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ROBUST STABILIZATION OF UNCERTAIN DISCRETE-TIME STOCHASTIC
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Abstract. In this paper, the problem of robust stabilization is addressed for a class
of uncertain discrete-time stochastic bilinear systems with Markovian switchings.
The parameter uncertainties are assumed to be time-varying and norm-bounded.
The jumping process is driven by a discrete-time Markov chain with finite states
and its transition probability matrix is partially unknown. Sufficient conditions are
established in terms of tractable linear matrix inequalities to ensure the closed-loop
system is robustly stochastically stable.
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1. Introduction

Stochastic models have been extensively studied due to their flexibility in modeling
real-world phenomena in biology, economics, engineering applications, and many other
areas, see [1-3] and the references therein. One of the most important classes of systems
that has been focused on in stochastic modeling is stochastic bilinear systems. This kind
of system is referred to as a linear system with noises. Many results dealing with stability
analysis and control of stochastic bilinear systems have been reported. We refer the reader
to [4-9] and the references therein.

On the other hand, Markov jump systems (MJSs) form an important class of
stochastic systems. They are widely used to model practical and physical processes
subject to random abrupt changes in their state variables, external inputs, and structure
parameters caused by sudden component failures, environmental noises, or random loss
of digital packages in interconnections [10-13]. A number of results on stability analysis,
H,, control, dynamic output feedback control, and state bounding for MJSs can be
found in [14-18]. Besides that, stochastic bilinear systems with Markovian switchings
have been investigated by many researchers, see [19-22] and the references therein.
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In [19], sufficient conditions in terms of tractable linear matrix inequalities to design a
mode-dependent stabilizing state-feedback controller were formulated and the problem
of robust H,, control was studied in [23]. However, most of the obtained results are
concerned with stochastic bilinear systems with Markovian switchings and the transition
probability matrix is assumed to be completely known. Such an assumption is not
reasonable in practical applications. To the best of the author’s knowledge, the problem of
robust stabilization of uncertain discrete-time stochastic bilinear systems with Markovian
switchings and partially unknown transition probabilities has not been fully investigated
in the literature.

In this paper, we deal with the problem of robust stabilization of uncertain
discrete-time stochastic systems with Markovian switchings. The parameter uncertainties
are assumed to be time-varying and norm-bounded. The transition probability matrix
of the jump switching is assumed to be partially unknown. Sufficient conditions are
established in terms of tractable linear matrix inequalities to ensure the closed-loop system
is robustly stochastically stable.

2. Preliminaries
2.1. Notation

Throughout this paper, Z and Z" denote the set of integers and positive integers,
respectively. Foran a € Z, Z* = {k € Z : k > a}. E[.] is the expectation operator with
respect to some probability measure Pr, R" is the n-dimensional Euclidean space with
vector norm ||.||, R"*? is the set of n X p real matrices and S is the set of symmetric
positive definite matrices. For matrices A, B € R™*P, col{ A, B} and diag{ A, B} denote
the block matrix {g} and [A

0 respectivel
O B ) p Y'

2.2. Problem formulation

Let (92, F,Pr) be a complete probability space. Consider a class of discrete-time
stochastic systems with Markovian switchings of the form

k1) =26 + Bl + el + Bl k€2,

where z(k) € R" is the state vector; u(k) € RP is the control input. The system
matrices Ay (ry), B1(rg), Aa(ry), Ba(ry) belong to {Ay;, By, As;i, Boi,i € M}, where
Aq;, Bii, Ag;, Boj, i € M, are known constant matrices.

For notational simplicity, in the sequel, whenever r, = i € M, matrices A;(ry),
Bi(rg), As(ry), Ba(ry) will be denoted by Ay;, By;, Aa;, and By, respectively.

The sequence {w(k),k € Z°} consists of scalar standard random variables
satisfying

Elw(k)] = 0,Elw(k)]* =1, (2.2)
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and w(0),w(1),..., are independent. The jump switching parameters {r;, k € Z°} is
driven by a discrete-time Markovian jump process specifying the system mode which
takes value in a finite set M = {1,2,...,m} with transition probabilities (TPs) given by

PI‘{TkJrl :j|7’k:?:}:7l'ij, Z,j GM,

where p;; > 0, 7,7 € M, and Z;n:l pij = 1 forall i € M. We denote by II = (7;;) the
transition probability matrix and p = (p1, ps, . . ., Py the initial probability distribution,
where p; = Pr{rg = i}, i € M. We also assume that the Markov chain {r;} and the
stochastic noise {w(k)} are independent.

