EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS

Tran Thi Quynh Chi and Le Thi Thuy
Faculty of Mathematics, Electric Power University

Abstract

In this paper we prove the existence and uniqueness of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators by combining compactness and monotonicity methods. Keywords: Quasilinear degenerate parabolic equation, weighted p-Laplacian operator, weak solution, compactness method, monotonicity method.

1. Introduction

In this paper we consider the following parabolic problem:

$$
\begin{cases}u_{t}-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)+f(u)=g(x), & x \in \Omega, t>0 \tag{1.1}\\ u(x, t)=0, & x \in \partial \Omega, t>0 \\ u(x, 0)=u_{0}(x), & x \in \Omega\end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with smooth boundary $\partial \Omega, 2 \leq p \leq N$, $u_{0} \in L^{2}(\Omega)$ given, the coefficient $a(\cdot)$, the nonlinearity f and the external force g satisfy the following conditions:
(H1) The function $a: \Omega \rightarrow \mathbb{R}$ satisfies the following assumptions: $a \in L_{\mathrm{loc}}^{1}(\Omega)$ and $a(x)=0$ for $x \in \Sigma$, and $a(x)>0$ for $x \in \bar{\Omega} \backslash \Sigma$, where Σ is a closed subset of $\bar{\Omega}$ with meas $(\Sigma)=0$. Furthermore, we assume that

$$
\begin{equation*}
\int_{\Omega} \frac{1}{[a(x)]^{\frac{N}{\alpha}}} d x<\infty \text { for some } \alpha \in(0, p) ; \tag{1.2}
\end{equation*}
$$

(H2) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function satisfying

$$
\begin{align*}
C_{1}|u|^{q}-C_{0} & \leq f(u) u \leq C_{2}|u|^{q}+C_{0}, \quad \text { for some } q \geq 2, \tag{1.3}\\
f^{\prime}(u) & \geq-\ell, \tag{1.4}
\end{align*}
$$

where $C_{0}, C_{1}, C_{2}, \ell$ are positive constants;

Received March 11, 2019. Revised June 5, 2019. Accepted June 12, 2019.
Contact Tran Thi Quynh Chi, e-mail address: chittq@epu.edu.vn
(H3) $g \in L^{s}(\Omega)$, where $s \geq \min \left(\frac{q}{q-1}, \frac{p N}{(N+1) p-N+\alpha}\right)$.
The degeneracy of problem (1.1) is considered in the sense that the measurable, nonnegative diffusion coefficient $a(x)$ is allowed to vanish somewhere. The physical motivation of the assumption $(H 1)$ is related to the modeling of reaction diffusion processes in composite materials, occupying a bounded domain Ω, in which at some points they behave as perfect insulator. Following [1, p. 79], when at some points the medium is perfectly insulating, it is natural to assume that $a(x)$ vanishes at these points. As mentioned in [2], the assumption (H1) implies that the degenerate set may consist of an infinite many number of points, which is different from the weight of Caldiroli-Musina type in [3, 4] that is only allowed to have at most a finite number of zeroes. A typical example of the weight a is $\operatorname{dist}(x, \partial \Omega)$.

Problem (1.1) contains some important classes of parabolic equations, such as the semilinear heat equation (when $a=1, p=2$), semilinear degenerate parabolic equations (when $p=2$), the p-Laplacian equations (when $a=1, p \neq 2$), etc. It is noticed that the existence and long-time behavior of solutions to (1.1) when $p=2$, the semilinear case, have been studied recently by Li et al. in [2]. We also refer the interested reader to [4-11] for related results on degenerate parabolic equations.

