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ABSTRACT
Introduction: Conventional topology optimization approaches are implemented in an implicit
manner with a very large number of design variables, requiring large storage and computation
costs. In this study, an explicit topology optimization approach is proposed by moving polygonal
morphable voids whose geometry parameters are considered as design variables. Methods: Each
polygonal void plays as an empty-material zone that can move, change its shapes, and overlap
with its neighbors in a design space. The geometry parameters of MPMVs consisting of the coordi-
nates of polygonal vertices are utilized to render the structure in the design domain in an element
density field. The density function of the elements located inside polygonal voids is described
by a smooth exponential function that allows utilizing gradient-based optimization solvers. Re-
sults & Conclusion: Compared with conventional topology optimization approaches, the MPMV
approach uses fewer design variables, ensure mesh-independence solution without filtering tech-
niques or perimeter constraints. Several numerical examples are solved to validate the efficiency
of the MPMV approach.
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INTRODUCTION
Topology optimization is typically described by
searching the distribution of a given amount of ma-
terial in a prescribed design domain to maximize
the structural performance, i.e., the structural com-
pliance, buckling load, displacement. Over the past
three decades, topology optimization has undergone
a long period of development, contributed by re-
searchers around the world. Topology optimization
has been integrated into commercial software such as
Comsol, Altair, andAnsys as a powerful tool for struc-
tural optimization solutions. Until now, the major-
ity of existing approaches have been implicit, that is,
the structure is implicitly described by element den-
sity fields (SIMP1, ESO2) or level-set functions3. One
of the disadvantages of the implicit approaches is that
they have a very large number of design variables,
equal to the number of grid elements (or the number
of grid nodes) of the design domain. Theoptimization
requires large storage capacity as well as demanding
calculations.
To reduce the number of design variables as well as
minimize computational costs, explicit topology opti-
mization approaches have been proposed recently4–7,
in which the structure is explicitly described by geom-
etry parameters of geometric components. The ben-
efits of the explicit approaches can be listed as using

fewer design variables, using an explicit structural de-
scription that is convenient for the post-processing
stage, and straightforward feature size control7. In7,
we introduced an explicit topology optimization ap-
proach using moving morphable bars for the design
of structural compliance and compliant mechanism
problems. The extension of the moving morphable
bar approach7 has been applied in several applica-
tions in recent years, i.e., coated designs8, embedded
components9, and cellular structures10.
The aforementioned explicit approaches mostly used
non-flexible components like circles, bars, and el-
lipses4–7 or complex flexible components using B-
splines/NURBS11,12. In this study, we will model
simple flexible components using polygonal voids for
explicit topology optimization of two-dimensional
structures. The structural optimization is performed
by optimizing the positions of the vertices of the
polygonal voids.

MPMV
We consider an MPMV with ns connected segments
denoted by Ωk as illustrated in Figure 1. The segment
i is determined by the coordinates of two adjacent ver-
tices xi and x i+1. Let T be a vector originating from
x i to x i+1, defined by T=xi+1 - xi. The unit vector t
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Figure 1: MPMV: anMPMV consists of ns line seg-
ments that connect at their vertices of the poly-
gon.

along the line segment i is given by:

t =
T

||T||
=

xi+1 −xi

||xi+1 −xi||
(1)

We name d(i)
ek as the minimum distance from the cen-

ter element xe ∈ Ωk to the segment i of the void k, d(i)
ek

can be expressed by

d(i)
ek =

{
||a||= ||xe −xi|| i f at ≤ 0
||b||= ||a− (at)t|| i f 0 < at < tT

(2)

where a = xe −xi is the vector originating from xi to
xe and b = a− (at)t is a perpendicular vector of the
segment i with its length equal to the minimum dis-
tance from the element e to the line through x i and
xi+1 (see Figure 1).