In this paper, we assume in general that the transition probability matrix II is only
partially accessible (i.e., some entries of II are completely unknown). In the sequel, we
denote by 7;; the unknown entry m;; € II, M and M) the sets of indices of known

and unknown TPs in row II; = [ml Tio ... Wzm} of II, respectively,
MO = {je M: 7;isknown}, M) ={j € M: m;is unknown} . (2.3)

Moreover, if MY # 0, we denote M = (ui, i, ..., i), 1 < 1 < m. Thatis, in the ith
row of I1, entries 7; i, 7z, - . . Wiy Are known.
Corresponding to the system (2.1), we consider the system with uncertainties as

follows

z(k+ 1) =A1(k,ri)x(k) + Bi(k,ri)u(k) + [Az(k, ry)x(k)

2.4
+ Bollri)ulk)uh), k€ 2" 29
with
Al( ,Tk) Al(Tk> +AA1(/{7,Tk),
Aa(k, i) =Az(ri) + AAs(k, re), 25)
Bl( k) :B1 (Tk) + ABl(kZ, rk), .
Bg(k' Tk) BQ(Tk) +ABg(l€,Tk),
where AA;(k, 1), AAs(k, ), ABy(k, 7)), and ABs(k, 7)) are uncertain matrices which

have the following forms

AA(k,r) =D(r) A(rg) Ea, (1),
AAs(k,re) =D(ri) A(rk) Ea, (1), 2.6)
ABi(k,rr) =D(ri) A(rg) Ep, (1),
ABy(k,ry) =D(ri)A(ry) Ep, (rr),

D(ry), Ea, (1), Ea,(rg), Ep,(rk), and Ep,(ry) are known matrices of appropriate
dimensions. The term A(ry,) satisfies the following condition

AT (r)A(rg) < T, .7
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where I is the identity matrix of the appropriate dimension. The uncertain matrices
AA(k, 1), AAy(k, 1), ABy(k, 7)), and ABsy(k,ry) are said to be admissible if both
(2.6) and (2.7) hold.

In this paper, a memoryless state feedback controller is designed in the form
u(k) = K(ry)z(k), (2.8)

where K (r;) € {K;,i € M}, and K;,i € M are the controller gains which will be
designed. With the state feedback controller (2.8), the closed-loop systems of (2.1) are
given by

(k+1) =Ar(rp)z(k) + Age(re)z(kB)w(k), k € Z°, (2.9)

Where Alc(rk) = A1 (’I“k) + Bl (’I"k)K(Tk) and AQC(’I"k) = AQ(Tk;) + Bg(Tk)K(T‘k)
In addition, the closed-loop systems of (2.4) is given by

v(k+1) =A1(k, ) x(k) + Age(k, i)z (k)w(k), k € Z°, (2.10)

where Alc(k’, ’f’k) = Al(k’, Tk) + Bl (k, Tk)K(T’k) and Agc(k’, Tk) = Ag(l@ Tk) +
Bg(k, Tk)K(Tk)
First, we introduce the following definitions, see [24].

Definition 2.1. The open-loop system of (2.1) (i.e.,u(k) = 0) is said to be stochastically
stable if there exists a constant T'(rq, zo) such that

B [ixT(k)x(kﬂro,xO] < T(ro, o).

Definition 2.2. The open-loop system of (2.4) is said to be robustly stochastically stable
if it is stochastically stable for all admissible uncertainties. Moreover, system (2.4) is said
to be robustly stochastically stabilizable if there exists a state feedback controller in the
form of (2.8) such that closed- loop system (2.10) is stochastically stable for all admissible
uncertainties.

The main objective of this paper is to establish conditions to design a state feedback
controller in the form of (2.8) which guarantees system (2.4) with partially unknown
transition probabilities robustly stochastically stabilizable.

2.3. Auxiliary lemmas
We introduce some useful technical lemmas to proof our main results as follows.

Lemma 2.1 (Schur complements). Given constant matrices M, L,(Q) of appropriate
dimensions, where M and () are symmetric and QQ > 0, then M + LTQL < 0 if and
only if
T
[]\g _[é_l] <0, (2.11)
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or equivalently
_ -1
{ gT ]\[A < 0. (2.12)

Next, in order to establish conditions for robust stability, we employ the inequalities
in the following lemma (see, e.g., [25]).