2. Preliminary results

To study problem (1.1), we introduce the weighted Sobolev space $W_{0}^{1, p}(\Omega, a)$, defined as the closure of $C_{0}^{\infty}(\Omega)$ in the norm

$$
\|u\|_{W_{0}^{1, p}(\Omega, a)}:=\left(\int_{\Omega} a(x)|\nabla u|^{p} d x\right)^{\frac{1}{p}}
$$

and denote by $W^{-1, p^{\prime}}(\Omega, a)$ its dual space.
We now prove some embedding results, which are generalizations of the corresponding results in the case $p=2$ of Li et al. [2].
Proposition 2.1. Assume that Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 2$, and a (\cdot) satisfies (H1). Then the following embeddings hold:
(i) $W_{0}^{1, p}(\Omega, a) \hookrightarrow W_{0}^{1, \beta}(\Omega)$ continuously if $1 \leq \beta \leq \frac{p N}{N+\alpha}$;
(ii) $W_{0}^{1, p}(\Omega, a) \hookrightarrow L^{r}(\Omega)$ continuously if $1 \leq r \leq p_{\alpha}^{*}$, where $p_{\alpha}^{*}=\frac{p N}{N-p+\alpha}$.
(iii) $W_{0}^{1, p}(\Omega, a) \hookrightarrow L^{r}(\Omega)$ compactly if $1 \leq r<p_{\alpha}^{*}$.

Proof. Applying the Hölder inequality, we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{\frac{p N}{N+\alpha}} d x & =\int_{\Omega} \frac{1}{[a(x)]^{\frac{N}{N+\alpha}}}[a(x)]^{\frac{N}{N+\alpha}}|\nabla u|^{\frac{p N}{N+\alpha}} d x \\
& \leq\left(\int_{\Omega} \frac{1}{[a(x)]^{\frac{N}{\alpha}}} d x\right)^{\frac{\alpha}{N+\alpha}}\left(\int_{\Omega} a(x)|\nabla u|^{p} d x\right)^{\frac{N}{\alpha}} .
\end{aligned}
$$

Using the assumption $(H 1)$, we complete the proof of (i).
The conclusions (ii) and (iii) follow from (i) and the well-known embedding results for the classical Sobolev spaces.

Putting

$$
L_{p, a} u=-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right), \quad u \in W_{0}^{1, p}(\Omega, a) .
$$

The following proposition, its proof is straightforward, gives some important properties of the operator $L_{p, a}$.
Proposition 2.2. The operator $L_{p, a}$ maps $W_{0}^{1, p}(\Omega, a)$ into its dual $W^{-1, p^{\prime}}(\Omega, a)$. Moreover,
(i) $L_{p, a}$ is hemicontinuous, i.e., for all $u, v, w \in W_{0}^{1, p}(\Omega, a)$, the $\operatorname{map} \lambda \mapsto\left\langle L_{p, a}(u+\right.$ $\lambda v), w\rangle$ is continuous from \mathbb{R} to \mathbb{R};
(ii) $L_{p, a}$ is strongly monotone when $p \geq 2$, i.e.,

$$
\left\langle L_{p, a} u-L_{p, a} v, u-v\right\rangle \geq \delta\|u-v\|_{W_{0}^{1, p}(\Omega, a)}^{p} \text { for all } u, v \in W_{0}^{1, p}(\Omega, a)
$$

3. Existence and uniqueness of global weak solutions

Denote

$$
\begin{aligned}
\Omega_{T} & =\Omega \times(0, T) \\
V & =L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right) \cap L^{q}\left(0, T ; L^{q}(\Omega)\right) \\
V^{*} & =L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega, a)\right)+L^{q^{\prime}}\left(0, T ; L^{q^{\prime}}(\Omega)\right) .
\end{aligned}
$$

Definition 3.1. A function u is called a weak solution of problem (1.1) on the interval $(0, T)$ if

$$
\begin{aligned}
& u \in V, \quad \frac{d u}{d t} \in V^{*}, \\
& \left.u\right|_{t=0}=u_{0} \text { a.e. in } \Omega,
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{\Omega_{T}}\left(\frac{\partial u}{\partial t} \eta+a(x)|\nabla u|^{p-2} \nabla u \nabla \eta+f(u) \eta-g \eta\right) d x d t=0 \tag{3.1}
\end{equation*}
$$

for all test functions $\eta \in V$.
It is known (see e.g. [4]) that if $u \in V$ and $\frac{d u}{d t} \in V^{*}$, then $u \in C\left([0, T] ; L^{2}(\Omega)\right)$. This makes the initial condition in problem (1.1) meaningful.

