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Abstract

It is useful for researchers to be able to estimate
the sample size necessary to have an impressive
probability of obtaining a difference between sam-
ple locations of two independent groups that is
close to the difference between corresponding pop-
ulation locations. The present manuscript pro-
vides the necessary equations. To increase gen-
erality, the derivations presented are not based
on the typical assumption that the samples come
from the family of normally distributed popula-
tions but rather from the much larger family of
skew normal distributions. In addition, counter to
many researchers’ intuitions, we demonstrate that
greater sampling precision ensues from skewness
than from normality, all else being equal, with
simulation results. Finally a real data example on
faculty salaries of New Mexico State University is
given for the illustration of our main results.
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1 INTRODUCTION

The starting point for the present
work is a proposal that it is useful for re-
searchers to consider, prior to perform-
ing experiments, how close they wish
their sample statistics to be to corre-
sponding population parameters, and at
what probability. Trafimow [7] showed
how to estimate the number of partici-
pants needed to meet specifications for
closeness and probability in the context
of a single group, where the popula-
tion parameter of interest is the group
mean. Trafimow and MacDonald [8] ex-
panded this to include multiple means;
but both contributions assumed normal
distributions. In contrast, Trafimow et
al. [9] and Wang et al. [11] showed
that it is possible to perform similar
calculations under the larger family of
skew normal distributions, and for loca-
tions rather than means. Nevertheless,
there remains an important limitation.
Researchers often wish to compare dif-
ferences in locations between indepen-
dent samples, where levels of population
skewness might be the same or differ-
ent, and where the sample sizes might
be the same or different. What sam-
ple sizes are necessary to attain specifi-
cations for closeness and probability in
such cases involving differences between
locations of control versus experimental
conditions? The derivations to be pro-
posed address this question.

For data that do not follow a normal
distribution, it is natural to consider the
skew normal distribution introduced by
Azzalini [3]. A random variable Z is
said to be a standard skew normal ran-
dom variable with shape parameter λ if

its probability density function is given
by

fZ(z) = 2φ(z)Φ(λz), (1.1)

where φ(·) and Φ(·) are the probability
density function (pdf) and cumulative
distribution function (cdf) of the stan-
dard normal distribution, respectively.
Since then, this kind of distribution and
its multivariate form have been studied
by many researchers including Azzalini
[2], Azzalini and Dalla Valle [1], Gupta
and Chang [4], Gupta et al. [5], Ver-
nic [10], Wang et al. [12], Ye and Wang
[14], and Ye et al. [15].

Now suppose that we have a popu-
lation and want to construct the confi-
dence interval for the location parame-
ter. We start from the question about
how many participants we need so that
we can be confident the sample and the
population locations are close. For the
normal case, Trafimow [7] provided the
answer for the one sample case by fixing
the probability of the difference of sam-
ple mean and population mean within
some precision f standard deviation at
confidence level c. In this paper, we
consider the difference of the location
parameters from two independent skew
normal populations. The goal is to de-
termine the sample size needed to meet
specifications for closeness and confi-
dence, for using the sample difference
in locations to estimate the population
difference in locations.

The paper is organized as follows.
Some properties of the family of mul-
tivariate skew normal distributions are
presented in Section 2. In Section 3, we
consider how to determine the least re-
quired sample size. The simulation work
is provided in Section 4 for the va-
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lidity of the derived equations and an
example with real data application is
given for illustration of our main results
in Section 5.

2 BRIEF REVIEW OF THE
FAMILY OF MULTIVARIATE
SKEW NORMAL DISTRIBU-
TIONS

In this paper, Mn×p will denote the
set of all n × p matrices over the real
field R, Rn will denote Mn×1. For any
T ∈Mn×n, T ′ is the transpose of T . For
any positive definite matrix T ∈ Mn×n
and c > 0, T c and T−c will be the c-th
root of T and T−1, respectively.

Definition 2.1. The random vector
X = (X1, · · · , Xn)′ ∈ Rn is said to have
a multivariate skew normal distribution
with location parameter µ, scale param-
eter Σ, and skewness (or shape) param-
eter α, denoted by X ∼ SNn(µ,Σ,α),
if its density function is given by

f
X

(x) = 2φn(x;µ,Σ)Φ
(
α′Σ−1/2(x− µ)

)
(2.1)

where φn(x;µ,Σ) is the n-dimensional
normal probability density function
(pdf) with mean vector µ and covari-
ance matrix Σ and Φ(z) be the cumu-
lative distribution function (cdf) of the
standard normal random variable Z.

