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A class of corners of a Leavitt path algebra

Trinh Thanh Deo

Tém tit— Let E be a directed graph, K a field
and Lk(E) the Leavitt path algebra of E over K. The
goal of this paper is to describe the structure of a
class of corners of Leavitt path algebras Lk(E). The
motivation of this work comes from the paper
“Corners of Graph Algebras” of Tyrone Crisp in
which such corners of graph C*-algebras were
investigated completely. Using the same ideas of
Tyrone Crisp, we will show that for any finite subset
X of vertices in a directed graph E such that the
hereditary subset He(X) generated by X is finite, the

corner (X V)L (E)(X v) is isomorphic to the
veX veX

Leavitt path algebra Lk(Ex) of some graph Ex. We
also provide a way how to construct this graph Ex.
Tir khéa— Leavitt path algebra, graph, corner.

1 INTRODUCTION

Leavitt path algebras for graphs were
developed independently by two groups of
mathematicians. The first group, which consists of
Ara, Goodearl and Pardo, was motivated by the
K-theory of graph algebras. They introduced
Leavitt path algebras [3] in order to answer
analogous K-theoretic questions about the
algebraic Cuntz-Krieger algebras. On the other
hand, Abrams and Aranda Pino introduced Leavitt
path algebras Lk(E) in [2] to generalise Leavitt's
algebras, specifically the algebras Lk(1,n).

The goal of this paper is to describe the
structure of a class of corners of Leavitt path
algebras Lk(E). The motivation of this work
comes from [4] in which such corners of graph
C"-algebras were investigated completely. Using
the same ideas from [4], we will show that for any
finite subset X of vertices in a directed graph E
such that the hereditary subset He(X) generated
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by X is finite, the corner (D v)Lg (E)(D_ V) is

veX veX
isomorphic to the Leavitt path algebra L«(Ex) of
some graph Ex. We also provide a way how to
construct this graph Ex.

The graph C*-algebra of an arbitrary directed
graph E plays an important role in the theory of
C"-algebras. In 2005, G. Abrams and G. Aranda-
Pino [2] defined the algebra Lk(E) of a directed
graph E over a field K which was the universal K-
algebra, named Leavitt path algebra, generated by
elements satisfying relations similar to the ones of
the generators in the graph C"-algebra of E and
was considered as a generalization of Leavitt
algebras L(1,n). Historically, G. Abrams and G.
Aranda-Pino found his inspiration from results on
graph C*-algebras to define Leavitt path algebras,
so that one of first topics in Leavitt path algebras
was to find some analogues for Leavitt path
algebras of graph C*-algebras such as in [1, 5]. In
[4], the class of corners PxC*(E)Px were
investigated completely when X was a finite
subset of E® with He(X) was finite. In the present
note, we consider the similar problem for Leavitt
path algebra Lx(E). In the next section, we recall
briefly the notation and results on the graph
theory. In Section 3, we present the way to find a
graph  Ex and an  isomorphism  of
QO L(E)OQ V) and Lk(Ex). The ideas and

veX veX

arguments we use in Section 3 is almost similar to
[4] but there are two important things here:
arguments in [4] will be rewritten according to the
language of Leavitt path algebras and, secondary,
we will modify a little bit these arguments to pass
difficulties of hypothesis between graph C*-
algebras and Leavitt path algebras.

2 PRELIMINARIES ON GRAPH THEORY

A directed graph E = (E% EY, r, s) consists of
two countable sets E°, E* and maps r,s: E® —» EZ
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The elements of E° are called vertices and the
elements of E* edges. For each edge e, s(e) is the
source of e, r(e) is the range of e, and e is said to
be an edge from s(e) to r(e). A graph is row-finite
if s7X(v) is a finite set for every ve E°. If E® and E!
are finite, then we say that E is finite. A vertex
which emits no edges is a sink. A path u in the
graph E is a sequence of edges u = ei...e, such
that r(e;) = s(eixy) fori =1, ..., n—1. We call s(ey)
the source of z, denote by s(u); r(es) is the range
of u, denote by r(w); the number n is the length of
p. If 2 and v are paths such that 4 = vn for some
path 7, then we say that v is an initial subpath of
4, denote by v < .