ρe =

{
1 ∀xe ̸∈

∪nv
k=1 Ωk

∏nv
k=1 e−βdek ∀xe ∈

∪nv
k=1 Ωk

(3)

dek = min
{

d(i)
ek

}
, i = 1, 2, ..., ns, (4)

where dek is the minimum distance from element e to
the boundary ∂Ωk of the void k; nv is the number of
voids and β is a positive control number to enforce
element density to converge to 0 or 1 (see Figure 2).
In equation (3), ρe = 1 if the element does not locate
inside the void zones (solid material), ρe = 0 if the
element locates inside the void zones (voids), and 0 <

ρe < 1 responds to the elements around the structural
boundaries.
It is worth noting that only elements located inside
void zones are considered in the calculation of the
element densities and their sensitivities. Of course,

this will significantly reduce the mapping time com-
pared with the case of geometric mapping compo-
nents onto the full grid like most of the current ex-
plicit approaches. Figure 2 shows plots of function
∅= e−βdek with respect to the minimum distance dek
for different values of β .
The larger β results in a narrower band of nonphysical
material around the structural boundaries. β should
be selected so that there is a transition zone (low-
density element zone) between solid material phase
and void phase, to ensure the existence of non-zeros
derivation of the element density function for em-
ploying gradient-optimization solvers. In this work,
the selection β = 2 corresponds to about one low-
density element on the boundaries for unit-length el-
ement mesh.

Figure 2: The control parameter β : plots of func-
tion ∅ = e−βdek with respect to dek for different
values of β .

TOPOLOGYOPTIMIZATION USING
MPMVS
The compliance minimal problem is considered in
this work. Theobjective is searching for an optimal set
of geometry parameters to minimize structural com-
pliance. The optimization problem is formulated as

mi
x
n c(x) = ∑ne

e=1 χuT
e k0ue

sub ject to
1

|Ω0|

∫
Ω0

ρedΩ− f ≤ 0

xmin ≤ x ≤ xmax

(5)

where c is the structural compliance; ne is the to-
tal number of elements, k0 is the element stiffness
matrix; ue ⊂ u = K−1F is the element displace-
ment vector; K, u and F are the global stiffness ma-
trix, global displacement vector, and global force vec-
tor, respectively; |Ω0| denotes the design-domain vol-
ume; f denotes the allowed material volume ratios;
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x = {xk} , xk = {xi} , i = 1,2, ...,ns, k = 1,2, ..., nv

is the variable vector; xmin, xmax are the bounds of x
with a note that it is not necessary to set strict limits for
lower and upper bounds of the design variables. This
means that the vertex of polygonal voids canmove out
of the design domain as can be seen in Figure 4b. The
material interpolation in SIMP1 is employed,

χ = ρmin +ρη
e (1−ρmin) (6)

where ρmin = 10−4 is added to ensure a well-posed
finite element analysis.
Sensitivity analysis of the objective function is ex-
pressed by the following equation,

∂c
∂ξ

=
ne

∑
e=1

∂c
∂ρe

∂ pe

∂dek

∂dek

∂ξ (7)

where ξ ⊂ x is an arbitrary design variable in the vari-
able vector x, the derivative of the objective function
to element density ∂c/∂ρe is derived fromEqs. (5-6),

∂ρc

∂ρe
= ηρη−1

e (1−ρmin)uT
e k0ue, (8)

the derivative of element density function to the
minimum distance ∂ρe/∂dek is derived from Equa-
tion (3),

∂ pe

∂dek
=

{
0, ∀xe ̸∈

∪nv
k=1 Ωk

−βρe, ∀xe ∈
∪nv

k=1 Ωk
(9)

and to determine ∂dek/∂ξ , we suppose that the min-
imum distance function in Equation (4) is readily
known, thatmeans, dek = d(i)

ek . Derivative expressions
of ∂ d(i)

ek /∂ξ is derived from Equation (2) as follows,

∂d(i)
ek

∂ xi
=

 −a 1
||a|| , i f at ≤ 0 (10){

−b+ 1
||T|| (ta)b

}
1

||b|| , i f 0 < at < tT

∂d(i)
ek

∂xi+1
=

{
0, i f at ≤ 0 (11){
− 1

||T|| (ta)b
}

1
||b|| , i f 0 < at < tT

EXAMPLES
A benchmark structural optimization problem, the
cantilever beam optimization is explored in this sec-
tion. For numerical simulation, we assume that the
design material is homogeneous with unit Young’s
modulus and Poisson’s ratio v0 = 0.3. The plane-
stress four-node elements are used to discretize the
design domain. The design problems are solved with
themaximum allowedmaterial volume of 50% design
domain volume, f = 0.5.