The proof of the following lemma is
given in Wang et al.[13].

Lemma 2.1. Suppose that X =
(X1, X2, ..., Xn)′ ∼ SNn(µ,Σ,α) with
µ = ξ1n, Σ = ω2In and α = λ1n, where
1n = (1, 1, . . . , 1)′. Let X̄ = 1

n

∑n
i=1Xi

and S2 = 1
n−1

∑n
i=1(Xi − X̄)2 be the

sample mean and sample variance, re-
spectively. Then

(a) X̄ ∼ SN(ξ, ω
2

n
,
√
nλ).

(b) Each Xi ∼ SN(ξ, ω2, λ∗) where
λ∗ = λ/

√
1 + (n− 1)λ2, i = 1, ..., n.

(c) X̄ and S2 are independent.

(d) Let T =
√
n(X̄−ξ)
S

. Then T has
the skew t distribution with skewness pa-
rameter

√
nλ and n− 1 degrees of free-

dom.

Remark 2.1. For the sake of simplic-
ity, statisticians often assume the inde-
pendent sampling. But from Lemma
2.1, this assumption is not necessary as
long as the data are from the same pop-
ulation so that we can assume that they
are identically distributed.

3 THE SAMPLE SIZE NEEDED
FOR ESTIMATING THE DIF-
FERENCE OF POPULATION
LOCATION PARAMETERS

Consider two independent samples
of unknown sample sizes n and m such
that

X = (X1, · · · , Xn)′ ∼ SNn(µ1,Σ1,α1)
(3.1)

and

Y = (Y1, · · · , Ym)′ ∼ SNm(µ2,Σ2,α2),
(3.2)

where µ1 = ξ11n, µ2 = ξ21m, α1 =
λ11n, α2 = λ21m, Σ1 = ω2

1In and
Σ2 = ω2

2Im. Without loss of general-
ity, we can assume that n ≤ m and
their ratio k = m/n is assumed to be
known.

Remark 3.1. In this paper, we will
focus on obtaining the minimum sam-
ple size n required for estimating ξd =
ξ1−ξ2 with known λ1 and λ2. For the es-
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timation of the shape parameters λ un-
der skew normal settings, see Wang et
al. [11], Zhu et al. [16] and Ma et al.[6].

Now consider the linear transforma-
tion of Xi’s and Yj’s given below.

Ui =Xi −
√
n

m
Yi+

1√
nm

n∑
j=1

Yj −
1

m

m∑
k=1

Yk

(3.3)

where i = 1, · · · , n. This is given by
Scheffé (1943) in the univariate normal
case. Then the following result holds.

Theorem 3.1. Consider two indepen-
dent samples given in (3.1) and (3.2),
and let Ui be defined in (3.3) and Ū =
1
n

∑n
i=1 Ui. Then

(i) The density of Ū = X̄ − Ȳ is
given by

f
Ū

(u) = 4φ(u; ξd, ω
2)EZ [g(Z, u)] with

g(z, u) = Φ(h1z + k1)Φ(h2z + k2),
(3.4)

where ω2 =
ω2

1

n
+

ω2
2

m
, Z ∼ N(0, 1),

h1 =
√

n
m
ω2λ1

ω
, h2 =

√
m
n
ω1λ2

ω
, k1 =

(u−ξd)ω1λ1

ω2 , and k2 = − (u−ξd)ω2λ2

ω2 .
(ii) The mean and variance of Ū is

given by

E(Ū) = ξd + δ1ω1 − δ2ω2,

V ar(Ū) = ω2 − (δ2
1ω

2
1 + δ2

2ω
2
2).

where

δ1 =

√
2

π

λ1√
1 + nλ2

1

,

δ2 =

√
2

π

λ2√
1 +mλ2

2

.