Lemma 3.1. Let $\left\{u_{n}\right\}$ be a bounded sequence in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$ such that $\left\{u_{n}^{\prime}\right\}$ is bounded in V^{*}. If $(H 1)$ and $(H 3)$ hold, then $\left\{u_{n}\right\}$ converges almost everywhere in Ω_{T} up to a subsequence.

Tran Thi Quynh Chi and Le Thi Thuy

Proof. By Proposition 2.1, one can take a number $r \in\left[2, p_{\alpha}^{*}\right)$ such that

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, a) \hookrightarrow \hookrightarrow L^{r}(\Omega) \tag{3.2}
\end{equation*}
$$

Since $r^{\prime} \leq 2$, we have

$$
L^{p}(\Omega) \cap L^{q}(\Omega) \hookrightarrow L^{r^{\prime}}(\Omega)
$$

and therefore,

$$
\begin{equation*}
L^{r}(\Omega) \hookrightarrow L^{p^{\prime}}(\Omega)+L^{q^{\prime}}(\Omega) \tag{3.3}
\end{equation*}
$$

Using Proposition 2.1 once again and noticing that $p \leq p_{\alpha}^{*}$ since $\alpha \in(0, p)$, we see that

$$
W_{0}^{1, p}(\Omega, a) \hookrightarrow L^{p}(\Omega)
$$

This and (3.3) follow that

$$
L^{r}(\Omega) \hookrightarrow W^{-1, p^{\prime}}(\Omega, a)+L^{q^{\prime}}(\Omega)
$$

Now with (3.2), we have an evolution triple

$$
W_{0}^{1, p}(\Omega, a) \hookrightarrow \hookrightarrow L^{r}(\Omega) \hookrightarrow W^{-1, p^{\prime}}(\Omega, a)+L^{q^{\prime}}(\Omega)
$$

The assumption of $\left\{u_{n}^{\prime}\right\}$ in V^{*} implies that

$$
\left\{u_{n}^{\prime}\right\} \text { is also bounded in } L^{s}\left(0, T ; W^{-1, p^{\prime}}(\Omega, a)+L^{q^{\prime}}(\Omega)\right), \text { where } s=\min \left\{p^{\prime}, q^{\prime}\right\}
$$

Thanks to the well-known Aubin-Lions compactness lemma (see [12, p. 58]), $\left\{u_{n}\right\}$ is precompact in $L^{p}\left(0, T ; L^{r}(\Omega)\right)$ and therefore in $L^{t}\left(0, T ; L^{t}(\Omega)\right), t=\min (p, r)$, so it has an a.e. convergent subsequence.

The following lemma is a direct consequence of Young's inequality and the embedding $W_{0}^{1, p}(\Omega, a) \hookrightarrow L^{p_{\alpha}^{*}}(\Omega)$, where $p_{\alpha}^{*}=\frac{p N}{N-p+\alpha}$, which is frequently used later.

Lemma 3.2. Let condition (H3) hold and $u \in W_{0}^{1, p}(\Omega, a) \cap L^{q}(\Omega)$. Then for any $\varepsilon>0$, we have

$$
\left|\int_{\Omega} g u d x\right| \leq \begin{cases}\varepsilon\|u\|_{W_{0}^{1, p}(\Omega, a)}^{p}+C(\varepsilon)\|g\|_{L^{s}(\Omega)}^{s} & \text { if } s \geq \frac{p N}{(N+1) p-N+\alpha} \\ \varepsilon\|u\|_{L^{q}(\Omega)}^{q}+C(\varepsilon)\|g\|_{L^{s}(\Omega)}^{s} & \text { if } s \geq \frac{q}{q-1} .\end{cases}
$$

The following theorem is the main result of the paper.
Theorem 3.1. Under assumptions (H1) - (H3), for each $u_{0} \in L^{2}(\Omega)$ and $T>0$ given, problem (1.1) has a unique weak solution on $(0, T)$. Moreover, the mapping $u_{0} \mapsto u(t)$ is continuous on $L^{2}(\Omega)$.