Cantilever beamdesign

The cantilever beam problem is considered with de-
sign definitions given in Figure 3a. An analytical
mesh of elements is employed. Figure 3b shows
the design by SIMP approach (using 99 lines Matlab
code13), in which a sensitivity filter with a radius of
1.5 is employed to avoid the checker-board issue.

Figure 3: Cantilever beam design: (a) prob-
lem definitions, (b) optimizeddesign by SIMP
(c=175.35).

To optimize the structure using the MPMVs ap-
proach, an initial design is predefined with 11 polyg-
onal voids and 12 vertices for each polygonal void
as presented in Figure 4a. The beam is optimized
by searching the optimal positions of the polygonal
voids. The optimized layout of MPMVs is plotted in
Figure 4b, and the design is shown in Figure 4c.
It is worth mentioning that the MPMV approach
significantly reduces the number of design variables
compared with conventional approaches. The current
design only uses 264 design variables that are much
less than 7500 design variables by SIMP/ESO ap-
proach or 7701 design variables by level set approach.
We observed that our overall optimum topology is in
agreement with that by SIMP approach. Low-density
elements inside structural boundariesmay exist in the
design by SIMP approach (see the middle part of the
design inFigure 3b) but not exist in the design byMP-
MVs approach. The proposed approach produces a
stiffer structure with 2.04% smaller compliance.
It is worth remarking that the structural boundaries
are explicitly described by line segments of polygo-
nal voids, hence the proposedmethod allows the abil-
ity to accurately capture structural boundaries to ex-
tract final designs. The computer-aided design (CAD)
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model can be obtained directly by keeping line seg-
ments on the structural boundaries while deleting
unnecessary line segments. Hence, the proposed
method allows capturing accurate structural bound-
aries in a cheap way compared with SIMP method,
where the structure is implicitly described by the el-
ement density field that needs undergoing many steps
of post-process for the final design.

Figure 4: Cantilever beam design: (a) initial
layout of MPMVs with 11 polygonal voids and
12 vertices for each polygonal void, (b) opti-
mized layout of MPMVs, (c) optimized design
(c=171.77)

Mesh independency
The above design problem is resolved with different
meshes while retaining other design parameters. The
optimum results are presented in Figure 5, in which
Figure 5a plots the design with mesh 300x100 with
compliance c= 171.91 and Figure 5b plots the design
with mesh 450x150 with compliance c = 171.99. The
convergence of all examples in this paper is obtained
after 100 iterations.
Through three numerical examples in Figure 4c, Fig-
ure 5a, and Figure 5b, it is observed as follows. The
first observation is that the general optimum topolo-
gies are the same for three mesh cases: 150x50 ele-
ments, 300x100 elements, and 450x150 elements. The
second observation is small differences in structural
compliance: c = 171.77 for the case of mesh 150x50
elements, c = 171.91 for the case of mesh 300x100 el-
ements, and c = 171.99 for the case of mesh 450x150

elements. When a finer mesh is employed, the corre-
sponding compliance increases, i.e., 0.08% when the
number of mesh elements is increased from 150x50
elements to 300x100 elements and 0.05% when the
number of mesh 300x100 elements is increased from
450x150 elements to elements. Another observation
is that the checker-board issue does not appear in our
design although we do not use any other techniques,
i.e., filtering. These mean that optimized designs by
theMPMVs-based approach depend on geometry pa-
rameters of MPMVs rather than the mesh size.

Figure 5: Mesh-independence: (a) result with
mesh 300x100 (c=171.91), (b) result with mesh
450x150(c=171.99).

CONCLUSION
For the first time, an explicit topology optimization
approach using MPMVs has been proposed for opti-
mum structural designs. TheMPMV-based approach
allows mapping each polygonal void onto a fit sub-
domain instead of a full design domain. The den-
sity function of the elements located inside polyg-
onal voids is realized by an exponential function
that allows employing gradient-based optimization
solvers. The proposed approach works effectively for
two-dimensional structural optimization with a sig-
nificant reduction of design variables. The filtering
techniques or perimeter constraints are not neces-
sary while still ensuring a mesh-independency solu-
tion. The extension of the current approach for three-
dimensional problems can be straightforward by re-
placing polygonal voids with polyhedral voids.
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