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Abstract. The thermal and quantum phase transitions are studied basing on the
Cornwall-Jackiw-Tomboulis (CJT) effective action approach for the relativistic
linear sigma model of the two-component mixing system. After obtaining the
expression of the thermodynamic potential in Hartree-Fock(HF) approximation,
which preserves the Goldstone theorem, the numerical results show that there may
be two phase transition scenarios in the system. The first scenario is the thermal
phase transition which can only occur in one component. The second scenario is
quantum phase transitions which can occur in both two components. In addition,
both these two types of phase transitions belong the second order phase transition.
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approximation, Goldstone theorem, thermal phase transition, quantum
phase transition.

1. Introduction

The phenomenon of kaon condensation has been extensively investigated since
Kaplan and Nelson [1] showed that kaon condensation could occur at a density around
3ρ0, whereρ0 is the normal nuclear density. No long time after, it was proved [2] that
kaons are condensed in quark matter at sufficiently high densities and low temperature is
in the color-flavor-locked (CFL) phase, and their dynamics [3] is essentially described
by the linear sigma model at finite density, which is not invariant under the Lorentz
transformations.

In recent years many works (for example, [4-11], and others)related to phase
transition, symmetry breaking and restoration, Bose-Einstein condensation, etc. have
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been implemented within the linear sigma model because thismodel is considered to
be best suited for the theory of low energy phenomena of quantum chromodynamic
(QCD). In the present work the linear sigma model at finite density and temperature
is reconsidered by means of the Cornwall-Jackiw-Tomboulis(CJT) effective action.
However, there is a serious difficulty related to re-standardizing the effective action to
satisfy Goldstone theorem in the Hartree-Fock (HF) approximation. In order that the
Goldstone theorem is respected and the renormalization is achieved in this approximation
we adopt the gapless resummation and the renormalization prescription developed in
[6, 7], respectively.

In addition, the previous models are mainly limited to one field of multiple
components or two fields in the non-relativistic case. Therefore, expanding the model for
describing the two-component mixing system in the relativistic case is essential because it
allows to clarify many effects related to the internal structure of the stars such as neutron
stars [12, 13], or the existence of quark matter in the color-flavor-locked phase at high
density and low temperature [14]. This paper presents the research results initially in
that direction.

2. Content

2.1. Lagrangian of the model and the CJT effective potential

Let us start from the linear sigma model of the two-componentmixing system
described by the lagrangian [11]:

L = (∂0φ∗)(∂0φ)− (∂aφ∗)(∂aφ)− iµ1[(∂
0φ∗)φ− φ∗(∂0φ)] + (µ2

1
−m2

1
)(φ∗φ)

+(∂0ψ∗)(∂0ψ)− (∂aψ∗)(∂aψ)− iµ2[(∂
0ψ∗)ψ − ψ∗(∂0ψ)] + (µ2

2
−m2

2
)(ψ∗ψ)

−λ1(φ
∗φ)2 − λ2(ψ

∗ψ2 − λ(φ∗φ)(ψ∗ψ). (2.1)

Herem1, µ1 (m2, µ2) are, respectively, mass and chemical potential of the complex
doublet fieldφ (ψ); λ1, λ2, λ are coupling constants and∂a = ∂

∂xa
, ∂0 = ∂

∂x0
.

This model gives the CJT effective potentialV CJT
β (φ0, ψ0, D,G) at finite

temperature in the HF approximation, which preserves the Goldstone theorem
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including the gap and SD equations:
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* The gap equations
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*The SD equations
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HereD,G are the complete propagators,T = 1/β is the temperature andP andQ
are the notations

Paa = T
∑

n

∫

d3k

(2π)3
Daa(ωn, ~k) ; a = 1, 2,

Qaa = T
∑

n

∫

d3k

(2π)3
Gaa(ωn, ~k) ; a = 1, 2. (2.5)

2.2. Numerical calculation

In this section we perform numerical calculations to study the phase transition in
the linear sigma model of the two-component mixing system inaccordance with the two
processes when the temperature and / or the chemical potential change. These are two
typical physical processes corresponding to thermal phasetransition and quantum phase
transition. To do this, first need to select the parameters for the model. Basing on [16]
we choose masses and chemical potentials correspond to kaons, namelym1 = 5 MeV,
m2 = 4 MeV, µ1 = 4.5 MeV, and the coupling constants selected areλ1 = 0.0048, λ2 =
0.005, λ = 0.004. Next, we need to determine the phase structure of the systemby
drawing phase balance curves. By numerical solving equations (2.4) and (2.3) we draw
linesφ0 = 0, ψ0 = 0 in the phase planeT − µ2 and obtain result as shown in Figure 1.