For n > 2, let E" be the set of paths of length n,
and denote by E” :UE”. If we consider every

n=0
vertex as a path of length O and edge as a path of
length 1, then E” is the set of paths of length n > 0.

Let F be a subgraph of E, that is, F is a graph
whose vertices and edges form subsets of the
vertices and edges of E respectively. For vertices
u,veE® we write u> v if there is a path ueF”
such that s(x) = u and r(x) = v. We say that a
subset X < EC is hereditary if veX and ueE° such
that v>¢ u, then u e X. For any subset Y < E° we
shall denote by Heg(Y) the smallest hereditary
subset of E° containing Y. The set He(Y)\Y is
referred to as the hereditary complement of Y in
E. The subgraph T=(T°T1,r,s) is called a directed
forest in E if it satisfies the two following
conditions:

(1) T is acyclic, that is, for every path e;...en
in T, one has r(e;) = s(e;) if i >j.
(2) For each vertex vin T°, [T*ri(v)| < 1.

If T is a directed forest of E, then T" denotes
the subset of T° consisting of those vertices v with
[T'~r(v)| = 0, and T' denotes the subset of T°
consisting of those vertices v with [T'ns™(v)| = 0.
The sets T" and T' are called the roots and the the
leaves of T.

The following lemmas are from [4].

Lemma 1 ([4, Lemma 2.2]). Let T be a row-finite,
path-finite directed forest in a directed graph E.
Then the following statements hold:
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i) For each veT? there exists a unique path z
in T° with source in T" and range v.
Moreover, for u, veT®, v2ru < 5= 5 <
there exists a unique path z, e T° with
source v and range u.

ii) For each veT? there exist at most finitely
many vertices ue T° with v >1 u.

iii) For each veTO there exists at least one ueT
such that v >r u.

iv) Suppose u, v € T° have n,< g and u = v.
Then there exists a unique edge ees(v)T!
such that me=<z. If f € s1(v)NT! satisfies
w = wf,thenf=eand ze = z.

The key result of building a new graph Ex in
this paper is the existence of the directed forest
with given roots. In general, a forest with given
roots [4, Lemma 3.6] may not exists, but in some
special cases, we can find such forest.

Lemma 2. Let E = (E%E%r,s) be a directed graph
and X a finite subset of E°. If He(X) is finite, then
there is a row-finite, finite-path directed forest T
in E with T" = X and T° = Hg(X).

Proof. This lemma is just a corollary of [4,
Lemma 3.6]. O

3 RESULTS

We have mentioned graph C"-algebras in the
Introduction, but this paper focus only on Leavitt
path algebras. In this section, before going to the
main goal of paper, we briefly recall just the
definition of the Leavitt path algebra of a graph.
For a definition of these algebras with remarks
one can see in [2].

Given a graph E = (E%Er,s), we denote the
new set of edges (E')", which is a copy of E* but
with the direction of each edge reversed; that is, if
e € E* runs from u to v, then e"e (E)" runs from v
to u. We refer to E! as the set of real edges and
(EY)" as the set of ghost edges.

The path p = e: ... e, made up of only real edges
is called the real path, and we denote the ghost
path e,"... e1" by p.

Let K be a field and E a directed graph. The
Leavitt path K-algebra Lk(E) of E over K is the
(universal) K-algebra generated by a set {v| veE"}
of pairwise orthogonal idempotents, together with
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a set of variables {e, e"| ecE'} which satisfy the
following relations:

(1) s(e)e =er(e) =e for all ecE~.
(2) r(e)e” =¢€"s(e) =e for all ecE™.
() ee=0,.r() forall ee’ cE"

(@) v= > e for every veE® that emits

ees(v)
edges.
Let T be a path-finite directed forest in E. For

eachveTlet 7, T  be the path given by part (i)
of Lemma 1 (in particular, forv e X,z, =v). Now
for each veT?, define