Proof. Rewrite U = (U1, · · · , Un)′

as U = X − (A1 − A2 + A3)Y
where A1, A2, A3 ∈ Mn×m with A1 =√

n
m

(In, 0), A2 = 1√
mn

(1n1
′
n, 0), and

A3 = 1
m

1n1
′
m. Then it is easy to see

Ū = X̄− Ȳ . By Lemma 2.1 and 2.2, we

know that X̄ ∼ SN(ξ1,
ω2

1

n
,
√
nλ1) and

Ȳ ∼ SN(ξ2,
ω2

2

m
,
√
mλ2). Note that

X̄ and Ȳ are independent. Then, by
Lamma 2.3, the density of Ū is

f
Ū

(u) =

� ∞
−∞

fX̄(u+ v)fȲ (v)dv

= 4φ(u; ξd, ω
2)

� ∞
−∞

φ(v; a, b2)p(v)dv,

where ω2 =
ω2

1

n
+

ω2
2

m
, a =

ω2
2(ξd−u)

mω2 ,

b2 =
ω2

1ω
2
2

nmω2 , and

p(v) = Φ

(
nλ1

v − (ξd − u)

ω1

)
Φ

(
mλ2

v

ω2

)
.

Let Z = V−a
b

. Then the pdf of Ū is
reduced to

f
Ū

(u) = 4φ(u; ξd, ω
2)EZ [g(Z, u)],

with g(z) = Φ(h1z + k1)Φ(h2z + k2),

where h1 =
√

n
m
ω2λ1

ω
, h2 =

√
m
n
ω1λ2

ω
,

k1 = (u−ξd)ω1λ1

ω2 and k2 = − (u−ξd)ω2λ2

ω2 .
Thus, the density of Ū is obtained.

Corollary 3.1. In Theorem 3.1 (i),
(a) if λ2 = 0, then Ū ∼ SN(ξd, ω

2, λ1∗)
with λ1∗ = ω1λ1√

(1+nλ2
1)ω2−ω2

1λ
2
1

;

(b) if λ1 = 0, then Ū ∼ SN(ξd, ω
2, λ2∗)

with λ2∗ = − ω2λ2√
(1+mλ2

2)ω2−ω2
2λ

2
2

;

and
(c) if λ1 = λ2 = 0, then Ū ∼ N(ξd, ω

2).

Remark 3.2. By the definition of the
close skew normal given in Gupta et al.
[5] and Zhu et al. [17], both Ui and
Ū are closed skew normally distributed.
Specifically, we can show that

Ū ∼ CSN1,2(ξd, ω
2, D, 0, ∆),
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where D =
(
ω1λ1

ω2 , −ω2λ2

ω2

)′
, and

∆ =

[
1 + (n− ω2

1

ω2 )λ2
1

λ1λ2ω1ω2

ω2

λ1λ2ω1ω2

ω2 1 + (m− ω2
2

ω2 )λ2
2

]
.

The pdf of Ū given in (3.4) can be
written as

f
Ū

(u) = 4φ(u; ξd, ω
2)Φ2[D(u−ξd; 0, ∆)]

where and φ and Φ2 are the pdf and
two-dimensional cdf of standard normal
distribution.

Let k = m
n

, ξd = 0, and ω1 = ω2 = 1.
The density curves of Ū with different
k are given in Figure 1 and Figure 2.

Fig. 1. The density functions of Ū
with k = 1, 1.2, 1.5. for n = 97,
λ1 = λ2 = 0 (left), and n = 40,

λ1 = −λ2 = 5 (right), respectively.

Remark 3.3. The density curves of Ū
given in (3.4) are plotted in Figure 1 for
n = 97 and n = 40 respectively. From
Figure 1, we know that the variation of

the ratio k = m/n = 1, 1.2, and 1.5
does not importantly change the shapes
of densities either under normal or skew
normal settings. Therefore, we may as-
sume that the two sample sizes are equal
to (say) n.

3.1 The Sample Size Needed for
Estimating ξd with Known ω1

and ω2

In order to determine the minimum
sample size n needed to be c × 100%
confident for the given sampling preci-
sion, we consider the distribution of Ū
given in Theorem 3.1, for known ω1 and
ω2 and m = n by Remark 3.3.

Theorem 3.2. Let c be the confidence
level and f be the precision which are
specified such that the error associated
with estimator Ū is E = fω0 where
ω2

0 = ω2
1 + ω2

2. More specifically, if

P [f1ω0 ≤ Ū−E(Ū) ≤ f2ω0] = c, (3.5)

where f1 and f2 are restricted by
max(|f1|, f2) ≤ f , and E(Ū) is the
mean of Ū . Then the minimum sample
size n required can be obtained by� U

L

4φ(v)EZ [h(Z, v)]dv = c (3.6)

such that the length of the confidence in-
terval is the shortest, where L =

√
nf1+

γ
ω

and U =
√
nf2 + γ

ω
with γ = ω1δ1 −

ω2δ2 and Z ∼ N(0, 1). Here

h(z, v) = Φ(s1v + t1z)Φ(s2v + t2z)

with s1 = ω2λ1

ω
, s2 = ω1λ2

ω
, t1 = ω1λ1

ω
and

t2 = −ω2λ2

ω
.

