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A class of corners of a Leavitt path algebra 

Trinh Thanh Deo 

 

Tóm tắt— Let E be a directed graph, K a field 

and LK(E) the Leavitt path algebra of E over K. The 

goal of this paper is to describe the structure of a 

class of corners of Leavitt path algebras LK(E). The 

motivation of this work comes from the paper 

“Corners of Graph Algebras” of Tyrone Crisp in 

which such corners of graph C*-algebras were 

investigated completely. Using the same ideas of 

Tyrone Crisp, we will show that for any finite subset 

X of vertices in a directed graph E such that the 

hereditary subset HE(X) generated by X is finite, the 

corner ( ) ( )( )
 

 K
v X v X

v L E v  is isomorphic to the 

Leavitt path algebra LK(EX) of some graph EX. We 

also provide a way how to construct this graph EX. 

Từ khóa— Leavitt path algebra, graph, corner. 

1 INTRODUCTION 

eavitt path algebras for graphs were 

developed independently by two groups of 

mathematicians. The first group, which consists of 

Ara, Goodearl and Pardo, was motivated by the 

K-theory of graph algebras. They introduced 

Leavitt path algebras [3] in order to answer 

analogous K-theoretic questions about the 

algebraic Cuntz-Krieger algebras. On the other 

hand, Abrams and Aranda Pino introduced Leavitt 

path algebras LK(E) in [2] to generalise Leavitt's 

algebras, specifically the algebras LK(1,n). 

The goal of this paper is to describe the 

structure of a class of corners of Leavitt path 

algebras LK(E). The motivation of this work 

comes from [4] in which such corners of graph 

C*-algebras were investigated completely. Using 

the same ideas from [4], we will show that for any 

finite subset X of vertices in a directed graph E 

such that the hereditary subset HE(X)  generated 
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by X is finite, the corner ( ) ( )( )K

v X v X

v L E v
 

   is 

isomorphic to the Leavitt path algebra LK(EX) of 

some graph EX. We also provide a way how to 

construct this graph EX. 

The graph C*-algebra of an arbitrary directed 

graph E plays an important role in the theory of 

C*-algebras. In 2005, G. Abrams and G. Aranda-

Pino [2] defined the algebra LK(E) of a directed 

graph E over a field K which was the universal K-

algebra, named Leavitt path algebra, generated by 

elements satisfying relations similar to the ones of 

the generators in the graph C*-algebra of E and 

was considered as a generalization of Leavitt 

algebras L(1,n). Historically, G. Abrams and G. 

Aranda-Pino found his inspiration from results on 

graph C*-algebras to define Leavitt path algebras, 

so that one of first topics in Leavitt path algebras 

was to find some analogues for Leavitt path 

algebras of graph C*-algebras such as in [1, 5]. In 

[4], the class of corners PXC*(E)PX were 

investigated completely when X was a finite 

subset of E0 with HE(X) was finite. In the present 

note, we consider the similar problem for Leavitt 

path algebra LK(E). In the next section, we recall 

briefly the notation and results on the graph 

theory. In Section 3, we present the way to find a 

graph EX and an isomorphism of 

( ) ( )( )K

v X v X

v L E v
 

   and LK(EX). The ideas and 

arguments we use in Section 3 is almost similar to 

[4] but there are two important things here: 

arguments in [4] will be rewritten according to the 

language of Leavitt path algebras and, secondary, 

we will modify a little bit these arguments to pass 

difficulties of hypothesis between graph C*-

algebras and Leavitt path algebras. 

2 PRELIMINARIES ON GRAPH THEORY 

A directed graph E = (E0, E1, r, s) consists of 

two countable sets E0, E1 and maps r,s: E0  E1. 

L 
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The elements of E0 are called vertices and the 

elements of E1 edges. For each edge e, s(e) is the 

source of e, r(e) is the range of e, and e is said to 

be an edge from s(e) to r(e). A graph is row-finite 

if s1(v) is a finite set for every v E0. If E0 and E1 

are finite, then we say that E is finite. A vertex 

which emits no edges is a sink. A path  in the 

graph E is a sequence of edges  = e1…en such 

that r(ei) = s(ei+1) for i = 1, …, n1. We call s(e1) 

the source of , denote by s(); r(e1) is the range 

of , denote by r(); the number n is the length of 

. If  and  are paths such that  =  for some 

path , then we say that  is an initial subpath of 

, denote by  . 

For n  2, let En be the set of paths of length n, 

and denote by *

0

.n

n

E E


  If we consider every 

vertex as a path of length 0 and edge as a path of 

length 1, then E* is the set of paths of length n  0. 