Existence and uniqueness of solutions to a class of quasilinear degenerate parabolic equations

Proof. (i) Existence. Consider the approximating solution $u_{n}(t)$ in the form

$$
u_{n}(t)=\sum_{k=1}^{n} u_{n k}(t) e_{k}
$$

where $\left\{e_{j}\right\}_{j=1}^{\infty}$ is a basis of $W_{0}^{1, p}(\Omega, a) \cap L^{q}(\Omega)$, which is orthogonal in $L^{2}(\Omega)$. We get u_{n} from solving the problem

$$
\left\{\begin{array}{l}
\left\langle\frac{d u_{n}}{d t}, e_{k}\right\rangle+\left\langle L_{p, a} u_{n}, e_{k}\right\rangle+\left\langle f\left(u_{n}\right), e_{k}\right\rangle=\left\langle g, e_{k}\right\rangle, \\
\left(u_{n}(0), e_{k}\right)=\left(u_{0}, e_{k}\right), k=1, \ldots, n .
\end{array}\right.
$$

By the Peano theorem, we obtain the local existence of u_{n}.
We now establish some a priori estimates for u_{n}. Since

$$
\frac{1}{2} \frac{d}{d t}\left\|u_{n}(t)\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega} a(x)\left|\nabla u_{n}\right|^{p} d x+\int_{\Omega} f\left(u_{n}\right) u_{n} d x=\int_{\Omega} g u_{n} d x .
$$

Using (1.3) and Lemma 3.2, we have

$$
\frac{d}{d t}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+C\left(\int_{\Omega} a(x)\left|\nabla u_{n}\right|^{p} d x+\int_{\Omega}\left|u_{n}\right|^{q} d x\right) \leq C\left(\|g\|_{L^{s}(\Omega)},|\Omega|\right)
$$

Integrating from 0 to $t, 0 \leq t \leq T$ and using the fact that $\left\|u_{n}(0)\right\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}$, we obtain

$$
\begin{aligned}
\left\|u_{n}(t)\right\|_{L^{2}(\Omega)}^{2} & +C \int_{0}^{t} \int_{\Omega} a(x)\left|\nabla u_{n}\right|^{p} d x d t+C \int_{0}^{t} \int_{\Omega}\left|u_{n}\right|^{q} d x d t \\
& \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+T C\left(\|g\|_{L^{s}(\Omega)},|\Omega|\right) .
\end{aligned}
$$

It follows that

- $\left\{u_{n}\right\}$ is bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$;
- $\left\{u_{n}\right\}$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$;
- $\left\{u_{n}\right\}$ is bounded in $L^{q}\left(0, T ; L^{q}(\Omega)\right)$.

The Hölder inequality yields

$$
\begin{aligned}
\left|\int_{0}^{T}\left\langle L_{p, a} u_{n}, v\right\rangle d t\right| & =\left.\left|\int_{0}^{T} \int_{\Omega} a(x)\right| \nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x d t \mid \\
& \leq \int_{0}^{T} \int_{\Omega}\left(a(x)^{\frac{p-1}{p}}\left|\nabla u_{n}\right|^{p-1}\right)\left(a(x)^{\frac{1}{p}}|\nabla v|\right) d x d t \\
& \leq\left\|u_{n}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)}\|v\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)},
\end{aligned}
$$

for any $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$. Using the boundedness of $\left\{u_{n}\right\}$ in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$, we infer that $\left\{L_{p, a} u_{n}\right\}$ is bounded in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega, a)\right)$. From (1.3), we have

$$
|f(u)| \leq C\left(|u|^{p-1}+1\right)
$$

Hence, since $\left\{u_{n}\right\}$ is bounded in $L^{q}\left(0, T ; L^{q}(\Omega)\right)$, one can check that $\left\{f\left(u_{n}\right)\right\}$ is bounded in $L^{q^{\prime}}\left(0, T ; L^{q^{\prime}}(\Omega)\right)$. Rewriting (1.1) in V^{*} as

$$
\begin{equation*}
u_{n}^{\prime}=g-L_{p, a} u_{n}-f\left(u_{n}\right) \tag{3.4}
\end{equation*}
$$

and using the above estimates, we deduce that $\left\{u_{n}^{\prime}\right\}$ is bounded in V^{*}.
From the above estimates, we can assume that