Lemma 2.2. Let A, D, A, E be real matrices of appropriate dimensions with ||Al| < 1.
Then,

1 or any matrix > anda scalar € > satisfying el — > U,
(i) for any matrix P > 0 and scal 0 satisfying el — EPET > 0

(A+ DAE)P(A+ DAE)" < APAT + APE" (el — EPET) 'EPA™ + eDD”
(2.13)

(i) for any matrix P > 0 and scalar € > 0 satisfying P — eDDT > 0,

1
(A+ DAE)P ' (A+ DAE)' < AT(P —eDD") 'A+ -ETE.  (2.14)
€
The following lemma gives necessary and sufficient conditions for the stochastic
stability of system (2.1) with u(k) = 0, see [24].

Lemma 2.3. System (2.1) with u(k) = 0 is stochastically stable if and only if there exist
matrices QQ; € S}, i € M, such that one of the two following conditions holds:

(1) Foralli € M, the algebraic Riccati inequality (ARI) holds
ALGiAy + AL G Ay — Q; <0, (2.15)
where G; = 3770 mi; Q)
(i1) The following LMI holds
—Qi Ty
Ji —Q 0| <0,VieM, (2.16)
Jai 0 —Q

where

Jlj; = [\/W_’HA{ZQD RNV ﬂ-zmA{;Qm};
Jg; = [\/W_ZIA%—;QM sV ﬂ-zmAg;Qm} .
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3. Main results

In this section, sufficient conditions for robust stability and stabilization of system
(2.4) will be derived. First, the conditions for robust stability of system (2.4) with u(k) =
0 are given in the following theorem.

Theorem 3.1. The open-loop system of (2.4) with deficient TPs (2.3) is robustly
stochastically stable if there exist matrices Q; € S, scalars €1; > 0, €9; > 0, €3; > 0, and
€4; > 0, 1 € M such that

_ﬂ-ZLQ'L AEQ,L A%;Q,L Ez;h Ez;zz
* Q' D;DI —T 0 0 0
* * EQZ‘QZTDZ‘DZ-T -T 0 0 <0, 3.1
* * * —epl 0
* * * * —egll
and
—Qi Af; A EY,  E4,
x e D; DI — Q! 0 0 0
* * €1 D; DT — Q]_l 0 0 <0,Vj e ./\/lm, 3.2)
* * * —e3;] 0
* * * * —eygll

where I’ = dzag(Ql, 1,...,@ )Qi:[mﬂ’mﬂ’“"mﬂ]'

Proof. According to Lemma 2.3, the open-loop system (2.4) is robustly stochastically
stable if there exist matrices ); € ST, i € M, such that the following inequality holds for
all admissible uncertainties

Ay (k, i)TGiAl(ka i) + Aq(k, i)TGiA2(ka’i) - Q; <0, (3.3)

where Gz = Z;nzl Wiij, Al(k‘, Z) = Ali + Dz‘Az’EAh-, and Ag(k, 7,) = AQZ' + Dz‘Az‘EAQi-
From the fact Z;"Zl mi; = 1 for all © € M, condition (3.3) is equivalent to the two
following conditions

Z% [Ay(k, i)' QA1 (K, i) + Ag(k,i)TQ; A (K, )] Z%Qz <0, (3.4)

7=1

or

Z i [Ar(k,0)TQjAv (K, 1) + As(k, i) " Q; As (ki) — Q]
jemMSP
+ > my[A(k )T Q ANk, i) + Ak, 1) Qi Ax (ki) — Qi) <0 (3.5)

jemMP)
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Denote (; = ZjeMEli) m;;Q; and 7w, = ZJ.GM((;-) 7;;. Then, with the notice that m;; > 0,
Vi, 5 € M, condition (3.5) holds if the two following conditions hold

A1<k’, Z)TélAl(l{Z, ’L) + Ag(k?, Z)TézAg(k, 7,) — WiQi <0 (36)
and
Ay (k) TQ, A (K, i) + Ag(k,i)TQ;Ax(k, i) — Q; < 0, forall j € M. (3.7)
On the other hand,

Ay (k)T Gi A (k, i) = [QF Ay + QT DA ES, ]
Ag(k, )T GiAs(k, i) = [QF Ay + QT DA ES, ]