Q =77~ 7,66 .7,.

eeTlns(v)
Clearly, Q, =Q,.
Lemma 3. For each veT? Q, = 0 if and only if
F=sHv) T Also,
T, .r; = Z Q,- @

ueT® v u
Proof. The proof of this lemma is just a slight
modification of [4, Lemma 3.7]. We first show the
first statement. The fact that if @ =s(v)c T,

then Q,=0 is from first arguments in [4, Lemma
3.7. Now we show that if Q,=0, then

@ #sHv) T for every veTO. If visasink in E

then Q, =7,7, #0. If vemitsanedge f e E'\T"
then

* *
7,66 7,

Qv =00y Z

ecTtns(v)
:rv.ff*.r:+z'v( ee*)r\f #0.
ees (VN (T'A Y
The rest of the proof is from the second part of
[4, Lemma 3.7] with replacing S,,, and S, by

7(v) and 7(v)" respectively for every veT°.

Let E be a directed graph, and assume that X is
a finite subset of E° such that He(X) is finite. By
Lemma 2, there exists a row-finite, path-finite
directed forest T in E with T'=X and T° = Hg(X).

Let

VT =T\{veT:@=st(v) T},
that is, V(T) consists of vertices which are sinks
and emit at least one edge not belonging to T. By
Lemma3, Q, =0 iff veV(T).

For each e in ENT! and ueV(T) such that
s(e),r(e) eT r(e) > u,

we define pey as the path ez Using the same

r(e)u*
techniques as in the proof of [4, Lemma 3.9], we
obtain that each edge e in ENT! with s(e)eT°
gives at least one path pe,y for some ueV(T) such
that r(e) >t u. In particular, if veT? is a singular
vertex of E then the set of all pey with source v is
finite.

For pey With ueV(T) and r(e) >r u, define

Tou = To0) €71 (0) Qu-

We have:

Proposition 4. For each u,veV(T), we have:

i) QQ,=0iffv=w.
i) TeTuTe,u =Q, and TeTqu,v =Q.Q..
i) T, TouQe =TeuTe,

euTeu
Proof. Suppose v and w are distinct elements of
V(T) such that QQ, #0, then 7,7, #0. It is
easy to see that one of z, and 7, is an initial
subpath of the other. Assume, without loss of
generality, that 7, <7,, and let f eT'ns™(w)
be the edge given by Lemma 1 (iv). Then
Z 7,7,68 1, =1,7,. 1 1y,
eeT nst(w)
because f is a unique edge in T~ s™(w) with

the property that z,,f <z,. Now
.7, 1, =1,

and thus

QQu =7 (nr - 7,66" 7))

ecT s (w)
* *
= Qv (TVTV - TvTv) =0.

Hence Q,Q, =0 ifand only ifv=w
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ii) Turning our attention to the Teu, fiX Peu
with ueV(T) and r(e) 2; u. By definition of pey

we must have z, ., <z,. Therefore

ToTew = Qi (€7 7)o@,
=QyTr(e) .r(e).r,(e) Q,
=Qu Tr(e i) Qu = Qi
Take peu and pry with u,veV(T) and suppose
Tou Ty #0. Now

TeuTry =QuTre) -E*T:(e) Ty | 'T:(f)'Qv' 2
and in order for this product to be nonzero we
must have either

Ts() f< Ts(e)® OF Tg(e)€ < Ty(t) f.
Since neither e nor f belongs to T* (so that neither
e nor f may be a part of any z,,), this implies that
Ty =751y f , and so e = f. Putting e = f in (2)
gives
Tf Y Qu r(e): r(e) Qv QuQv'

and in order for this product to be nonzero we
must have u =v.

iii) We have

(740®) Quw = (508 (7o -

Y (D 1))

feT ns™(s(e))
= (Ts(e)e) (Ts(e)e)(rs(e)e) -0= (Ts(e)e) .

