objective function f € RF —
E[|IY —XB||3] + Al|B]]1, while convex
(but not stricly convex, so that are pos-
sibly more than one solution), is not dif-
ferentiable. And as such, there is no
“close form” solution to LASSO, hence
its solution should be carried out nu-
merically.
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Now, the objective function in the
LASSO estimation is convex but not
strictly convex, so that the LASSO es-
timate (of ) is not unique. However,
as solutions of a convex minimization
problem, the set of LASSO solutions
forms a convex set in R*. However, as
far as prediction is concerned, just as
in Machine Learning (viewing LASSO
as a surpervised learning algorithm),
this is not a problem since the linear
predictor based on LASSO is unique.
Note that this situation reminds us of
an analogous situation in estimation by
MLE: For regular models, when the log-
likelihood function has several maximiz-
ers, any one of them can be used as a
MLE, since any one of them is consis-
tent.

But, say, in Econometrics, where
we are also concerned with explaining
the variable of interest from its co-
variates, for various reasons, the non-
uniqueness of LASSO’s solutions should
be investigated with great care. Ap-
propriate theoretical results (see e.g.,
Hastie et al. [12]) are somewhat avail-
able for justifying the use of LASSO
in applications, including “covariate se-
lection consistency” issue which could
be investigated in the setting of (finite)
Random Set Theory, e.g., Nguyen [21],
Das and Resnick [10], and estimation
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