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Abstract
Purpose – The current paper is a brief review of the emerging field of quantum-like modelling in game theory.
This paper aims to explore several quantum games, which are superior compared to their classical counterparts,
which means either they give rise to superior Nash equilibria or they make the game fairer. For example,
quantum Prisoners Dilemma generates Pareto superior outcomes as compared to defection outcome in the
famous classical case. Again, a quantum-like version of cards game can make the game fairer, increasing the
chance of winning of players who are disadvantaged in the classical case. This paper explores all the virtues of
simple quantum games, also highlighting some findings of the authors as regards Prisoners Dilemma game.
Design/methodology/approach – As this is a general review paper, the authors have not demonstrated
any specific mathematical method, rather explored the well-known quantum probability framework, used for
designing quantum games. They have a short appendix which explores basic structure of Hilbert space
representation of human decision-making.
Findings – Along with the review of the extant literature, the authors have also highlighted some new
findings for quantum Prisoners Dilemma game. Specifically, they have shown in the earlier studies (which are
referred to here) that a pure quantum entanglement set up is not needed for designing better games, even a
weaker condition, which is classical entanglement is sufficient for producing Pareto improved outcomes.
Research limitations/implications – Theoretical research, with findings and implications for future
game designs, it has been argued that it is not always needed to have true quantum entanglement for superior
Nash Equilibria.
Originality/value – The main purpose here is to raise awareness mainly in the social science community
about the possible applications of quantum-like game theory paradigm. The findings related to Prisoners
Dilemma game are, however, original.

Keywords Entanglement, Classicaloptics, Pareto superior outcomes, Quantum-Like Game,
Formula for Total Probability5BFTP5D, Prisoners Dilemma 5BPD5D, Nash Equilibrium 5BNE5D,
Quantum Probability 5BQP5D

Paper type General review

1. Introduction
Modern form of game theory can be rooted back to the seminal works by Neumann and
Morgenstern (Bruza et al., 2015), which were based on the neoclassical rationality assumption
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of agents, specifically selfish utility maximization, and also common knowledge of
rationality (Common knowledge theory and its outcomes have been modified recently by
Khrennikov (Luders, 1951), using rather the quantum frame work of updating beliefs,
significantly extending the seminal “agreeing to disagree” model proposed famously by
Aumann) .

Game theory has then created its own huge literature (Basar et al., 1999; Du et al. ,2001;
Fine, 1982; Shafir and Tversky, 1992; Benjamin and Hayden, 2001; Yearsley, 2017), and
has now become the currency in which not only standard Economics or Finance is
written, but also may other subjects like considerable amount of evolutionary Biology is
written. However, since the standard or neo-classical game theory, has been embedded in
the rationality framework, real life deviations has been at least non-trivial to depict in
that framework. Later there has been a very strong and diverse literature of behavioural
game theory, where the utility framework was significantly modified, for example in
seminal “inequity aversion” games by Fehr and Schmidt.

Hence we accept that behavioural Economics or Finance studies have modified the
classical game theory, mainly by modifying the simple selfish utility maximization
criterion to which players should respond, for example in the inequity aversion game
players are constrained to respond by the differences between their and other players’
payoffs, which also generates disutility among players if the payoff gaps increases,
which might be near to altruistic behaviour, in case of disutility generated to one player
due to ones payoff increasing compared to the other. However, we just mention here that
the dense literature of the extant behavioural game theory is not fully based on a single
coherent and comprehensive probability theory framework, and it is not surprising since
heuristics-based set ups were adapted to avoid typical probabilistic decision-making
framework. Hence, while turning to quantum-like modelling in game theory we aim for
providing a comprehensive probabilistic structure which might be able to resolve
different “anomalies” or deviations observed from the predictions of classical Nash
Equilibria (NE here). NE or Nash equilibrium, a central concept of game theory, is a stable
equilibrium position where every player is playing ones best strategy given every one
else is player their best strategies, such that it is of no utility of a player to deviate from
the position unilaterally.

We would also like to emphasize that classical or traditional game theory literature is
vast and versatile. Though the concepts of selfish utility maximization, or full rationality,
or complete information were introduced in the first phases of the literature, soon many
modifications happened (Yearsley, 2017) where modified utility set ups (mainly in
behavioural game theory literature), games under incomplete information and
uncertainty were studied. We always remind ourselves that game theory as a literature is
evolving very rapidly. Particularly, since the seminal experimental observations by
cognitive scientists (Krueger et al., 2012), who prescribed different heuristics based
explanation of human choice behaviours under uncertainty, behavioural game theory has
rapidly adapted such findings.

Since late 1990s (Busemeyer and Bruza, 2012; Iqbal and Abbott, 2009; Iqbal and Abbott,
2010), quantum-like modelling in social science has emerged as a true alternative in
understanding real agent’s behaviour. However, we always remind readers that there is no
real quantum physical process being claimed as underlying the human behaviour, or market
behaviours. We focus on the novel mathematical and logical concepts, tools or frameworks
widely used in quantum mechanics, or quantum field theory, or even in classical optics
(Haven and Khrennikova, 2018), which may be extended to decision theory or cognition in
general.
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However, contribution of quantum-like modelling (for a comprehensive introduction
we can refer to Haven and Khrennikov (Iqbal and Abbott, 2009) in social sciences, and
game theory particularly is more fundamental. Quantum-like framework allows for a
comprehensive framework where different deviations from neoclassical decision theory
can be depicted consistently and coherently, for example, order effects in decision-
making, failure of sure thing principle in decision-making under uncertainty,
contextuality in decision-making, and alike. Again, this also means that the
comprehensive framework would also contain the standard results when appropriate,
for example in Khrennikov’s (Luders, 1951) extension of common knowledge theory we
get back the neoclassical standard results when condition of full information for
rational agents prevails.

