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ROBUST STABILIZATION OF UNCERTAIN DISCRETE-TIME STOCHASTIC
BILINEAR SYSTEMS WITH MARKOVIAN SWITCHINGS
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Abstract. In this paper, the problem of robust stabilization is addressed for a class
of uncertain discrete-time stochastic bilinear systems with Markovian switchings.
The parameter uncertainties are assumed to be time-varying and norm-bounded.
The jumping process is driven by a discrete-time Markov chain with finite states
and its transition probability matrix is partially unknown. Sufficient conditions are
established in terms of tractable linear matrix inequalities to ensure the closed-loop
system is robustly stochastically stable.
Keywords: stabilization, stochastic bilinear systems, stochastic stability, linear
matrix inequalities.

1. Introduction
Stochastic models have been extensively studied due to their flexibility in modeling

real-world phenomena in biology, economics, engineering applications, and many other
areas, see [1-3] and the references therein. One of the most important classes of systems
that has been focused on in stochastic modeling is stochastic bilinear systems. This kind
of system is referred to as a linear system with noises. Many results dealing with stability
analysis and control of stochastic bilinear systems have been reported. We refer the reader
to [4-9] and the references therein.

On the other hand, Markov jump systems (MJSs) form an important class of
stochastic systems. They are widely used to model practical and physical processes
subject to random abrupt changes in their state variables, external inputs, and structure
parameters caused by sudden component failures, environmental noises, or random loss
of digital packages in interconnections [10-13]. A number of results on stability analysis,
H∞ control, dynamic output feedback control, and state bounding for MJSs can be
found in [14-18]. Besides that, stochastic bilinear systems with Markovian switchings
have been investigated by many researchers, see [19-22] and the references therein.
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In [19], sufficient conditions in terms of tractable linear matrix inequalities to design a
mode-dependent stabilizing state-feedback controller were formulated and the problem
of robust H∞ control was studied in [23]. However, most of the obtained results are
concerned with stochastic bilinear systems with Markovian switchings and the transition
probability matrix is assumed to be completely known. Such an assumption is not
reasonable in practical applications. To the best of the author’s knowledge, the problem of
robust stabilization of uncertain discrete-time stochastic bilinear systems with Markovian
switchings and partially unknown transition probabilities has not been fully investigated
in the literature.

In this paper, we deal with the problem of robust stabilization of uncertain
discrete-time stochastic systems with Markovian switchings. The parameter uncertainties
are assumed to be time-varying and norm-bounded. The transition probability matrix
of the jump switching is assumed to be partially unknown. Sufficient conditions are
established in terms of tractable linear matrix inequalities to ensure the closed-loop system
is robustly stochastically stable.

2. Preliminaries
2.1. Notation

Throughout this paper, Z and Z+ denote the set of integers and positive integers,
respectively. For an a ∈ Z, Za = {k ∈ Z : k ≥ a}. E[.] is the expectation operator with
respect to some probability measure Pr, Rn is the n-dimensional Euclidean space with
vector norm ∥.∥, Rn×p is the set of n × p real matrices and S+

n is the set of symmetric
positive definite matrices. For matrices A,B ∈ Rn×p, col{A,B} and diag{A,B} denote

the block matrix
[
A
B

]
and

[
A 0
0 B

]
, respectively.

2.2. Problem formulation

Let (Ω,F ,Pr) be a complete probability space. Consider a class of discrete-time
stochastic systems with Markovian switchings of the form

x(k + 1) =A1(rk)x(k) +B1(rk)u(k) + [A2(rk)x(k) +B2(rk)u(k)]w(k), k ∈ Z0,
(2.1)

where x(k) ∈ Rn is the state vector; u(k) ∈ Rp is the control input. The system
matrices A1(rk), B1(rk), A2(rk), B2(rk) belong to {A1i, B1i, A2i, B2i, i ∈ M}, where
A1i, B1i, A2i, B2i, i ∈ M, are known constant matrices.

For notational simplicity, in the sequel, whenever rk = i ∈ M, matrices A1(rk),
B1(rk), A2(rk), B2(rk) will be denoted by A1i, B1i, A2i, and B2i, respectively.

The sequence {w(k), k ∈ Z0} consists of scalar standard random variables
satisfying

E[w(k)] = 0,E[w(k)]2 = 1, (2.2)
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and w(0), w(1), . . . , are independent. The jump switching parameters {rk, k ∈ Z0} is
driven by a discrete-time Markovian jump process specifying the system mode which
takes value in a finite set M = {1, 2, . . . ,m} with transition probabilities (TPs) given by

Pr{rk+1 = j|rk = i} = πij, i, j ∈ M,

where pij ≥ 0, i, j ∈ M, and
∑m

j=1 pij = 1 for all i ∈ M. We denote by Π = (πij) the
transition probability matrix and p = (p1, p2, . . . , pm) the initial probability distribution,
where pi = Pr{r0 = i}, i ∈ M. We also assume that the Markov chain {rk} and the
stochastic noise {w(k)} are independent.