- $u_{n}^{\prime} \rightharpoonup u^{\prime}$ in V^{*};
- $L_{p, a} u_{n} \rightharpoonup \psi$ in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega, a)\right)$;
- $f\left(u_{n}\right) \rightharpoonup \chi$ in $L^{q^{\prime}}\left(\Omega_{T}\right)$.

By Lemma 3.1, $u_{n} \rightarrow u$ a.e. in Ω_{T}, so $f\left(u_{n}\right) \rightarrow f(u)$ a.e. in Ω_{T} since $f(\cdot)$ is continuous. Thus, $\chi=f(u)$ thanks to Lemma 1.3 in [12]. Now taking (3.4) into account, we obtain the following equation in V^{*},

$$
\begin{equation*}
u^{\prime}=g-\psi-f(u) \tag{3.5}
\end{equation*}
$$

We now show that $\psi=L_{p, a} u$. We have for every $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$,

$$
X_{n}:=\int_{0}^{T}\left\langle L_{p, a} u_{n}-L_{p, a} v, u_{n}-v\right\rangle \geq 0
$$

Noticing that

$$
\begin{align*}
\int_{0}^{T}\left\langle L_{p, a} u_{n}, u_{n}\right\rangle d t & =\int_{0}^{T} \int_{\Omega} a(x)\left|\nabla u_{n}\right|^{p} d x d t \\
& =\int_{0}^{T} \int_{\Omega}\left(g u_{n}-f\left(u_{n}\right) u_{n}-u_{n}^{\prime} u_{n}\right) d x d t \\
& =\int_{0}^{T} \int_{\Omega}\left(g u_{n}-f\left(u_{n}\right) u_{n}\right) d x d t+\frac{1}{2}\left\|u_{n}(0)\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\left\|u_{n}(T)\right\|_{L^{2}(\Omega)}^{2} \tag{3.6}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& X_{n}=\int_{0}^{T} \int_{\Omega}\left(g u_{n}-f\left(u_{n}\right) u_{n}\right) d x d t+\frac{1}{2}\left\|u_{n}(0)\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\left\|u_{n}(T)\right\|_{L^{2}(\Omega)}^{2} \\
&-\int_{0}^{T}\left\langle L_{p, a} u_{n}, v\right\rangle d t-\int_{0}^{T}\left\langle L_{p, a} v, u_{n}-v\right\rangle d t
\end{aligned}
$$

It follows from the formulation of $u_{n}(0)$ that $u_{n}(0) \rightarrow u_{0}$ in $L^{2}(\Omega)$. Moreover, by the lower semi-continuity of $\|\cdot\|_{L^{2}(\Omega)}$ we obtain

$$
\begin{equation*}
\|u(T)\|_{L^{2}(\Omega)} \leq \liminf _{n \rightarrow \infty}\left\|u_{n}(T)\right\|_{L^{2}(\Omega)} . \tag{3.7}
\end{equation*}
$$

Meanwhile, by the Lebesgue dominated theorem, one can check that

$$
\int_{0}^{T} \int_{\Omega}(g u-f(u) u) d x d t=\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{\Omega}\left(g u_{n}-f\left(u_{n}\right) u_{n}\right) d x d t
$$

This fact and (3.6), (3.7) imply that

$$
\begin{align*}
\limsup _{n \rightarrow \infty} X_{n} \leq \int_{0}^{T} & \int_{\Omega}(g u-f(u) u) d x d t+\frac{1}{2}\|u(0)\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\|u(T)\|_{L^{2}(\Omega)}^{2} \\
& -\int_{0}^{T}\langle\psi, v\rangle d t-\int_{0}^{T}\left\langle L_{p, a} v, u-v\right\rangle d t \tag{3.8}
\end{align*}
$$