In the current paper, it would not be possible to survey the huge literature, rather we
attempt to straight away turn to ‘quantum like’ game theory, and then present our own
framework. We may remark that quantum-like game theory paradigm can be perceived
from multiple directions, one (Iqbal and Abbott, 2009) in which real people play games in
standard set up, for example prisoner’s dilemma set up [PD henceforth], and then
conditional probabilities of choosing moves are computed from real data, if deviations are
observed from typical dominant Nash Equilibrium predictions, then such deviations are
explained via quantum-like framework. The other direction being designing better andmore
efficient games, such that even classical rational players may use such novel features, or
resources, to achieve superior outcomes which are not possible in standard game formats.
Inter or intra system entanglement is one such feature which has been shown to be used to
achieve superior outcomes (Li et al., 2006).

The organization of the paper is the following: literature review section briefly explores
aforementioned directions, a brief section on examples of quantum games, the following
section is a proposed framework by the authors which has recently been developed by us,
and hence the discussions would mostly be around one exemplary famous game, the
prisoner’s dilemma game, PD in short. Then the paper discusses some potential future
research and presents conclusion.

2. Literature review
First, let us see some crucial differences between sociological or behavioural approaches to
game theory and quantum-like approach. We refer to the famous PD game for this purpose,
in the simplest formulation of the game with two players Alice and Bob, and two possible
moves for each player C (cooperation) and D(defection), we get a standard payoff matrix,
where if players cooperate the payoff is greater to each than if both defect, but again if one
defect sand other cooperates the defector would get a very high payoff and the co-operator a
very low payoff as compared to other scenarios. In this game if we start with the standard
utility framework, and common knowledge of selfish rationality, then it is well known that
players would be forced to choose [D, D], which is an inferior outcome, even though this is
the dominant NE.

However, as sociologists and behavioural economists have noted since long (Haven
and Khrennikova, 2018) real players (often called as “naïve” players!) do play or
choose strategies differently, many players do choose C instead of D, hence the
question arises why? What might be the underlying social or psychological processes
responsible for such deviated outcomes? In a widely known study, KDF (based on
authors names as in the reference section) (Bruza et al., 2015; Myerson, 2013) proposed
“social projection hypothesis”, the study explored various moral theory perspectives
to account for such deviations: reciprocity approach, benevolence approach, team
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work approach which all indicate that players would expect other players also to
behave in their way of just and fairness, then there might be error approach also
which holds that D being the correct move for both players, naïve players do make
wrong moves at times. However, any specific theory would not explain real moves
under all scenarios.

Now coming back to quantum-like game theory, we observe that here the purpose is
related but fundamentally, from the perspective of probability framework, i.e. how the real
moves chosen by real players, or the results of real games might be described
comprehensively based on a single coherent probability or logical framework. Certainly,
such a description would not be possible in standard Boolean logic or measure theory
framework, which is the underlying mathematical theory for neoclassical game theory, PD
being one example.

Shafir and Tversky (Benjamin and Hayden, 2001) initiated in some way the
behavioural game literature when they studied the experimental results of real PD
games, it was keeping upto standard predictions when in some games a player was
informed about the move of the other, so when Alice knew that Bob’s move was D she
chose D with a high probability and also chose D with a nearly high probability when
she Knew Bob would choose C, however when the players knew nothing or were
uncertain about other players’ move then probability of C went up significantly. This
iconic result has been repeated numerous times (Iqbal and Abbott, 2009; Tversky
and Kahneman, 1973), which clearly challenges the standard game theory
predictions.

The deeper question is then, whether human cognition mainly under “uncertainty” can
be at all described by classical probability theory, hence standard game theory? Certainly
there are many studies (Busemeyer and Bruza, 2012; Bruza et al., 2015) which do suggest
that CP [1] theory might be very critical for accounting quite a few human cognitive
behavior, for example, Dutch Book game (Busemeyer and Bruza, 2012; Bruza et al., 2015).
However in general it might be possible to generalize the structure more, which has been
provided by QP modelling, quite comprehensively (for general references (Haven and
Khrennikov, 2013; Myerson, 2013),).

The central issue is the so-called FTP or formula for total probability, based on CP theory
axioms probability for any event A to happen conditioned on X happening or not is
provided by a simple expression: P(A) = P(X)P(AjX) þ P(X’)P(AjX’), where X’ is
the negation of the event X. Hence if we apply this FTP for PD game then we obtain P
(Dplayer1) = P(Dplayer2) P(Dplayer1jDplayer2) þ P(Cplayer2) P(Dplayer1jCplayer2).
However, Tversky and Shafir experimental outcomes could not be explained by the same
formulation. FTP is certainly a general formula.

QP theory (we briefly explore the basic tenets of QP theory in the Appendix), in
general allows for extra perturbative terms in the FTP, which are known as to be the
“interference” terms. The basic math of computing probabilities in QP framework is
provided by the famous ‘square of the amplitude’ rule or Born’s rule, which when
applied to FTP straight away generates ‘interference’ terms. Such interference terms
have their own history with famous double slit experiments with photons or electrons
(Haven and Khrennikov, 2013).