In this paper, we assume in general that the transition probability matrix Π is only
partially accessible (i.e., some entries of Π are completely unknown). In the sequel, we
denote by π̂ij the unknown entry πij ∈ Π, M(i)

a and M(i)
na the sets of indices of known

and unknown TPs in row Πi =
[
πi1 πi2 . . . πim

]
of Π, respectively,

M(i)
a = {j ∈ M : πij is known} , M(i)

na = {j ∈ M : πij is unknown} . (2.3)

Moreover, if M(i)
a ̸= ∅, we denote M(i)

a = (µi
1, µ

i
2, . . . , µ

i
l), 1 ≤ l ≤ m. That is, in the ith

row of Π, entries πiµi
1
, πiµi

2
, . . . , πiµi

l
are known.

Corresponding to the system (2.1), we consider the system with uncertainties as
follows

x(k + 1) =A1(k, rk)x(k) +B1(k, rk)u(k) + [A2(k, rk)x(k)

+B2(k, rk)u(k)]w(k), k ∈ Z0,
(2.4)

with

A1(k, rk) =A1(rk) + ∆A1(k, rk),

A2(k, rk) =A2(rk) + ∆A2(k, rk),

B1(k, rk) =B1(rk) + ∆B1(k, rk),

B2(k, rk) =B2(rk) + ∆B2(k, rk),

(2.5)

where ∆A1(k, rk), ∆A2(k, rk), ∆B1(k, rk), and ∆B2(k, rk) are uncertain matrices which
have the following forms

∆A1(k, rk) =D(rk)∆(rk)EA1(rk),

∆A2(k, rk) =D(rk)∆(rk)EA2(rk),

∆B1(k, rk) =D(rk)∆(rk)EB1(rk),

∆B2(k, rk) =D(rk)∆(rk)EB2(rk),

(2.6)

D(rk), EA1(rk), EA2(rk), EB1(rk), and EB2(rk) are known matrices of appropriate
dimensions. The term ∆(rk) satisfies the following condition

∆T (rk)∆(rk) ≤ I, (2.7)
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where I is the identity matrix of the appropriate dimension. The uncertain matrices
∆A1(k, rk), ∆A2(k, rk), ∆B1(k, rk), and ∆B2(k, rk) are said to be admissible if both
(2.6) and (2.7) hold.

In this paper, a memoryless state feedback controller is designed in the form

u(k) = K(rk)x(k), (2.8)

where K(rk) ∈ {Ki, i ∈ M}, and Ki, i ∈ M are the controller gains which will be
designed. With the state feedback controller (2.8), the closed-loop systems of (2.1) are
given by

x(k + 1) =A1c(rk)x(k) + A2c(rk)x(k)w(k), k ∈ Z0, (2.9)

where A1c(rk) = A1(rk) +B1(rk)K(rk) and A2c(rk) = A2(rk) +B2(rk)K(rk).
In addition, the closed-loop systems of (2.4) is given by

x(k + 1) =A1c(k, rk)x(k) + A2c(k, rk)x(k)w(k), k ∈ Z0, (2.10)

where A1c(k, rk) = A1(k, rk) + B1(k, rk)K(rk) and A2c(k, rk) = A2(k, rk) +
B2(k, rk)K(rk).

First, we introduce the following definitions, see [24].

Definition 2.1. The open-loop system of (2.1) (i.e.,u(k) = 0) is said to be stochastically
stable if there exists a constant T (r0, x0) such that

E
[ ∞∑

k=0

xT (k)x(k)|r0, x0

]
≤ T (r0, x0).

Definition 2.2. The open-loop system of (2.4) is said to be robustly stochastically stable
if it is stochastically stable for all admissible uncertainties. Moreover, system (2.4) is said
to be robustly stochastically stabilizable if there exists a state feedback controller in the
form of (2.8) such that closed- loop system (2.10) is stochastically stable for all admissible
uncertainties.

The main objective of this paper is to establish conditions to design a state feedback
controller in the form of (2.8) which guarantees system (2.4) with partially unknown
transition probabilities robustly stochastically stabilizable.

2.3. Auxiliary lemmas

We introduce some useful technical lemmas to proof our main results as follows.