Proof. From Theorem 3.1, E(Ū) =
E(X̄−Ȳ ) = ξd+γ with γ = ω1δ1−ω2δ2.

Let V = Ū−ξd
ω

. Then the pdf of V is

f
V

(v) = 4φ(v)EY [q(Y, v)],
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where Y ∼ N(
−ω2

2v

nω
, b2), and

q(y, v) = Φ

(
nλ1

y + ωv

ω1

)
Φ(nλ2y/ω2).

By standardizing the distribution of
Y ,

f
V

(v) = 4φ(v)EZ [h(Z, v)],

where

h(z, v) = Φ(s1v + t1z)Φ(s2v + t2z)

with

s1 =
ω2λ1

ω
, s2 =

ω1λ2

ω
, t1 =

ω1λ1

ω

and

t2 = −ω2λ2

ω

Then Equation (3.5) is equivalent to

P
(√

nf1 +
γ

ω
≤ V ≤

√
nf2 +

γ

ω

)
= c.

So, (3.6) is obtained with L =√
nf1 + γ

ω
and U =

√
nf2 + γ

ω
. Then

the required n can be solved through
the integral equation (3.6).

From Theorem 3.2, we have the fol-
lowing remark.

Remark 3.4. The specified value of n,
f1 and f2 are obtained simultaneously,
given that f and the c×100% confidence
interval have been specified. Also, if the
conditions in Theorem 3.2 are satisfied,
we can construct the c × 100% confi-
dence interval for ξd, given by

[Ū − ωU, Ū − ωL],

and the length of the confidence inter-
val is decreased by the increase of k, and
the confidence interval of ξd for k > 1 is
a subset of that of k = 1 under the as-
sumptions in Theorem 3.2.

Corollary 3.2. In Theorem 3.2,
(a) if λ2 = 0, then the least n can be
obtained by� U0

L0

2φ(z)Φ(λ1∗z) = c,

where the L0 and U0 are as in the
Theorem 3.2 under δ2 = 0 and λ1∗
from Corollary 3.1(a). Then the c ×
100%confidence interval for ξd is

[Ū − U0ω, Ū − L0ω],

and
(b) if λ1 = λ2 = 0, then the least n can
be obtained and n = ( z

f
)2, where z is the

z-score corresponding to the confidence
level c. Also, the c × 100% confidence
interval for ξd is[
Ū − f

√
σ2

1 + σ2
2, Ū + f

√
σ2

1 + σ2
2

]
.

3.2 The Sample Size Needed for
Estimating ξd with Unknown
ω1 and ω2

In this part, we will assume that ω1

and ω2 are unknown but equal, denoted
as ω. Then we have the following result
when the ratio of m and n is 1.

Theorem 3.3. Let

T =

√
n(Ū − ξd)
Sp

,with S2
p =

S2
1 + S2

2

2
.

Then the pdf of T is give by

fT (t) =

4T (t; 2n− 2)EX{EZ [(G(Z, X, T )|x, t)]},
(3.7)

where X|T=t ∼ χ2(2n − 1),
Z|X=x, T=t ∼ N(0, 1), the T (t; 2n − 2)
being the pdf of t-distribution with 2n−2
degrees of the freedom and

G(z, x, t) = Φ(
λ1

2
z+h1∗)Φ(

λ2

2
z+h2∗),
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where hi∗ = λit
√
nx√

2(2n−2+t2)
for i = 1, 2.

Proof. Let Z =
√
n(Ū−ξd)
ω

. Then by
Theorem 3.2, the pdf of Z

fZ(z) = 4φ(z)E(h(Y, Z)|z).

Since (n − 1)S2
i /ω

2 ∼ χ2(n − 1) for
i = 1 and 2, where S2

1 and S2
2 are inde-

pendent,

V = (2n− 2)S2
p/ω

2 ∼ χ2(2n− 2).

Note that Ū and S2
p are independent.

Then the joint distribution of (T, V )

fT, V (t, v) = fZ, V

(
t

√
v

2n− 2
, v

)√
v

2n− 2
.