Here the usage of such modified FTP can generate probabilistic results which are
near perfect match with experimental data, for example in real PD games under
uncertainty condition. Hence, in the next subsection we briefly survey such models
based on QP theory.
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2.1 Two directions or approaches
2.1.1 Describing and updating belief states/cognitive states of players, and computing “inter-
ference terms”. In the Appendix, we provide a demonstration or derivation of interference
terms in the modified FTP, when QP framework is adapted for decision-making, i.e.
computing probabilities of variables assuming certain values (in this case bivariate
variables, which can be generalized), and updating the ‘cognitive’ or belief states of agents.
Here we would also like to mention that in QM there are different formalisms of updating
states; Neumann orthogonal projection where purity of states are not conserved (so called
wave function collapse and hence ‘measurement’ problem has resulted in the history of
quantum foundations, with continual debate), Luder’s update rule where pure states updates
as pure states (there have been many recent studies on distinguishing between Neumann
and Luder ansatzes (Shafir and Tversky, 1992), and then POVM or positive operator based
measurements and updating which are very relevant for cognition modelling (Yearsley,
2017); we provide a brief mathematical detour in the Appendix.

Khrennikov and Haven (Iqbal and Abbott, 2009) have provided detailed computations of
quantum FTP, based on results obtained from simple real games, PD included. One
important inference is that interference effects shows up under the context of uncertainty,
which is again supported by the findings of authors as mentioned above. In classical game
theory there is not much fundamental difference between risky and uncertain contexts,
hence decision-making under uncertainty context seems to be a fundamental contribution
by quantum cognition modelling. Another important work done by Khrennikov (Myerson,
2013) and Haven and Khrennikova (Kahneman et al., 1982) is construction of mental or
cognitive states from the computations of phases in quantum FTP.

2.2 Designing games with superior equilibria
The quantum game theory literature has another very significant side, which is designing
superior games, FTP certainly plays an important role there too, but the main focus is not
just to analyse real players moves but to equip real players with such resources (for example
pure or classical entanglement) which would help them achieve superior strategy profiles
and hence Pare improved equilibria. Here again we are not assuming anything further than
selfish utility maximization.

Designing of quantum games has a long history (Fine, 1982; Khrennikov, 2015; Krueger
et al., 2012), the main technique being to make players share a physical system in such a way
that the payoffs of each player now not only depends on the ‘classical’ moves of the players
but also on the nature of physical systems player share.

Certainly, then EPR type physical systems can be shared by players with entanglement
as the central feature. Works (Fine, 1982; p. 27) show that entanglement guarantees superior
equilibrium outcomes. However there are alternative thoughts too in the quantum game
literature, for example in ref (Khrennikov, 2015; Krueger et al., 2012) we find a quantum
prisoners dilemma game based on the violations of Bell inequalities, in form of Fine’s
inequalities (Haven and Khrennikova, 2018) actually does not give rise to superior NE,
rather DD in a 2� 2 game still remains the NE4.

However, the same papers (Khrennikov, 2015; Krueger et al., 2012) also show that game
designed based on maximal CHSH [2] violation for Matching Penny game generates
superior NE, so there is still some work to be done to find a general theorem or condition for
establishing superior NE with QP framework. Is pure quantum entanglement a necessary
condition for designing superior than classical games? And it is in this backdrop we, current
authors, present briefly our own framework.
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2.3 How quantum games are made?
As described in the literature review quantum game design is a promising and evolving
literature where at least one player in the game has access to quantum strategy. As has been
mentioned earlier to have certain quantum-like features in the game, players at times are
required to share among themselves actual quantum systems such that true quantum
entanglement can be present. It has been shown that presence of entanglement in the shared
physical systems used by the players generates superior games with improved
equilibriums.

However, more simply, we can think not all players having access to quantum strategies,
where such strategies are abstractly represented by GATES [3].

As used profusely in classical information theory, in quantum computation also we can
think of different unitary matrix representation of GATES. Unitary operators are such that,
its adjoint is equal to its inverse, hence U U* = U*U = I where * symbolizes the operation of

transposed complex conjugation. I ¼ 1 0
0 1

� �
is the identity matrix. U is any general

unitary matrix. Hadamard GATE is the unitary matrix represented in 2x2 form as

H ¼ 1ffiffi
2

p 1 1
1 �1

� �
.

Hence if H operates on j0> or j1> states we get resultant superposition states:

Hj0 >¼ 1ffiffiffi
2

p j0i þ j1 > Þ or jþistateð

Hj0 >¼ 1ffiffiffi
2

p j0i � j1 > Þ or j�istate:ð

where as usual j0 >¼ 1
0

� �
and j1 >¼ 0

1

� �
the computational basis.

Hence, in a simple Penny Flipping game, the rule is that Alice first has the opportunity to
operate her strategy on the state of the game, i.e. on the penny (not disclosed), and then Bob,
and then Alice and so on. Also imagine that Alice is the player having access to the
Hadamard GATE operation on the penny, then it can be shown whether Bob plays pure
strategies (either flip the penny or not) or a mixed strategy (of say 0.5 probability of flipping
and 0.5 of not flipping), it is Alice who would always win the game. Hence, we can theorize if
one of the players has access to such quantum strategies then his or her expectation of
payoffs is at least as great as in the case of pure classical game.

Using such quantum game designs in practice however, is still an area open to research
and interpretations. Specifically use of pure quantum entanglements in the design of games
is very hard, since atmospheric decoherence might easily disturb such a delicate setting.
Here comes the novelty of some preliminary results found by the authors of this review,
which we turn to now.

3. Examples of quantum games
3.1 Sequential moves game: Penny flipping
In the simple classical version of the game, say Alice and Bob are the players (rational utility
maximizers). The rules of the game can be Alice first decides to Flip (F) or not Flip (N) the
penny, next move is for Bob, he can choose N or F, and then again for Alice between N or F.
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Additionally Alice wins if the final state of the penny is heads up, and Bob wins if final state
of the game is tails up. No player is allowed to see the intermediate state of the game.

It is easy to show that if the initial state of the penny is heads up, then the below strategic
form can be generated: (say the initial state of the penny was heads up) (Table 1).