I Q7 A+ Q' DiAEL,], (3.8)
IO Ay + Q' DiAE A, ] (39)
For given €1; > 0,€e5 >0, T — EhQZTDzDZTQZ > 0,and I' — EgzngDZDZTQZ > 0, by
utilizing Lemma 2.2, we get
Ay (k, 1) G Ay (K, 1) < ALQU(T — ,Q D.DF Q) 'QT Ay + ' E Ea,,,  (3.10)
AQ(k, ’L)TGZAQ(]{, Z) S AleQl(F - EQIQ;TDZD;TQl)ilQlTAQl + 621» EA%EA%. (311)

Thus, condition (3.6) holds if

AT (0 — e, DD ) 1T Ay + €' EL Eay,
+ AL — 07 D,DTQ) QL Ay + €3, EY By, — 70Q; < 0. (3.12)

Similarly, for given e; > 0, e4; > 0, Q; ' —e3;D;:D] > 0, and Q; ' — ey D; D] > 0,
we get

(Q;' — es:DiD] ) Ay + €5 EX Ea,, (3.13)

Ay (k) TQ; A (ki) < A,
< AL(Q;" — € DiD]) Ay + €4, EX Ea,,. (3.14)

AQ(ka i>TQjA2(k7 Z)
Thus, condition (3.7) holds if
AL(Q7" — e D;Df ) Ay + 5 B}y Ea,,
AL(Q7" = €D DT) Ay + € EL, By — Qi < 0,V5 € M), (3.15)

Now, applying the Schur complement, inequalities (3.12) and (3.15) are equivalent to
(3.1) and (3.2), respectively. This completes the proof. ]

Next, we will derive conditions by which system (2.4) with partially unknown
transition probabilities (2.3) is robustly stochastically stabilizable with state feedback
(2.8).
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Theorem 3.2. System (2.4) with deficient TPs (2.3) is robustly stochastically stabilizable
if there exist matrices X; € S}, Y;,i € M such that

_Win AliQi A2iQi Eli Em‘
e, QTD;DT — X 0 0 0
* * 2 Q'D;DT =X 0 0 | <0, (3.16)
* * * —el 0
* * * * —egl

and
—X; Ay Ay By By,

* e D;DI — X; 0 0 0

* % exD:DT — X; 0 0 | <0,vjeMPD (317

* * * —es3;] 0

* * * * —ey;ll

where X = diag(X,i, Xz, ..., X,4), Au = X;AL, + Y B, Ay = X;AL + Y/ B,
Eh- = XiEz;M + YZ-TE%;M, Egi = XiEz;% + Y;TE%;%. The controller gains K;, 1 € M, are
given by K; = Y,-Xi_l.

Proof. From Definition 2.2, it is only necessary to show that the closed-loop system (2.10)
is stochastically stable for all admissible uncertainties.

By Theorem 3.1, system (2.10) is stochastically stable if there exist matrices (); €
S}, i € M such that

—7, Qi Achz'Qi AgciQi Eﬂz E2Tcz
* QU D; DI — T 0 0 0
* * €' D, DI — T 0 0 <0, (3.18)
* * * —617;]1 0
* * * * —e9;1
- -1 -1 -1
where I' = dzag(Q% Qs Q% ), and
x euD; DI — Q! 0 0 0
* X exD;DF — Q7' 0 0 | <o, forall j € MY
* * —es3;] 0
* * _€4i]1

(3.19)
where Ay = Ay + B K, Asei = Ao + Boi K, Evei = Ega,, + Ep,, K;, and Ey,; =
Ea,, + Ep, K;.

10
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Let X; = Q;',Y; = K;X;. By pre-and post-multiplying equations (3.18) and
(3.19) with diag(X;,I,I1,I,I) we then obtain (3.16) and (3.17), respectively. This
completes the proof. O

Remark 3.1. When the transition probabilities of the jumping process are completely
known, the derived conditions in Theorem 3.2 are reduced to those of Theorem I in [23].
Thus, the result of Theorem 3.2 in this paper can be regarded as an extension of the result

of [23].

4. Conclusion

This paper has dealt with the problem of robust stabilization of uncertain
discrete-time stochastic bilinear systems with Markovian switching. Based on the analysis
of the transition probability matrix, sufficient conditions have been established in terms of
tractable linear matrix inequalities to design mode-dependent state feedback controllers
which guarantee the robust stability of the system.
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