Let F be a subgraph of E, that is, F is a graph 

whose vertices and edges form subsets of the 

vertices and edges of E respectively. For vertices 

u,vE0 we write uF v if there is a path F*  

such that s() = u and r() = v. We say that a 

subset X  E0 is hereditary if vX and uE0 such 

that vF u, then u  X. For any subset Y  E0 we 

shall denote by HE(Y) the smallest hereditary 

subset of E0 containing Y. The set HE(Y)\Y is 

referred to as the hereditary complement of Y in 

E. The subgraph T=(T0,T1,r,s) is called a directed 

forest in E if it satisfies the two following 

conditions: 

(1) T is acyclic, that is, for every path e1…en 

in T, one has r(ei)  s(ej) if i  j. 

(2) For each vertex v in T0, |T1r1(v)|  1. 

If T is a directed forest of E, then Tr denotes 

the subset of T0 consisting of those vertices v with 

|T1r1(v)| = 0, and Tl denotes the subset of T0 

consisting of those vertices v with |T1s1(v)| = 0. 

The sets Tr and Tl are called the roots and the the 

leaves of T. 

The following lemmas are from [4]. 

Lemma 1 ([4, Lemma 2.2]). Let T be a row-finite, 

path-finite directed forest in a directed graph E. 

Then the following statements hold: 

i) For each vT0 there exists a unique path v 

in T* with source in Tr and range v. 

Moreover, for u, vT0, v T u  v u  

there exists a unique path v,u  T* with 

source v and range u. 

ii) For each vT0 there exist at most finitely 

many vertices uT0 with v T u. 

iii) For each vT0 there exists at least one uTl 

such that v T u. 

iv) Suppose u, v  T0 have v u and u  v. 

Then there exists a unique edge es1(v)T1 

such that ve u. If f  s1(v)T1 satisfies 

u vf, then f = e and ve = u. 

The key result of building a new graph EX in 

this paper is the existence of the directed forest 

with given roots. In general, a forest with given 

roots [4, Lemma 3.6] may not exists, but in some 

special cases, we can find such forest. 

Lemma 2. Let E = (E0,E1,r,s) be a directed graph 

and X a finite subset of E0. If HE(X) is finite, then 

there is a row-finite, finite-path directed forest T 

in E with Tr = X and T0 = HE(X). 

Proof. This lemma is just a corollary of [4, 

Lemma 3.6].  

3 RESULTS 

We have mentioned graph C*-algebras in the 

Introduction, but this paper focus only on Leavitt 

path algebras. In this section, before going to the 

main goal of paper, we briefly recall just the 

definition of the Leavitt path algebra of a graph. 

For a definition of these algebras with remarks 

one can see in [2]. 

Given a graph E = (E0,E1,r,s), we denote the 

new set of edges (E1)*, which is a copy of E1 but 

with the direction of each edge reversed; that is, if 

e  E1 runs from u to v, then e* (E1)* runs from v 

to u. We refer to E1 as the set of real edges and 

(E1)* as the set of ghost edges. 

The path p = e1 ... en made up of only real edges 

is called the real path, and we denote the ghost 

path en
*... e1

* by p*. 

Let K be a field and E a directed graph. The 

Leavitt path K-algebra LK(E) of E over K is the 

(universal) K-algebra generated by a set {v| vE0} 

of pairwise orthogonal idempotents, together with 



TẠP CHÍ PHÁT TRIỂN KHOA HỌC & CÔNG NGHỆ:  77 
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a set of variables {e, e*| eE1} which satisfy the 

following relations: 

(1) s(e)e = er(e) =e for all eE1. 

(2) r(e)e* = e*s(e) =e for all eE1. 

(3) *
, ( )e ee e r e    for all 1, .e e E  

(4) 
1

*

( )e s v

v ee


   for every vE0 that emits 

edges. 

Let T be a path-finite directed forest in E. For 

each vT0 let 
*

v T   be the path given by part (i) 

of Lemma 1 (in particular, for , vv X v  ). Now 

for each vT0, define 

1 1

* * *

( )

: . . . .v v v v v

e T s v

Q ee   
 

    

Clearly, 
* .v vQ Q  

Lemma 3. For each vT0, Qv = 0 if and only if 

1 1( ) .s v T    Also, 

0

*

,

. . (1)
 

 
T

v v u

u T v u

Q   

Proof. The proof of this lemma is just a slight 

modification of [4, Lemma 3.7]. We first show the 

first statement. The fact that if 
1 1( ) ,s v T    

then Qv=0 is from first arguments in [4, Lemma 

3.7]. Now we show that if Qv=0, then 

1 1( )s v T    for every vT0. If v is a sink in E 

then 
* 0.v v vQ     If v emits an edge 

1 1f E T  

then 

1 1

* * *

( )

 . .v v v v v

e T s v

Q ee   
 

  

1 1

* * * *

( ) ( { })

. . 0.( )v v v v

e s v T f

ff ee   
 

    

The rest of the proof is from the second part of 

[4, Lemma 3.7] with replacing ( )vS  and *
( )vS  by 

( )v  and 
*( )v  respectively for every vT0. 