Now to “quantize” the game, we need to think that the game’s state can be described in
terms of Qbits (j0> or j1>), and the strategies which players use can be represented by
Unitary operators in general/GATES like Hadamard GATE for a quantum strategy or I or X
operators for classical strategies(I representing N, which means that the player has not
flipped the coin, since the state of the coin say j0> remains the same after this operation, I is

nothing but the identity matrix
1 0
0 1

� �
and X representing F, which means the player has

flipped which changes the state of the penny, F is represented by the X Pauli Matrix,
0 1
1 0

� �
).

There are some observations which follows:
� If Alice plays a Hadamard GATE strategy, then the immediate state of the penny

after the move would be a superposition state: say the initial state of the game was
j0>, then Hj0 > 1ffiffi

2
p j0i þ j1 > Þor jþ >ð

Then if Bob only plays classical strategies (I or X), then Alice always win if the
initial state of the penny was j0>. As when it finally comes to Alice she can
choose to Flip again, and the state would always get back to j0> or heads up.
Symbolically: HIH = HXH = j0>.
It can also be shown that if even Bob plays a mixed classical strategy with some mix
of I and X (in this case with 0.5 probability each), Alice would always win in this
scenario.

� If, however, both Alice and Bob have access to pure quantum strategies, i.e. say they
both play Hadamard GATE only, then there is no scope for a Nash Equilibrium to
emerge.

� However, if both players play mixed quantum strategies, then there is a NE
guaranteed.

Cards Game:
This game has different nature altogether, from the above type game, since “quantizing”

a classical card game actually makes the game fairer. For example, if Bob had 2/3
probability of losing the classical game of cards against Alice, if Bob get access to a
quantum “query” machine he can have fair odds of winning the game. Hence, quantum
game design can also be used for making an unfair classical game fairer.

In a simple version of the classical card game, say Alice has 3 cards, with 2 cards
with same signs on back and front, and 1 card with different signs on the back and

Table 1.
Quantum vs classical

game

BOB N F

ALICE NN (1,�1) (�1,1)
NF (�1,1) (1,�1)
FN (�1,1) (1,�1)
FF (1,�1) (�1,1)
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front of it. The rule of the game is that Alice puts all the cards in a black box and
shakes the box randomly, such that the cards get arranged in a random fashion. Then
Bob is asked to pull a card, without flipping it. Now if the players find that the card
being pulled has same sign on both sides, Alice wins with a payoff þ1, and if the card
has different signs on both sides Bob wins with a payoff þ1, the looser gets a
payoff�1 in all cases.

It is simple to see that this game is unfair, since expected payoffs of Alice and Bobs
are: for Alice 2/3 (þ1)þ 1/3(�1) = 1/3, and for Bob 2/3(�1) þ 1/3(þ1)= �1/3, or in other
words Alice has a probability of 2/3 to win, and Bob has a probability of 1/3 to win. For
attracting Bob into the game, Alice also gives Bob one chance to raise a query about the
cards in the black box, after getting the answer he may decide to play or leave.
However, in this case also the game remains unfair, since Bob gets information about
one card only.

3.2 The quantized game case
Let us assume 0 as one sign or label on the card and 1 being another sign, hence when the
cards are in the Black box with their top up positions, then the general state of the cards can
be described by a Qbit =jr>= jr0 r1 r2> with r I = 0 or 1. Now Bob would like to gain
information about the cards by using a ‘quantum’ query machine. Again we assume that the
machine state depends on jr>, generally such a machine can be described as an Unitary

matrix U ¼ 1 0
0 eipri

� �
ence if i = 0, we have U = I and if it is 1 we have U = Z(Z GATE,

1 0
0 �1

� �
), now since Bob has also access to quantum strategies, namely, the afore

mentioned H, he sandwiches U between two Hs, to get the following state:

HUH ¼ 1þ eipri 1� eipri

1� eipri 1þ eipri

� �
, this becomes the query machine for Bob, where he can

input a Qbit state like j000> and get an information jr>, or in other words if Bob inputs
(HUH� HUH�HUH) j000> = jr0 r1 r2>, or in other words Bob gets information regarding
the top side of all the cards at once!

Hence Bob knows that the state of the up sides of whole system of cards can either be:

S0 ¼ j0 >; j0 >; j1 >f g or S1 ¼ j1 >; j1 >; j0 >f g

With this information Bob knows if the state in the Box is S0 and he pulls a card with j0> as
the upside then he and Alice have equal chance of winning, and thus continues the game.
But if he pulls a card with j1> side up, then he knows he has pulled a losing card and should
quit the game. The opposite holds if the state of the upside cards in the Box is S1. Hence, this
game is not securing win for Bob, but making an unfair game fairer.

4. “Classical optical”modelling of PD game: a brief discussion
Recently (Iqbal and Abbott, 2009) good amount of attention has been directed toward
studying classical entanglement phenomenon, exhibited by classical optics or even by
classical mechanical systems. The critical difference lies in the fact that true quantum
entanglement or non-local correlations (without violating relativistic causality for sure) can
be exhibited either by space- like separated subsystems or entanglement or coupling
between degrees of freedom of the same system (for example path-spin entanglement for
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electrons, etc.), whereas classical entanglement is only for multiple degrees of freedom for a
single classical system.

Hence based on the above discussed literature of designing superior strategies or games
relative to standard classical games, the question arises whether the shared physical system
among the players might have ‘classical entanglement’ and still generate superior strategies
which results into superior NE?

Earlier literature (Li et al., 2006) have suggested that quantum entanglement guarantees
better NE generation, but now we have demonstrated even much simpler shared physical
systems might generate similar NE, for example for PD game. For the fuller mathematical
treatment, we refer to our recent work (Li et al., 2006). Here we briefly mention the salient
features of our framework.