Since e ¢T1,rs(e)e is not an initial subpath of any
7 f for f T Thus
e u'e, uQs (e) Q 'Tr(e '(Ts(e e)*-Qs (e) )
T (Ts(e)e) Te uTe u-*

O

Proposition 5. For each u,veV(T), we have:

i) QuQv = §quu'

“) Te,uQu :Te,u = Qs(e)Te u? and
QuTeTu :Tefu = equs(e)'
i) To,Try =0,Qu

iv) Foreach veV(T), we have

:, EUEU

s(e)=v
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Proof. i) By Proposition 4i) and ii).

ii) By i) and by the definition of T., we have
the first equation.

For the second equation, by Proposition 4iii),
we have

Te,uTe,uQs(e) - Te uTe u*
It follows that

Qs(e) e,u eu :Te,uTe,u'
Therefore

Qs(e)Te, :Qs(e)T T..T.

e,ueueu

=T, T..T

e,ueueu
=T.,
iii) By Proposition 4i) and ii).
iv) Suppose veV(T) is nonsingular in E. Then,
(CK2) in Lk(E) gives

V= z ee”.
eesH(v)
Now

*
Q=77 - Z

ecT ns(v)

—rvr-r,( Y &)

ecT s (v)

:TV(V— Z ee*)rJ

ecTins™(v)

= > re(ne). 3)

eesH(w)\T!

(rve)(rve)*

Fix an edge ees'(v)\T'. This edge gives
one path pey with source v for each vertex ueV(T)
with r(e)>; u. The formula (1) of Lemma 3
gives

@8)(@8) = (7e)r () ()

= @8t (i) e (78)
= @87 (e i) (28710 ey i)
—(T er,(e ( Z Q ))(T eTr(e)( 2 Q ))

ueT? r(e)> ueT,r(e)2ru
:( z Te,u)( z Te,u) .
ueV (T),r(e)>ru

ueV(T),r(e)>ru
Since for u=u’ we have T,,T, =0, this product
expands as

@oO@e) = > T, T, 4

ueVv (T),r(e)=ru

Substituting (4) into (3) gives the Cuntz-Krieger
identity
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Q = Z Te,uTefu'
(

s(e)=v

and this final identity completes the proof of the
proposition. O

In view of Proposition 5, we can define the
new graph Ex as follows:
Definition 6. Let E be a directed graph, and
assume that X is a finite subset of E° such that
He(X) is finite, and let T be a row-finite, path-
finite directed forest in E with T"=X and T°=Hg(X)
(T exists by Lemma 2). Define the new directed
graph Ex which is called the X-corner of E, as
follows:

Ex ={Q, :ueV(T)},
Ex ={T., :uevV(M}
$(Tou) = Q.
r(Teu) = Qs

Now Proposition 5 gives a K-homomorphism
7L (Exy) > L¢ (E) which maps each vertex

Q, €Ey and each edge T,, €Ey of Lk(Ex) to
Q, and Tey in Lk(E) respectively.

In the following, we will prove that = is
injective and its image is PxLk(E)Px, where

Py =Zv.

veX

Proposition 7. The map m is injective.

Proof. Since deg(z(Q,))=0 and
deg(#(T,,)) =1 forall Q, e E},T,, € Ey,

it is easy to see that m is a graded ring
homomorphism. Moreover, z(Q,)=0 for all

Q, €E3, and in view of the Graded Uniqueness

Theorem [5, Theorem 4.8] it follows that = is
injective. O

Proposition 8. z(Ly (Ex)) = Py Lc (E)P.
Proof. Forevery veV(T) and ¢, € Ei, we have

P QP =5(7,)Q,5(7,) =Q,

and
PyTeuPx = S(rs(e) )Te,uS(Tu) =Teu-
It implies that
(L (Eyx)) < P Ly (E)P.
Now we show
7(Ly (Ex)) 2 Py Ly (E)Py.
To do this, we will show that the range of &
contains all products xv" such that
wv ek ; s(u),s(v)e X ;
and
r(u)=r(v).
Observe that for such # and v, one has
,UV* = :uT:(y)Tr(y)V* = (ﬂT:(y))(VT:(v) )*'
so we may assume that v =z,,,. We shall prove
this statement by induction on the length of s
Assume that | u|=0, that is, ux=s(u)e X.
Then
1=y A0 LT =TT,
which is in the range of 7z by Lemma 3. Now for