Let E be a directed graph, and assume that X is 

a finite subset of E0 such that HE(X) is finite. By 

Lemma 2, there exists a row-finite, path-finite 

directed forest T in E with Tr=X and T0 = HE(X). 

Let 

0 0 1 1( ) : { : ( ) },V T T v T s v T      

that is, V(T) consists of vertices which are sinks 

and emit at least one edge not belonging to T. By 

Lemma 3, 0vQ   iff vV(T). 

For each e in E1\T1 and uV(T) such that  

0( ), ( ) , ( ) ,Ts e r e T r e u   

we define pe,u as the path ( ), .r e ue  Using the same 

techniques as in the proof of [4, Lemma 3.9], we 

obtain that each edge e in E1\T1 with s(e)T0 

gives at least one path pe,u for some uV(T) such 

that r(e) T u. In particular, if vT0 is a singular 

vertex of E then the set of all pe,u with source v is 

finite. 

For pe,u with uV(T) and r(e) T u, define  

*
, ( ) ( ): . . . .e u s e r e uT e Q   

We have: 

Proposition 4. For each u,vV(T), we have: 

i) 0v wQ Q   iff .v w  

ii) *
, ,e u e u uT T Q  and *

, , .e u f v u vT T Q Q  

iii) * *
, , ( ) , , .e u e u s e e u e uT T Q T T  

Proof. Suppose v and w are distinct elements of 

V(T) such that 0,v wQ Q   then 
* 0.v w    It is 

easy to see that one of v  and w  is an initial 

subpath of the other. Assume, without loss of 

generality, that ,w v   and let 
1 1( )f T s w   

be the edge given by Lemma 1 (iv). Then 

1 1

* * * * * *

( )

. . . . ,v w w v w w

e T s w

ee ff     
 


 

because f is a unique edge in 
1 1( )T s w  with 

the property that .w vf   Now 

* * * *. . ,v w w vff     

and thus 

1 1

* * * *

( )

. . .( )v w v v v w w w w

e T s w

Q Q Q ee     
 

  

* *( ) 0.v v v v vQ        

Hence 0v wQ Q   if and only if v = w  
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ii) Turning our attention to the Te,u, fix pe,u 

with uV(T) and ( ) .Tr e u  By definition of pe,u 

we must have ( ) .r e u   Therefore 

* * * *
, , ( ) ( ) ( ) ( )

*
( ) ( )

*
( ) ( )

. .

. . ( ). .

. . .

( )   

 

 





 

e u e u u r e s e s e r e u

u r e r e u

u r e r e u u

T T Q e e Q

Q r e Q

Q Q Q

 

Take pe,u and pf,v with u,vV(T) and suppose 

*
, , 0.e u f vT T   Now  

* * *
, , ( ) ( ) ( ) ( ). . . . . , (2)e u f v u r e s e s f r f vT T Q e f Q     

and in order for this product to be nonzero we 

must have either 

( ) ( )s f s ef e 
 
or ( ) ( ) .s e s fe f   

Since neither e nor f belongs to T1 (so that neither 

e nor f may be a part of any w ), this implies that 

( ) ( )s e s fe f  , and so e = f. Putting e = f in (2) 

gives 

* *
, , ( ) ( ). . . ,e u f v u r e r e v u vT T Q Q Q Q    

and in order for this product to be nonzero we 

must have u = v. 

iii) We have 

1 1

* * *
( ) ( ) ( ) ( ) ( )

*
( ) ( )

( ( ))

* * *
( ) ( ) ( ) ( )

( ) ( )

( )( )

( ) ( )( ) 0 ( ) .

(

)

   

 

   

 

 

  



s e s e s e s e s e

s e s e

f T s s e

s e s e s e s e

e Q e

f f

e e e e

Since 1
( ), s ee T e  is not an initial subpath of any 

( )s e f  for 
1.f T  Thus 

* *
, , ( ) , ( ) ( ) ( )

* *
, ( ) ( ) , ,

. .( ) . )

. ( ) .