To re-design the PD game such that superior strategy profiles emerge, we closely follow
the ref (Rasmusen, 1994) with (a) sources of two polarized classical light beams each for one
player (b) a set of optical instruments which help each player to manipulate each light beam
in a strategic manner (c) a measurement device (in this case polarization analyzer) which
generates payoffs for every player

4 In this related studies, classicality of the shared physical system between the players
has some degree of correspondence to factorizability of joint probabilities, however non-
factorizability of those joint probabilities may not always mean violations of Bell
inequalities, hence non-factorizability is a sufficient but not necessary condition for
“quantumness” of the shared physical system based on the polarization sates of each optical
beam. Again, the game set up is a common knowledge to all players, say to Alice and Bob in
case of a 2x2 game.

Here then, we assign two vectors jC> and jD> to two possible classical strategies C and
D (co-operate and defect namely) which spans the 2D Hilbert space H of a polarized beam.
Hence state of the game at every instant is provided by a vector in the tensor product space
HA�HB spanned by the basis jCA>�jCB>, jCA>�jDB>, jDA>�jDB>, jDA>�jCB>,
now if jC> is assigned as j0> and jD> is assigned as j1>, two standard basis vectors on the
Poincare sphere [4], representing horizontal and vertical polarization respectively, then, the
‘optical’ states with Alice and Bob will be: jc>I = cos ϴi jC> I þe iw i sinϴijD> I where I
denotes Alice or Bob. With 2ϴ in the range [-p /2,þp /2], and 2w in the range [0, 2p ].

Based on this representation we can then define, ‘strategy space’ of the players using
Unit Matrices [5] U (2), where U is the unit matrix symbol, with the property that
U*U=UU*=I, where * here means the operation of complex conjugate transposition, and I is
the identity matrix. Hence, we can define U(0,0) which is the identity matrix or operator in
operator representation, and the other matrices in form of Puli Matrices. Again based on the
algebra followed by the Pauli matrices [s i, s j] = 2ie ijksk, which forms a closed set of non-
trivial operators, one can associate at most three independent strategies. Another important
advantage of this modelling is since the results are based on general Non-Abelian algebra,
there is no presence of Plank’s constant in our equations, which has always been a worry in
quantum-like modelling, due to lack of proper interpretation.

Hence, we find three independent strategies emerging out, C which corresponds to s 3, D
which corresponds to is 2 and L (say, which means abstain) which corresponds to s 1. Hence,
we already see extended strategy profiles for players, it may also be noted that a linear
combination of C and L would produce H, the well-known Hadamard Gate.

We would request the readers to refer to our detailed framework (Li et al., 2006) for the
full mathematical model. Here we just mention that based on the extended strategy profile, if
classical entanglement feature is introduced in the system of optical beams, then D,D no
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longer remains the dominant NE, rather we get a Pareto improved NE. over all there are
certain advantages of this framework as we list below:

� We have distinguished our frame work of designing strategic decision-making in
form of a prisoners dilemma game (PD), which is based on novel features of classical
optics; mainly classical entanglement which is robust; from pure ’quantum like’
description of similar games, which are often called as ’quantum prisoners
dilemma’ (QPD).

� We have been able to demonstrate the main point of departure from neoclassical
game theory, that is, providing a mechanism to bypass the stubbornly dominant
’defection’ Nash equilibrium in a PD.

� We have demonstrated that based on classical optical modelling (COM, a frame
work of cognition model which we have developed recently) or designing of PD we
can achieve, or demonstrate Pareto superior equilibrium outcomes even in non-
repetitive PD.

� Our design of PD is thus an alternative to extant models which try use pure
quantum entanglement (which is very fragile due to noise in the environment, in
this case information environment), and hence our design is practicable while using
simple optical tools, namely polarization. We have provided a detailed description of
our design in the paper with simple geometric representations of decision moves by
players via rotations of Poincare sphere. Such correspondence between decision-
making and rotation operations on Poincare sphere is an elegant way to capture
new strategy profiles of players, and Pareto improved equilibrium points.

Another novel feature of ’quantum like’ game theory has been to compute conditional
probabilities, and provide an alternative formula for total probability (FTP), which
demonstrates departures of behaviour of real players from predicted Nash equilibria. Our
FTP is based on the earlier developed COM framework, which relies on Luder’s updating
rule rather than Neumann projection rule used often in extant QPDs.

Overall, a playable frame work is built in current paper with future progression towards
repeated PD and n persons PD.

5. Further discussions
The main contributions of quantum-like modelling in game theory have been two fold,
one describing real plays under uncertainty more faithfully, where Khrennikov and
Haven [op cit] have suggested one mechanism to reconstruct cognitive states of players
based on the interference terms computed from the quantum FTP, and two, designing
superior games. QPD design is efficient since we obtain Pareto improved equilibria in
the single shot game itself, rather than playing the game for many rounds, which is the
standard way to have cooperative equilibria emerge in such games. The current
authors have demonstrated recently (Li et al., 2006) that rather than pure quantum
resource based game design if we use much simpler classical optics based design/
resources then the novel feature of ‘classical’ entanglement can be exploited to arrive at
similar superior equilibria.

One of the main claims of quantum game theory is that of quantum supremacy. In other
words if in a standard game (for example penny flipping game, or any such zero sum game,
where utility functions are symmetric and opposite to each other’s players, such that ones
gain is exactly others loss) if one player is endowed with a quantum strategy, and the other
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player has no access to it, then the former would always win irrespective of whether the later
plays pure or mixed strategies.