*

neN, assume that |«|=n and vz, is in the
range of =z for every path v of length n—1. Lete

be the final edge of x, and write © = u'e. Then
KTy = M 8T

= ,u'.r(,u’).e.z':(e)

= M1 Triu) €71

= 1T (T €710
:m')
inductive hypothesis.

where u't is in the range of m by the

If ecT! then .)€ =Tre. and, hence,

T,()€Tr(e 1S IN the range of 7 by Lemma 3. If e
does not belong to T, then once again we use
Lemma 3 to give

T ®Tr(e) = Tr()B%r(e) (Fr(e)Tree))
Ts(e)ETr(e>( Z Qu)
uev (T),r(e)>ru

T

eu’
ueVv (T),r(e)>ru

which is in the range of =. By induction, the proof
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is completed. O

Theorem 9 (Main Theorem). Let E be a directed
graph, K a field and Lk(E) the Leavitt path
algebra of E over K. Assume that X is a subset of
vertices in E and T is a row-finite, path-finite
directed forest in E such that T'=X and T° =
He(X). If P, = Zv, then there exists a graph Ex

veX
such that the corner PxLx(E)Px is isomorphic to
the Leavitt path algebra Lk(Ex) of Ex.

Proof. The result follows from Definition 6,
Propositions 7 and 8. O

4 SOME EXAMPLES

Example 1. Let E be the graph
4
e
u -‘_________-“ E'Q
f

a) Let X ={u}, T®=E% T'={e}. We have
V(T)={v},

Ey ={Q =ee},

Ex ={T;, =efee’,T,, =ege’}.

Then the corner uLk(E)u is isomorphic to the
Leavitt path algebra of the following graph:

.Tg.'l:
D

N

b) Let X ={v},T® =E°, T* ={f}. We obtain

V() ={u,v},

Tt

Ey ={Q, = ff".Q, =0g'},

Ex ={T., = fegg".T,, = 999",
T,, = feff ", T, , = off '}

Then the corner vLk(E)v is isomorphic to the

NATURAL SCIENCES, VOL 2, ISSUE 4, 2018

Leavitt path algebra of the following graph:

Ty
T TN
/‘\ ) g,u ) V4 }
Te,u k_/ Qu B e e Qo -

e

Example 2. Let E be the graph

€

/‘\.
()
\ ¥

N,
Let X ={u}, T°=E° T' ={f}. We obtain
V(1) ={uv},

Ex ={Q,=e¢’,Q, = f{'},
Ex ={T., =eee’,T,, =eff }.
Then the corner uLk(E)u is isomorphic to the

Leavitt path algebra of the following graph:

(\(‘ G
Teus__Qu T or
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Abstract— Cho E 1a mdt dd thi cé6 hwéng, K 1a
truomg va Lk(E) 1a dai s6 duong di Leavitt cia E
trén K. Muc tiéu ciia bai b4o nay la mé ta ciu truc
ciia mdt 16p cac géc cha dai sé duong di Leavitt
Lk(E). Pong lwc ciia viée nghién ciru nay dén tir bai
bao “Corners of Graph Algebras” cia Tyrone
Crisp, trong d6 géc ciia dd thi C*-dai sé di dugc md
td hoan toan. St dung cung y twéng véi Tyrone

Crisp, chung t6i chi ra ring v6i moi con hitu han X
ciia tip dinh trong dé thi E sao cho tip hop con di
truyén He(X) sinh béi X 1a hitu han, vanh géc
(X V)L (E)(X V) ciia Lk(E) ding ciu véi véi
veX veX

dai s6 dwong di Leavitt Lk(Ex) ciia mt dd thi Ex
nio d6. Chung téi ciing cung ciAp mét cach thirc dé
xdy dwng dd thi Ex nay.

Index Terms—Pai sé dwong di Leavitt, dd thi, goc.
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