Lemma 2.1 (Schur complements). Given constant matrices M,L,Q of appropriate
dimensions, where M and Q are symmetric and Q > 0, then M + LTQL < 0 if and
only if [

M LT

L −Q−1

]
< 0, (2.11)
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or equivalently [
−Q−1 L
LT M

]
< 0. (2.12)

Next, in order to establish conditions for robust stability, we employ the inequalities
in the following lemma (see, e.g., [25]).

Lemma 2.2. Let A,D,∆, E be real matrices of appropriate dimensions with ∥∆∥ ≤ 1.
Then,

(i) for any matrix P > 0 and scalar ϵ > 0 satisfying ϵI− EPET > 0,

(A+D∆E)P (A+D∆E)T ≤ APAT + APET (ϵI− EPET )−1EPAT + ϵDDT

(2.13)

(ii) for any matrix P > 0 and scalar ϵ > 0 satisfying P − ϵDDT > 0,

(A+D∆E)P−1(A+D∆E)T ≤ AT (P − ϵDDT )−1A+
1

ϵ
ETE. (2.14)

The following lemma gives necessary and sufficient conditions for the stochastic
stability of system (2.1) with u(k) = 0, see [24].

Lemma 2.3. System (2.1) with u(k) = 0 is stochastically stable if and only if there exist
matrices Qi ∈ S+

n , i ∈ M, such that one of the two following conditions holds:

(i) For all i ∈ M, the algebraic Riccati inequality (ARI) holds

AT
1iGiA1i + AT

2iGiA2i −Qi < 0, (2.15)

where Gi =
∑m

j=1 πijQj;

(ii) The following LMI holds−Qi JT
1i JT

2i

J1i −Q 0
J2i 0 −Q

 < 0,∀i ∈ M, (2.16)

where

JT
1i =

[√
πi1A

T
1iQ1, . . . ,

√
πimA

T
1iQm

]
,

JT
2i =

[√
πi1A

T
2iQ1, . . . ,

√
πimA

T
2iQm

]
.
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3. Main results
In this section, sufficient conditions for robust stability and stabilization of system

(2.4) will be derived. First, the conditions for robust stability of system (2.4) with u(k) =
0 are given in the following theorem.

Theorem 3.1. The open-loop system of (2.4) with deficient TPs (2.3) is robustly
stochastically stable if there exist matrices Qi ∈ S+

n , scalars ϵ1i > 0, ϵ2i > 0, ϵ3i > 0, and
ϵ4i > 0, i ∈ M such that

−πi
aQi AT

1iΩi AT
2iΩi ET

A1i
ET

A2i

∗ ϵ1iΩ
T
i DiD

T
i − Γ 0 0 0

∗ ∗ ϵ2iΩ
T
i DiD

T
i − Γ 0 0

∗ ∗ ∗ −ϵ1iI 0
∗ ∗ ∗ ∗ −ϵ2iI

 < 0, (3.1)

and
−Qi AT

1i AT
2i ET

A1i
ET

A2i

∗ ϵ3iDiD
T
i −Q−1

j 0 0 0
∗ ∗ ϵ4iDiD

T
i −Q−1

j 0 0
∗ ∗ ∗ −ϵ3iI 0
∗ ∗ ∗ ∗ −ϵ4iI

 < 0,∀j ∈ M(i)
na, (3.2)

where Γ = diag(Q−1
µi
1
, Q−1

µi
2
, . . . , Q−1

µi
l
), Ωi = [

√
πiµi

1
I, √πiµi

2
I, . . . ,√πiµi

l
I].

Proof. According to Lemma 2.3, the open-loop system (2.4) is robustly stochastically
stable if there exist matrices Qi ∈ S+

n , i ∈ M, such that the following inequality holds for
all admissible uncertainties

A1(k, i)
TGiA1(k, i) + A2(k, i)

TGiA2(k, i)−Qi < 0, (3.3)

where Gi =
∑m

j=1 πijQj , A1(k, i) = A1i +Di∆iEA1i
, and A2(k, i) = A2i +Di∆iEA2i

.
From the fact

∑m
j=1 πij = 1 for all i ∈ M, condition (3.3) is equivalent to the two

following conditions
m∑
j=1

πij

[
A1(k, i)

TQjA1(k, i) + A2(k, i)
TQjA2(k, i)

]
−

m∑
j=1

πijQi < 0, (3.4)

or

∑
j∈M(i)

a

πij

[
A1(k, i)

TQjA1(k, i) + A2(k, i)
TQjA2(k, i)−Qi

]
+

∑
j∈M(i)

na

πij

[
A1(k, i)