By quantum strategy here we mean analogous operations to Classical GATES like
NOT, AND, OR, etc. for example one of the most important GATE or strategy here is
Hadamard GATE which can be given a 2 � 2 matrix representation, such that when
this operation is done on the state of the game being played a non-trivial superposition
state is resulted, which is fundamentally different from that in classical games. In case
of penny flipping game it can be easily shown that if one player has access to such a
strategy (generally any unitary matrix representation but specifically Hadamard
GATE) then irrespective of pure or mixed strategies played by the other player, the
former is sure to win.

We have also seen, as in the card game, that if one of the players get access to quantum
strategies (in this case a quantum query machine) then the information gained will be
greater than in the case of classical game, which would make the game fairer for the player.

QP framework can also be used in describing noise or error in games, with the help of
Positive operator representation of measures or moves in the game.

Among many striking features of cognitive systems (for example contextuality
which we have based our framework on) is ‘noise’. There may be many sources of
noise (Yearsley, 2017), either based on faulty framing of experiments, here for
example, faulty framing of questions/questionnaire posed to agents, or inability of
agents to provide sharp responses (yes or no, 0 or 1 etc.). Recently, POVM has been
used in cognitive modelling related to describing choice behaviour of agents under
uncertainty; this is a very helpful tool in describing agents’ behaviour in case of
uncertainty in financial markets since many interesting results like order effects can
be explained.

Noise in the system has an important interpretation in the decision theory literature; for
example, say due to some noise in the final choice action, or due to some error, the agent
rather choosing the optimal chooses a wrong option, now such actions can be represented by
positive operators, rather than more stringent projection operators as described earlier. One
important example could be the suboptimal choice of portfolios by agents, which then can
have significant impacts for mispricing of assets.

In real cognitive experiments, or, choice making by agents even under full information,
there can be errors, for example if there are two mutually exhaustive choices A and B, then
there may be agents who would rather prefer A but instead choose B and vice versa. Hence
in such cases choices cannot be represented by typical orthonormal projector operators,
rather we would need some operators, say EA whose expectation value in the state jA> is
close to 1 but with an error, similar for EB. In the basis of {jA>, jB>} such operators can be
termed as positive operators.

Positive operators such as these, are, one, complete: EA þ EB = 1, and positive,
since their Eigenvalues are >0, which also means, for any general state (mixed state
like r ), Trace (rEA) e [0,1], and

P
(Trace rEA)=1, where sum is over the chosen

basis.
As we have described earlier Positive operators are a class of projection operators which

have more general properties, for example, if E is one positive operator then it can be
conceived of as E = M’M, where M is a self-adjoint operator and M’ is the transpose
conjugate of M, such that for all such observations

P
M’M= I where I is the identity

operator. Again, M can be given a square matrix representation, for example, if e is the noise
in the system then:
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M ¼
ffiffiffi
1

p � e 0
0

ffiffiffi
e

p
" #

:

There are several interesting properties of positive operators (28), such as: they are non-
repeatable (E2 is not equal to E,), they are not unique, they are used when the basic elements
in the Hilbert space of the model need not be orthogonal, they are used when there are more
responses than there are basis states, this last property can be used in the decision-making
models with noise in the system.

Quantummultiplayer games: as of now, we have mainly discussed some two player quantum
games, and demonstrated that there are improvements from the classical counterparts. Benjamin
et al. (2001) first introduced quantummultiplayer games, where there are n players with n> 2. In
such games due to entanglement between choices of players, equilibria emerge (which in
quantum theory language is called as pure coherent equilibrium) which de facto act like binding
contracts, which prevent players from successfully betraying each other. Though the
technicalities involved here is of higher degree, and it would not be possible to deal in details in
this brief review, we can still spell out some basic features, as below, in two steps.

(1) Benjamin et al. (2001) quantize a simple multiplayer game (we can think of a Bit flipping
game, where 0 and 1 bits are first sent to the players, who then can either do nothing or
flip the bits sent to them, and then finally the output state is measured, hence as in the
above penny flipping game, we can model non flipping by I and flipping by X GATE
operations), by setting up a physical system. This is a crucial step since if some
quantum physical features like entanglement has to be imbibed in the game, a physical
set up is needed (for example in the PD game as we discussed above briefly); and

(2) Hence where as in the classical bit flipping game, each player has either to flip or not
flip a bit sent to them, in quantum game case, they have Qbits rather than bits, and
such Qbits are entangled. The game is designed in such a way that it is a
generalization of the classical game. Or in other words when players restrict
themselves from choosing from {I, X} only the classical game payoff is recovered. A
quantum strategy then can be J = 1/H2 (I�n þ i X�n), where J is an operator which
commutes with any operator formed from I and X in the subspaces of different Qbits.

6. Concluding remarks
This field of “quantum games” has emerged strongly since early 2000s, when
Mathematicians started demonstrating that if “rational” agents share some physical
systems (like quantum circuits or even very basic optical polarizers as we have shown) on
which they can operate/measure some things, which can be mapped to their strategic moves,
then there can arise superior Nash Equilibria.

The famous prisoners dilemma game is shown to generate superior NE (in one shot) if
players share a physical system among them which demonstrate some special features like
Entanglement. The main trick is to re-design the standard game in such a way that new
strategies emerge, which are Pareto improvements.

However, there have been a lot of debates in the literature as to what bare min requirement
generates such new strategies? It seems from different studies that pure quantum
entanglement (or equivalently ’Bell inequality’ violations) may just be a too strong condition,
rather another weaker condition known as ’classical entanglement’may fit in.