Thus, the pdf of T is

fT (t) = c(t)

� ∞
0

f(x)E[(G(Y )|x, t)]dx

where f(x) is the density function of χ2

with (2n− 1) degrees of freedom, and

c(t) =
4√

π(2n− 2)

Γ((2n− 1)/2)

Γ(2n− 2)/2)
×

(
1 +

t2

2n− 2

)−(2n−1)/2

.

Note that c(t) is the density of t dis-
tribution of degree of freedom 2n − 2.
So,

fT (t) = 4T (t; 2n−2)EX{E[(G(Y )|x, t)]}.

Remark 3.5. If we let λ1 6= 0 and
λ2 = 0 in Theorem 3.3, then the distri-
bution of T is reduced to skew t distri-
bution with 2n − 2 degrees of freedom
and skewness

√
nλ1/

√
2 + nλ2

1. More
specially, if λ1 = λ2 = 0 in Theorem 3.3,
then the distribution of T is reduced to
the t distribution with 2n − 2 degrees
of freedom. The Density curves of T

given in (3.7) are plotted in Figure 2 for
n = 20 and n = 40, respectively. From
the Figure 2, we know that variations of
skewness parameters λ1 and λ2 do affect
the shapes of densities.

Fig. 2. The density functions of T
with different λ1 (lam1) and λ2 (lam2)
for n = 20 (left), and n = 40 (right),

respectively.

Theorem 3.4. Suppose the conditions
in Theorem 3.2 hold. Then the least n
can be obtained by solving the integra-
tion equation

� U∗

L∗

f(t)dt = c,

where fT (t) is given in Theorem 3.3,
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with L∗ =
√
nf1+q
S

and U∗ =
√
nf2+q
S

, in
which

q =

√
n

2
(δ1 − δ2), S =

√
1− δ2

1

Sp
S1

for

S1 =
√
S2

1

and

S2
1 =

1

n− 1

n∑
i=1

(xi − x̄)2.

And then, the c × 100% confidence in-
terval for ξd will be[

Ū −
√

2

n
SpU∗, Ū −

√
2

n
SpL∗

]
(3.8)

The proof is similar as Theorem 3.2.

Remark 3.6. The average length of
the c × 100% confidence interval for ξd
given (3.8) is

EL =

√
2ω(f2 − f1)√

1− δ2
1

.

Note that the confidence interval for
ξd when k = m/n > 1 is a subset of
the interval given in (3.8) under the as-
sumptions in Theorem 3.2 and hence its
average length is shorter than EL.

Corollary 3.3. From Theorem 3.4, we
can obtain the following results.

(a) If λ2 = 0, then the least n can be
obtained by� U1

L1

fT (t)dt = c,

where L1 = L∗ and U1 = U∗ in (3.8)
under δ2 = 0 so that the c× 100% con-
fidence interval for ξd is[
Ū −

√
2

n
SpU1, Ū −

√
2

n
SpL1

]
(3.9)

(b) If λ1 = λ2 = 0, then the c×100%
confidence interval for ξd is

[Ū − f
√
S2

1 + S2
2 , Ū + f

√
S2

1 + S2
2 ]

(3.10)

4 SIMULATION

We perform simulation results to
support our derivations in Section 3.
We assume that ω1 = ω2 and the con-
fidence c = 0.95, 0.9. We will ob-
tain the minimum n needed for precision
f = 0.2, which is listed in Table 1 and
Table 2. From Table 1, we know that
the required n is decreasing as λ1 in-
creases. Similar result is obtained from
Table 2 when λ1 = λ2.

Using the Monte Carlo simulations,
we account relative frequency for the
difference of location parameters ξd =
1, 2, scale parameters ω1 = ω2 = ω∗ =
1, 2, and different skewness parameter
λ1 with λ2 = 0. The summary of rel-
ative frequencies is given in Table 3.
From Table 3, we use“r.f.” to denote the
relative frequency for 90% confidence
intervals given precision f = 0.2. Also
we use “p.e.” to be the point estimate
average of ξd. All results are illustrated
simulation runs M = 10000.

Density curves and their correspond-
ing histograms of 95% confidence inter-
val for ξ are given in Figure 3. The
curve on the left is for for λ1 = λ2 =
0, with ξd = 0, ω∗ = 1, and f =
0.2(normal case), and the curve on the
right is for λ1 = 5, λ2 = −5 with ξd = 0,
ω∗ = 1, and f = 0.2. Also the 95% con-
fidence intervals are listed in Figure 3.