As can be seen in Figure 1, withµ2c1 ≃ 2 MeV < µ2 < µ2c2 ≃ 3.8 MeV there is
a desert corresponding to bothφ0 = 0 andψ0 = 0. Therefore with a fixed value ofµ2,
only φ0 6= 0 or ψ0 6= 0 can exist and as a result only the thermal phase transition inthe
sectorφ or ψ occurs. In contrast, with one a definite value of temperatureT , there may
exist bothφ0 6= 0 andψ0 6= 0 at different values ofµ2 and therefore the quantum phase
transition not only in the sectorφ but also inψ occurs. In order to get some insight the
above statements, let us examine each type of phase transition in detail.
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Figure 1. Phase diagram in the plane T − µ2 at λ = 0.004

2.2.1. Thermal phase transition

In order to investigate thermal phase transition in theψ sector, we choose chemical
potentialµ2 = 5.5 MeV basing on Figure 1. By numerical solving the equations (2.4)
and (2.3) with the selected parameters we obtain the temperatureT dependence of theψ0

andφ0 as shown in Figure 2. Obviously,ψ0 increases steadily to zero when temperature
increases toTcψ. That is a sign of second order phase transition.

Figure 2. The T dependence of φ0 and ψ0 at µ2 = 5.5MeV
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Figure 3 represents theψ0 dependence of the effective potential
V
CJT

β (φ0, ψ0, D,G). Local minimum (atψ0 6=0) of the effective potential gradually
shifts to the origin and completely disappears atTcψ ≃ 120 MeV. That confirms a second
order phase transition in theψ sector occurs atTcψ ≃ 120 MeV.

Figure 3. The ψ0 dependence of V
CJT

β (φ0, ψ0, D,G.) at several temperature

Figure 4. The T dependence of φ0 and ψ0
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Analogously, in order to investigate thermal phase transition in theφ sector, we
choose chemical potentialµ2 = 1.5 MeV. Figure 4 represents the temperature dependence
of the vacuum expectation valuesψ0, φ0. As is seen from this figure the phase transition
in the sectorφ also is second order and takes place at temperatureTcφ ≃ 27.5 MeV.

2.2.2. Quantum phase transition

Quantum phase transition is a phase transition that occurs at a fixed temperature
when the chemical potential changes. Figure 5 shows theµ2 dependence ofφ0 and
ψ0 at T = 10 MeV. As can be seen on this figure, when the chemical potentialµ2

increases, theφ0 decreases to zero and then is replaced by theψ0. With µ2c1 ≃ 2 MeV
< µ2 < µ2c2 ≃ 3.8 MeV both φ0 andψ0 cannot coexist. This result is completely
consistent with the comment that was taken from Figure 1. Moreover, the monotonous
variation of φ0 and ψ0 also shows signs of second order phase transition. This is
also clearly shown in Figure 6 drawing the dependenceψ0 of the effective potential
V
CJT

β (φ0, ψ0, D,G) at several values ofµ2: Whenµ2 increases over the valueµ2c2, the

minimum of V
CJT

β (φ0, ψ0, D,G) gradually moves out of the origin (corresponding to
ψ0 = 0). This means that the system from symmetrical phase to othersymmetrical phase
is broken atµ2c2.

Figure 5. The µ2 dependence of φ0 and ψ0 at T = 10MeV
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Figure 6. The ψ0 dependence of φ0, ψ0 at several values of the chemical potential µ2

3. Conclusion

In this paper the phase transitions in the linear sigma modelwere considered by
means of the finite temperature CJT effective action. The main results are following:

1-The thermodynamic potential of system in the HF approximation, which is
renormalized and respects Goldstone theorem.

2-There may be two phase transition scenarios in the system.The first scenario is
the thermal phase transition which can only occur in one component. The second scenario
is quantum phase transitions which can occur in both two components depending on the
effect of temperature or chemical potential. These resultsare confirmed by EoS.

3-Both the thermal and quantum phase transitions belong to the second order.
Actually, in order to highlight physical properties of kaonmatter we proceed to

the numerical computation of phase transition patterns taking a set of kaon masses and
chemical potential specified in [7], while the coupling constants are chosen fromT − µ
phase diagram Figure 1 to get desired scenarios. To conclude, we would like to emphasize
that the formalism developed in this paper is also useful forall studies of nuclear and
particle dynamics at finite density and temperature starting from the linear sigma model
at different energy scales. At scale of order 10 MeV we deal with nuclear structure if
the degrees of freedom are sigma, pions, and nucleons. For higher energy of order 100
MeV we are led to the chiral dynamics of hadrons with nucleonsreplaced by quarks and
at scale of order 100 GeV the Higgs physics of the electroweaktheory emerges. This is
evidently the promising task for the next research.
Acknowledgment. This work is funded by the Vietnam Foundation of Education and
Training Ministry.
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