We have demonstrated this recently in our “classical optical modelling” of PD game, but
a general mathematical proof might be of fundamental value.
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Notes

1. CP stands here for Classical Probability Theory. QP for quantum probability.

2. CHSH inequalities were suggested [4] for testing any presence of non-local correlations in
experimental outcomes, and is widely used in quantum theory framework.

3. GATES are basically logical operations, which take one or multiple Binary inputs and generates
one output, widely used in classical and quantum information theory.

4. Poincare sphere is a widely used tool for describing states, like polarization states in Optics as
well as in information theory in general. https://encyclopediaofmath.org/wiki/Poincar%C3%
A9_sphere

5. https://en.wikipedia.org/wiki/Unitary_matrix
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Appendix
Basics of QP(Quantum Probability) framework

We begin with a brief comparison between classical probability theory (CPT) and quantum
probability theory (QPT):

The main features of CPT are:
� Events are represented by sets, which are subsets of. Sample space, sigma algebra,

measure (probability)*, are the main features of the related Kolmogorov measure theory.
� Boolean logic is the type of compatible logic with CPT, which allows for deductive logic,

and basic operations like union and intersection of sets, DeMorgan Laws of set theory
are valid.

� Conditional probability: P(ajb) = p(a and b)/p(b); p(b) > 0 We see conditional probability
is a direct consequence of Boolean operations

The main features of Quantum Probability Theory are:
State space is a complex linear normed vector space: Hilbert space; Finite/infinite D, symbolized

as HH is endowed with a scalar product (positive definite), norm, and an orthonormal basis, non-
degenerate Any state can be visualized as a ray in this space Superposition principle: which states
that a general state can be written as a linear superposition of ‘basis states’, in information theory
language the basis states are j0> or j1>.

Measurement: most of the times projection postulate; Measurement implies projection onto a
specific Eigen sub-space. Probability, updating can be visualized as sequential projections on Eigen
subspaces Non –Boolean logic is compatible with such state space structure, which means violation
of commutation and associative properties.
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The main features of Non-Boolean logic are
Algebra of events is prescribed by quantum logic. Events form an event ring R, possessing two
binary operations, addition and conjunction P (A U B) = P(BUA) (this Boolean logic feature is
invariant in Quantum logic). P{AU(BUC)} = P{(AUB)U(AUC)} (associative, property also holds
good):

AUA ¼ A idempotencyð Þ

P (A and B) # P(B and A) (non -commutativity, incompatible variables) A and (B UC) # (A and B) U
(A and C) (no distributivity)

The fact that distributivity is absent in quantum logic was emphasized by Birkhoff and von
Neumann. Suppose there are two events B1 and B2 that, when combined, form unity, B1 | B2 =
1. Moreover, B1 and B2 are such that each of them is orthogonal to a nontrivial event A #0, hence
A \ B1 = A \ B2 = 0. According to this definition, A \ (B1 | B2) = A \ 1 = A. But if the
property of distributivity were true, then one would get (A \ B1) | (A \ B2) = 0. This implies
that A = 0, which contradicts the assumption that A # 0.

The main features of quantum-like modeling of belief states are
Bruza et al. (27): cognitive modelling based on quantum probabilistic frame work, where the main
objective is assigning probabilities to events space of belief is a finite dimensional Hilbert space H,
which is spanned by an appropriate set of basis vectors observables are represented by operators
(positive operators/Hermitian operators) which need not commute:

A; B½ � ¼ AB –BA ¼ 0

Generally, any initial belief state is represented by density matrix/operator, outer product of c with
itself r =jc ih c j, this is a more effective representation since it captures the ensemble of beliefs:

Pure states and mixed states
Mixed states:

P
w jc ihc j, hence mixed state is an ensemble of pure states with w’s as

probability weights.
Some properties of r : r = (r*)T, for pure states r = r^2, where T stands for transpose

operation. (c , r c )>0: positivity, Trace r = 1.
Measuring the probability of choosing one of the given alternatives, which is represented by the

action of an operator on the initial belief state.
While making decision superposition state collapses to one single state (can be captured by the

Eigen value equation).
Observables in QPT represented by Hermitian operators:

A ¼ A*ð Þ ^T

E(A) = Tr(A r ), every time measurement is done one of the Eigenvalues of the A is realized.
A=

P
aP spectral decomposition rule: a’s are the Eigen values and P’s are the respective

projectors which projects the initial state to the Eigen subspace with a specific a:

Trace formula : p aið Þ ¼ Tr Pi rð Þ
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As soon as the measurement is done the state r ’: Pi rPi/Tr(Pi r ) Simultaneously updating of the
agents’ belief state.

A quick review of formula for total probability/law of total probability (Ltp), modified in
quantum-likeset up.

First, we see the LTP in classical set theory as below:

P Band AorCð Þð Þ ¼ P BandAð Þ þ P BandCð Þ measuretheoreticadditivityð Þ

P BandAð Þ ¼ P Að ÞP BjAð Þ; and;P BjAð Þ ¼ P BandAð Þ=P Að Þ

Hence, it follows:

P B j Aor Cð Þ� �
¼ P BjP Aor Cð Þ ¼ P BjAð Þ*P Að Þ þ P BjCð Þ*P Cð Þ	 


=P Aor Cð Þ�
Hence, in particular if P(A or C) =1, then P(B) = {P(BjA)*P(A) þ P(BjC)*P(C)}, this is the LTP (law of
total probability) as we know in familiar CPT.