Asian Journal of Economics and Banking (2019), 3(2), 29-40 37

Table 1. The minimum value of sample
size n for different λ1 with precision
f = 0.2, λ2 = 0 and confidence level

c = 0.9.
λ1 n f1 f2
0 72 -0.2 0.2

0.1 60 -0.1994 0.1991
0.2 53 -0.2 0.1996
0.3 51 -0.1998 0.1984
0.4 49 -0.1996 0.1984
0.5 48 -0.1999 0.1987
1 47 -0.1994 0.1982

Table 2. The minimum value of
sample size n for different λ with
f = 0.2, and c = 0.95 where

λ = λ1 = λ2.
λ n f1 f2
0 97 -0.2 0.2

0.1 72 -0.1995 0.1995
0.2 56 -0.1986 0.1986
0.3 49 -0.1982 0.1982
0.4 45 -0.1995 0.1995
0.5 43 -0.1988 0.1988
1 40 -0.1992 0.1992

Table 3. The relative frequency (r.f.) and the corresponding average point
estimate of different value of ξd (p.e.) and λ for f = 0.2, c = 0.9 and ω∗ = 1, 2.

λ1 n
ξd = 1, ω∗ = 1 ξd = 1, ω∗ = 2 ξd = 2, ω∗ = 1 ξd = 2, ω∗ = 2

r.f. p.e. r.f. p.e. r.f. p.e. r.f. p.e.
0.1 60 0.8944 1.0010 0.8983 1.0628 0.8977 1.9992 0.8982 2.0637
0.2 53 0.8893 1.0010 0.8910 1.0788 0.8851 1.9978 0.8892 2.0825
0.3 51 0.8992 1.0011 0.8857 1.0906 0.8944 2.0001 0.8890 2.0707
0.4 49 0.8824 0.9982 0.8966 1.0881 0.8830 1.9971 0.8980 2.0876
0.5 48 0.8922 0.9976 0.8903 1.0896 0.8984 1.9979 0.8927 2.0934
1 47 0.8995 0.9990 0.9021 1.0114 0.9001 1.9997 0.8913 2.0963

Fig. 3. Density functions and
histogram of 95% confidence interval
for ξd = 0 with skewness parameters

λ1 = λ2 = 0, f = 0.2 (left), and λ1 = 5,
λ2 = −5, f = 0.2 (right), respectively.

5 AN EXAMPLE WITH REAL
DATA

We provide an example for illus-
tration of our main results obtained.
The data sets contain the salaries
from Departments of Sciences (DS)
and the remaining departments in the
College of Arts and Sciences (RD),
New Mexico State University, which
are obtained from the Budget Esti-
mate (2018/19)[18]. By the method of
moment estimation, the estimated dis-
tribution based on the data sets are
SN(3.4131, 3.57682, 3.8487) for DS
and SN(4.0995, 3.87942, 2.1394) for
RD, respectively (with unit $10000).
The histogram and its corresponding
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curve of Ū given by (3.3) are shown in
Figure 4.

Fig. 4. The histogram and its curves
of the difference given by (3.3) for the
real data sets both under normal(the
dish line) and skew normal (the solid

line) cases.

Now we suppose that the skewness
parameters and the scale parameters are

known to be λ1 = 3.8487, λ2 = 2.1394,
ω1 = 3.5768, ω2 = 3.8794 and the ra-
tio of the sample sizes k = 1.02 are
known. If we consider the precision
f = 0.2 and confidence level c = 0.95,
then the minimum sample size needed
is 43. Randomly choose the samples
of the same size 43, from both popu-
lations, we obtain Ū = −0.6530. Then
by the Remark 3.4, the 95% confidence
intervals for ξd are [−0.9602,−0.3481]
under skew normal assumptions, and
[−0.9808,−0.3252] under normal pop-
ulation assumptions given in Corollary
3.2 (b). Similarly if scale parame-
ters are assumed to be unknown, by
Theorem 3.4 and Corollary 3.3 (b),
the 95% confidence intervals for ξd are
[−1.3115, 0.0008] under skew normal as-
sumptions, and [−1.3559, 0.0499] under
normal assumptions, respectively. Note
that in both cases, the lengths of confi-
dence intervals under skew normal set-
tings are shorter than those under nor-
mal assumptions.
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