 

 



 

e u e u s e e u v r e s e s e

e u v r e s e e u e u

T T Q T Q e Q

T Q e T T
 

  

Proposition 5. For each u,vV(T), we have: 

i) .u v uv uQ Q Q  

ii) , , ( ) ,e u u e u s e e uT Q T Q T  ; and 

* * *
, , , ( ) .u e u e u e u s eQ T T T Q   

iii) *
, , .e u f v uv uT T Q  

iv) For each ( ),v V T  we have 

*
, ,

( )

.v e u e u

s e v

Q T T


   

Proof. i) By Proposition 4i) and ii). 

ii) By i) and by the definition of Te,u we have 

the first equation. 

For the second equation, by Proposition 4iii), 

we have 

* *
, , ( ) , , .e u e u s e e u e uT T Q T T  

It follows that 

* *
( ) , , , , .s e e u e u e u e uQ T T T T  

Therefore 
*

( ) , ( ) , , ,

*
, , ,

, .







s e e u s e e u e u e u

e u e u e u

e u

Q T Q T T T

T T T

T

 

iii) By Proposition 4i) and ii). 

iv) Suppose vV(T) is nonsingular in E. Then, 

(CK2) in LK(E) gives 

1

*

( )

.
e s v

v ee


   

Now 

1 1

1 1

1 1

1 1

* *

( )

* * *

( )

* *

( )

*

( )\

( )( )

. .

( ) . (3)

( )

( )

   

   

 

 









 

 

 



 

 

 











v v v v v

e T s v

v v v v

e T s v

v v

e T s v

v v

e s v T

Q e e

v ee

v ee

e e

 

Fix an edge 
1 1( ) \ .e s v T  This edge gives 

one path pe,u with source v for each vertex uV(T) 

with ( ) .Tr e u  The formula (1) of Lemma 3 

gives  

0 0

* 3 *

* * 2 *
( ) ( ) ( ) ( )

* * * * *
( ) ( ) ( ) ( ) ( ) ( )

* * *
( ) ( )

, ( ) , ( )

,

( ), ( )

( )( ) ( ) ( ) ( )

( )( ) ( )

( ) . ( )

( )

( )( )

( ( ))( ( ))

( )(

   

     

       

   
   

 











 



T T

T

v v v v

v r e r e r e r e v

v r e r e r e v r e r e r e

v r e u v r e u

u T r e u u T r e u

e u

u V T r e u

e e e r e e

e e

e e

e Q e Q

T T *
,

( ), ( )

.)
 


T

e u

u V T r e u

Since for u u  we have *
, 0,

ue u eT T

  this product 

expands as  

* *
, ,

( ), ( )

( )( ) . (4) 
 

 
T

v v e u e u

u V T r e u

e e T T  

Substituting (4) into (3) gives the Cuntz-Krieger 

identity 
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*

, ,

( )

,v e u e u

s e v

Q T T


   

and this final identity completes the proof of the 

proposition.  

In view of Proposition 5, we can define the 

new graph EX as follows: 

Definition 6. Let E be a directed graph, and 

assume that X is a finite subset of E0 such that 

HE(X) is finite, and let T be a row-finite, path-

finite directed forest in E with Tr=X and T0=HE(X) 

(T exists by Lemma 2). Define the new directed 

graph EX which is called the X-corner of E, as 

follows: 

0 : { : ( )},X uE Q u V T   

1
,: { : ( )},X e uE T u V T   

,( ) : ,e u us T Q  

, ( )( ) :e u s er T Q  

Now Proposition 5 gives a K-homomorphism 

: ( ) ( )K X KL E L E   which maps each vertex 

0
u XQ E  and each edge 1

,e u XT E  of LK(EX) to 

uQ  and Te,u in LK(E) respectively. 

In the following, we will prove that  is 

injective and its image is PXLK(E)PX, where  

.X

v X

P v


  

Proposition 7. The map  is injective. 

Proof. Since deg( ( )) 0uQ   and 

,deg( ( )) 1e uT   for all 0 1
,, ,u X e u XQ E T E   

it is easy to see that  is a graded ring 

homomorphism. Moreover, ( ) 0uQ   for all 

0 ,u XQ E  and in view of the Graded Uniqueness 

Theorem [5, Theorem 4.8] it follows that  is 

injective.  