But in the QPT (quantum probability theory) additivity does not follow, which means LTP is
violated since there are interference terms

To get the modified LTP as in non Kolgomorovian QDT set up we have to go through the
concept of positive valued operators (POVM) as below:

A positive operator valued measure (POVM) is a family of positive operators {Mj} such thatP
Mj = I, where I is the unit operator. It is convenient to use the following representation of POVMs:

Mj ¼ V* j Vj

where Vj: H ! H are linear operators. A POVM can be considered as a random observable. Take
any set of labels a1,. . .,am, e.g. for m = 2,a1 = yes, a2 = no. Then the corresponding observable
takes these values (for systems in the state r ) with the probabilities p(aj) : pr (aj) = TrrMj =
TrVjrV*j.We are also interested in the post-measurement states. Let the state r was given, a
generalized observable was measured and the value aj was obtained. Then the output state after
this measurement has the form: r j =VjrV * j/(TrVjrV* j).

Both order effects and interference terms in LTP can be demonstrated using POVMConsider
two generalized observables a and b corresponding to POVMs Ma = {V * j Vj} and Mb ={W* j Wj},
where Vj : V (aj) and Wj = W(b j) correspond to the values aj and b j. If there is given the state r
the probabilities of observations of values aj and b j have the form:

pa að Þ ¼ TrrMa að Þ ¼ TrV að ÞrV* að Þ; p bð Þ ¼ TrrMb bð Þ ¼ TrW bð ÞrW* bð Þ:

Now we consider two consecutive measurements: first the a-measurement and then the b-
measurement. If in the first measurement the value a = a was obtained, then the initial state r was
transformed into the state:

ra að Þ ¼ V að ÞrV* að Þ= TrV að ÞrV* að Þ� �
For the consecutive b-measurement, the probability to obtain the value b = b is given
by (b ja) = Trra(a)Mb(b ) = TrW(b )V(a)rV*(a)W*(b )/(TrV(a)rV*(a))
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This is the conditional probability to obtain the result b = b under the condition of the result
a = a. We set p(a,b ) = pa(a)p(b ja).

Now since operators need not commute p(a,b ) = p(b , a).
We recall that, for two classical random variables a and b which can be represented in the

Kolmogorov measure-theoretic approach, the formula of total probability (FTP) has the form pb(b ) =P
pa(a)p(b ja).
Further we restrict our consideration to the case of dichotomous variables, a = a1,a2 and b =

b 1,b 2.
FTP with the interference term for in general non-pure states given by density operators

and generalized quantum observables given by two (dichotomous) PVOMs:

pb bð Þ ¼ pa a1ð Þp b ja1ð Þ þ pa a2ð Þp b ja2ð Þ þ 2l
p

pa a1ð Þp b ja1ð Þpa a2ð Þp b ja2ð Þ	 

;

or by using ordered joint probabilities pb(b ) = p(a1,b ) þ p(a2,b )þ 2l bHp(a1,b )p(a2,b ).
Here the coefficient of interference l has the form: l= Trr{W*(b )V*(ai)V(ai)W(b )�V*(ai)
W*(b )W(b )V(ai)}/2Hpa(a1)p(b ja1)pa(a2)p(b ja2) Introduce the parameters:

gab ¼ TrrW* bð ÞV* að ÞV að ÞW bð Þ= TrrV* að ÞW* bð ÞW bð ÞV að Þ� �
¼ p b ;að Þ=p a; bð Þ

This parameter is equal to the ratio of the ordered joint probabilities of the same outcome, but in the
different order, namely, “b then a” or “a then b”. Then:

Interferenceterml ¼ 1=2fp p a1; bð Þ=p a2; bð Þ* ga1b � 1ð Þð
þp

p a2; bð Þ=p a1; bð Þ* ga2b � 1ð Þð

In principle, this coefficient can be larger than one. Hence, it cannot be represented as l = cosu for some
angle (“phase”) u , cf. However, if POVMs Ma and Mb are, in fact, spectral decompositions of Hermitian
operators, then the coefficients of interference are always less than one, i.e. one can find phases u .

One important note is that such phase terms cannot always be expressed
in trigonometric terms, Hyperbolic phase terms are also possible, which are typical of results
obtained from decision-making models (Haven and Khrennikov, op cit).

Entanglement mathematics
As we have seen throughout that quantum theory allows superposition of the basis states to
form new states, many of such superpositions, but not all, poses the quality of entangled states.
For example, we start with a qubit system (i.e. a system which has only two basis states j0> and
j1>, where they may represent up and down states, for example in decision-making models they
represent belief sets of decision makers as up state or down state related to any future event),
now such a system can be written in superpositions of the basis states in a number of ways:

jx> = 1/H2 {j00>þj11>}, this state can be called as an entangled state, since say if these
qubits are given to Alice and Bob, and even they are separated light years apart, if Alice measures
her system there is always a 50–50 chance of finding a j0> or j1>, however as soon as she discovers
that it is determined with 100% probability that Bob has to have j0> in the first case and j1> in the
second case.
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Hence, there is no superluminal communication happening, only that subsystems are in a
random state and the system as a whole is in a pure state.

Again, another hallmark of such states is that mathematically they are not separable, in the
sense that jx> cannot be written as a sum over tensor products of only j0> or j1>.

Comparatively, separable states are like jy> = 1/H2{j00>þj01>}, in such a case Alice will always
with probability 1 measure her subsystem to be in j0> but Bob still will have a 50% chance of j1> or
j0>, again jy> can be separated as 1/H2{j0>(j0>þj1>)} which means a tensor product between
j0> and the superposition of j0> and j1>.

Measure of degree of entanglement: concurrence measure is a type of measure of degree of
entanglement, say a general entangled state is written as: a j00>þbj01>þcj10>þdj11>

Then the state is maximally entangled if jad-bcj=1, and there is no entanglement if jad-bcj=0.

Corresponding author
Sudip Patra can be contacted at: spatra@jgu.edu.in

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

AJEB
4,3

66


	67_EM-AJEB200012_print
	AJEB_4_3_Text_V01