TQjA1(k, i) + A2(k, i)
TQjA2(k, i)−Qi

]
< 0. (3.5)
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Denote G̃i =
∑

j∈M(i)
a
πijQj and πi

a =
∑

j∈M(i)
a
πij . Then, with the notice that πij ≥ 0,

∀i, j ∈ M, condition (3.5) holds if the two following conditions hold

A1(k, i)
T G̃iA1(k, i) + A2(k, i)

T G̃iA2(k, i)− πi
aQi < 0 (3.6)

and

A1(k, i)
TQjA1(k, i) + A2(k, i)

TQjA2(k, i)−Qi < 0, for all j ∈ M(i)
na. (3.7)

On the other hand,

A1(k, i)
T G̃iA1(k, i) =

[
ΩT

i A1i + ΩT
i Di∆iEA1i

]T
Γ−1

[
ΩT

i A1i + ΩT
i Di∆iEA1i

]
, (3.8)

A2(k, i)
T G̃iA2(k, i) =

[
ΩT

i A2i + ΩT
i Di∆iEA2i

]T
Γ−1

[
ΩT

i A2i + ΩT
i Di∆iEA2i

]
. (3.9)

For given ϵ1i > 0, ϵ2i > 0, Γ − ϵ1iΩ
T
i DiD

T
i Ωi > 0, and Γ − ϵ2iΩ

T
i DiD

T
i Ωi > 0, by

utilizing Lemma 2.2, we get

A1(k, i)
T G̃iA1(k, i) ≤ AT

1iΩi(Γ− ϵ1iΩ
T
i DiD

T
i Ωi)

−1ΩT
i A1i + ϵ−1

1i E
T
A1i

EA1i
, (3.10)

A2(k, i)
T G̃iA2(k, i) ≤ AT

2iΩi(Γ− ϵ2iΩ
T
i DiD

T
i Ωi)

−1ΩT
i A2i + ϵ−1

2i E
T
A2i

EA2i
. (3.11)

Thus, condition (3.6) holds if

AT
1iΩi(Γ− ϵ1iΩ

T
i DiD

T
i Ωi)

−1ΩT
i A1i + ϵ−1

1i E
T
A1i

EA1i

+ AT
2iΩi(Γ− ϵ2iΩ

T
i DiD

T
i Ωi)

−1ΩT
i A2i + ϵ−1

2i E
T
A2i

EA2i
− πi

aQi < 0. (3.12)

Similarly, for given ϵ3i > 0, ϵ4i > 0, Q−1
j −ϵ3iDiD

T
i > 0, and Q−1

j −ϵ4iDiD
T
i > 0,

we get

A1(k, i)
TQjA1(k, i) ≤ AT

1i(Q
−1
j − ϵ3iDiD

T
i )

−1A1i + ϵ−1
3i E

T
A1i

EA1i
, (3.13)

A2(k, i)
TQjA2(k, i) ≤ AT

2i(Q
−1
j − ϵ4iDiD

T
i )

−1A2i + ϵ−1
4i E

T
A2i

EA2i
. (3.14)

Thus, condition (3.7) holds if

AT
1i(Q

−1
j − ϵ3iDiD

T
i )

−1A1i + ϵ−1
3i E

T
A1i

EA1i

+ AT
2i(Q

−1
j − ϵ4iDiD

T
i )

−1A2i + ϵ−1
4i E

T
A2i

EA2i
−Qi < 0, ∀j ∈ M(i)

na. (3.15)

Now, applying the Schur complement, inequalities (3.12) and (3.15) are equivalent to
(3.1) and (3.2), respectively. This completes the proof.

Next, we will derive conditions by which system (2.4) with partially unknown
transition probabilities (2.3) is robustly stochastically stabilizable with state feedback
(2.8).
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Theorem 3.2. System (2.4) with deficient TPs (2.3) is robustly stochastically stabilizable
if there exist matrices Xi ∈ S+

n , Yi, i ∈ M such that
−πi

aXi Ã1iΩi Ã2iΩi Ẽ1i Ẽ2i

∗ ϵ1iΩ
T
i DiD

T
i − X̃ 0 0 0

∗ ∗ ϵ2iΩ
T
i DiD

T
i − X̃ 0 0

∗ ∗ ∗ −ϵ1iI 0
∗ ∗ ∗ ∗ −ϵ2iI

 < 0, (3.16)

and 
−Xi Ã1i Ã2i Ẽ1i Ẽ2i

∗ ϵ3iDiD
T
i −Xj 0 0 0

∗ ∗ ϵ4iDiD
T
i −Xj 0 0

∗ ∗ ∗ −ϵ3iI 0
∗ ∗ ∗ ∗ −ϵ4iI

 < 0,∀j ∈ M(i)
na, (3.17)

where X̃ = diag(Xµi
1
, Xµi

2
, . . . , Xµi

l
), Ã1i = XiA

T
1i + Y T

i BT
1i, Ã2i = XiA

T
2i + Y T

i BT
2i,

Ẽ1i = XiE
T
A1i

+ Y T
i ET

B1i
, Ẽ2i = XiE

T
A2i

+ Y T
i ET

B2i
. The controller gains Ki, i ∈ M, are

given by Ki = YiX
−1
i .