Proposition 8. ( ( )) ( ) .K X X K XL E P L E P   

Proof. For every ( )v V T  and 
1 ,u Xe E  we have 

( ). . ( )X v X v v v vP Q P s Q s Q     

and 

, ( ) , ,( ) ( ) .X e u X s e e u u e uP T P s T s T    

It implies that  

( ( )) ( ) .K X X K XL E P L E P   

Now we show 

( ( )) ( ) .K X X K XL E P L E P   

To do this, we will show that the range of  

contains all products 
*  such that 

*, E   ; ( ), ( )s s X   ; 

and 

( ) ( ).r r   

Observe that for such   and ,  one has  

* * * * * *
( ) ( ) ( ) ( )( )( ) ,r r r r           

so we may assume that ( ) .r    We shall prove 

this statement by induction on the length of . 

Assume that | | 0,   that is, ( ) .s X    

Then 

( )r    and * *
( ) ( ) ( ) ,r r r      

which is in the range of  by Lemma 3. Now for 

,n  assume that | | n   and *
( )r   is in the 

range of  for every path v of length 1.n   Let e 

be the final edge of , and write .e   Then 

* *
( ) ( )

*
( )

* *
( ) ( ) ( )

* *
( ) ( ) ( )

. .

. ( ). .

. .

( . . ),



  

 

  

  

   

   

 

 



 





r r e

r e

r r r

r r r e

e

r e

e

e

 

where *
( )r     is in the range of  by the 

inductive hypothesis. 

If 
1e T  then ( ) ( ) ,r r ee    and, hence, 

*
( ) ( )r r ee   is in the range of  by Lemma 3. If e 

does not belong to T1, then once again we use 

Lemma 3 to give 
* * *

( ) ( ) ( ) ( ) ( ) ( )

*
( ) ( )

( ), ( )

,

( ), ( )

( )

.

( )
      

 

 

 

 










T

T

r r e r r e r e r e

s e r e u

u V T r e u

e u

u V T r e u

e e

e Q

T

 

which is in the range of . By induction, the proof 
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is completed.   

Theorem 9 (Main Theorem). Let E be a directed 

graph, K a field and LK(E) the Leavitt path 

algebra of E over K. Assume that X is a subset of 

vertices in E and T is a row-finite, path-finite 

directed forest in E such that Tr=X and T0 = 

HE(X). If ,X

v X

P v


  then there exists a graph EX 

such that the corner PXLK(E)PX is isomorphic to 

the Leavitt path algebra LK(EX) of EX. 

Proof. The result follows from Definition 6, 

Propositions 7 and 8.  

4 SOME EXAMPLES 

Example 1. Let E be the graph 

 

a) Let { },X u  
0 0 1, { }.T E T e   We have  

( ) { },V T v  

0 *{ },X vE Q ee    

1 * *
, ,{ , }.X f v g vE T efee T ege    

Then the corner uLK(E)u is isomorphic to the 

Leavitt path algebra of the following graph: 

 

b) Let 
0 0 1{ }, , { }.  X v T E T f  We obtain  

( ) { , },V T u v  

0 * *{ , },X u vE Q ff Q gg     

1 * *
, ,

* *
, ,

{ , ,

, }.

  

 

X e v g v

e u g u

E T fegg T ggg

T feff T gff
 

Then the corner vLK(E)v is isomorphic to the 

Leavitt path algebra of the following graph: 

 

 

Example 2. Let E be the graph 

 

Let { },X u  
0 0 1, { }.T E T f   We obtain 

( ) { , },V T u v   

0 * *{ , },X u vE Q ee Q ff    

1 * *
, ,{ , }.X e u e vE T eee T eff  

 
Then the corner uLK(E)u is isomorphic to the 

Leavitt path algebra of the following graph: 
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Abstract— Cho E là một đồ thị có hướng, K là 

trường và LK(E) là đại số đường đi Leavitt của E 

trên K. Mục tiêu của bài báo này là mô tả cấu trúc 

của một lớp các góc của đại số đường đi Leavitt 

LK(E). Động lực của việc nghiên cứu này đến từ bài 

báo “Corners of Graph Algebras” của Tyrone 

Crisp, trong đó góc của đồ thị C*-đại số đã được mô 

tả hoàn toàn. Sử dụng cùng ý tưởng với Tyrone 

Crisp, chúng tôi chỉ ra rằng với mọi con hữu hạn X 

của tập đỉnh trong đồ thị E sao cho tập hợp con di 

truyền HE(X) sinh bởi X là hữu hạn, vành góc 

( ) ( )( )
 

 K
v X v X

v L E v  của LK(E) đẳng cấu với với 

đại số đường đi Leavitt LK(EX) của một đồ thị EX 

nào đó. Chúng tôi cũng cung cấp một cách thức để 

xây dựng đồ thị EX này. 

 

Index Terms—Đại số đường đi Leavitt, đồ thị, góc.
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