Proof. From Definition 2.2, it is only necessary to show that the closed-loop system (2.10)
is stochastically stable for all admissible uncertainties.

By Theorem 3.1, system (2.10) is stochastically stable if there exist matrices Qi ∈
S+
n , i ∈ M such that


−πi

aQi AT
1ciΩi AT

2ciΩi ET
1ci ET

2ci

∗ ϵ1iΩ
T
i DiD

T
i − Γ 0 0 0

∗ ∗ ϵ2iΩ
T
i DiD

T
i − Γ 0 0

∗ ∗ ∗ −ϵ1iI 0
∗ ∗ ∗ ∗ −ϵ2iI

 < 0, (3.18)

where Γ = diag(Q−1
µi
1
, Q−1

µi
2
, . . . , Q−1

µi
l
), and

−Qi AT
1ci AT

2ci ET
1ci ET

2ci

∗ ϵ3iDiD
T
i −Q−1

j 0 0 0
∗ ∗ ϵ4iDiD

T
i −Q−1

j 0 0
∗ ∗ ∗ −ϵ3iI 0
∗ ∗ ∗ ∗ −ϵ4iI

 < 0, for all j ∈ M(i)
na,

(3.19)
where A1ci = A1i + B1iKi, A2ci = A2i + B2iKi, E1ci = EA1i

+ EB1i
Ki, and E2ci =

EA2i
+ EB2i

Ki.
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Let Xi = Q−1
i , Yi = KiXi. By pre-and post-multiplying equations (3.18) and

(3.19) with diag(Xi, I, I, I, I) we then obtain (3.16) and (3.17), respectively. This
completes the proof.

Remark 3.1. When the transition probabilities of the jumping process are completely
known, the derived conditions in Theorem 3.2 are reduced to those of Theorem 1 in [23].
Thus, the result of Theorem 3.2 in this paper can be regarded as an extension of the result
of [23].

4. Conclusion
This paper has dealt with the problem of robust stabilization of uncertain

discrete-time stochastic bilinear systems with Markovian switching. Based on the analysis
of the transition probability matrix, sufficient conditions have been established in terms of
tractable linear matrix inequalities to design mode-dependent state feedback controllers
which guarantee the robust stability of the system.
Acknowledgment. This research is funded by Vietnam Ministry of Education and

Training under grant number B.2022-SP2-02.
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Boston.

[3] V. Dragan, T. Morozan, A. Stoica, 2006. Mathematical Methods in Robust Control
of Linear Stochastic Systems. Springer, New York.

[4] C.S. Kubrusly, 1986. On discrete stochastic bilinear systems stability. J. Math. Anal.
Appl., 113, pp. 36-58.

[5] C. S. Kubrusly, 1981. Identification of discrete-time stochastic bilinear systems. Int.
J. Control, 33, 2, pp. 291-309.

[6] C.S. Kubrusly and O.L.V. Costa, 1985. Mean square stability conditions
for discrete-stochastic bilinear systems. IEEE Trans. Autom. Control, 30,
pp. 1082-1087.

[7] H. Gao, J. Lam, Z. Wang, 2007. Discrete bilinear stochastic systems with
time-varying delay: Stability analysis and control synthesis. Chaos, Solitons and
Fractals, 34, pp. 394-404.

[8] S. Xu, J. Lam, T. Chen, 2004. Robust H∞ control for uncertain discrete stochastic
time-delay systems. Syst. Control Lett., 51, pp. 203-215.

[9] S. Xu, J. Lam, H. Gao, and Y. Zou, 2005. Robust H∞ filtering for uncertain
discrete stochastic systems with time delay. Circuits Syst. Signal Process, 24 (6),
pp. 753-770.

[10] X. Mao, C. Yuan, 2006. Stochastic Differential Equations with Markovian
Switching. Imperial College Press.

11



[11] E.K. Boukas, Z.K. Liu, 2002. Deterministic and Stochastic Time Delay Systems.
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