In view of (3.5), we have

$$
\int_{0}^{T} \int_{\Omega}(g u-f(u) u) d x d t+\frac{1}{2}\|u(0)\|_{L^{2}(\Omega)}^{2}-\frac{1}{2}\|u(T)\|_{L^{2}(\Omega)}^{2}=\int_{0}^{T}\langle\psi, u\rangle d t
$$

This and (3.8) deduce that

$$
\begin{equation*}
\int_{0}^{T}\left\langle\psi-L_{p, a} v, u-v\right\rangle d t \geq 0 \tag{3.9}
\end{equation*}
$$

Putting $v=u-\lambda w, w \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right), \lambda>0$. Since (3.9) we have

$$
\lambda \int_{0}^{T}\left\langle\psi-L_{p, a}(u-\lambda w), w\right\rangle d t \geq 0
$$

Then

$$
\int_{0}^{T}\left\langle\psi-L_{p, a}(u-\lambda w), w\right\rangle d t \geq 0
$$

Taking the limit $\lambda \rightarrow 0$ and noticing that $L_{p, a}$ is hemicontinuous, we obtain

$$
\int_{0}^{T}\left\langle\psi-L_{p, a} u, w\right\rangle d t \geq 0
$$

for all $w \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega, a)\right)$. Thus, $\psi=L_{p, a} u$.
We now prove $u(0)=u_{0}$. Choosing some test function $\varphi \in C^{1}\left([0, T] ; W_{0}^{1, p}(\Omega, a) \cap\right.$ $\left.L^{q}(\Omega)\right)$ with $\varphi(T)=0$ and integrating by parts in t in the approximate equations, we have

$$
\int_{0}^{T}-\left\langle u_{n}, \varphi^{\prime}\right\rangle d t+\int_{0}^{T}\left\langle L_{p, a} u_{n}, \varphi\right\rangle d t+\int_{\Omega_{T}}\left(f\left(u_{n}\right) \varphi-g \varphi\right) d x d t=\left(u_{n}(0), \varphi(0)\right) .
$$

Taking limits as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int_{0}^{T}-\left\langle u, \varphi^{\prime}\right\rangle d t+\int_{0}^{T}\left\langle L_{p, a} u, \varphi\right\rangle d t+\int_{\Omega_{T}}(f(u) \varphi-g \varphi) d x d t=\left(u_{0}, \varphi(0)\right) \tag{3.10}
\end{equation*}
$$

since $u_{n}(0) \rightarrow u_{0}$. On the other hand, for the "limiting equation", we have

$$
\begin{equation*}
\int_{0}^{T}-\left\langle u, \varphi^{\prime}\right\rangle d t+\int_{0}^{T}\left\langle L_{p, a} u, \varphi\right\rangle d t+\int_{\Omega_{T}}(f(u) \varphi-g \varphi) d x d t=(u(0), \varphi(0)) \tag{3.11}
\end{equation*}
$$

Comparing (3.10) and (3.11), we get $u(0)=u_{0}$.
(ii) Uniqueness and continuous dependence. Let u, v be two weak solutions of problem (1.1) with initial data u_{0}, v_{0} in $L^{2}(\Omega)$. Then $w:=u-v$ satisfies

$$
\left\{\begin{array}{l}
\frac{d w}{d t}+\left(L_{p, a} u-L_{p, a} v\right)+(f(u)-f(v))=0 \\
w(0)=u_{0}-v_{0}
\end{array}\right.
$$

Hence

$$
\frac{1}{2} \frac{d}{d t}\|w\|_{L^{2}(\Omega)}^{2}+\left\langle L_{p, a} u-L_{p, a} v, u-v\right\rangle+\int_{\Omega}(f(u)-f(v))(u-v) d x=0
$$

Using (1.4) and the monotonicity of the operator $L_{p, a}$, we have

$$
\frac{d}{d t}\|w\|_{L^{2}(\Omega)}^{2} \leq 2 \ell\|w\|_{L^{2}(\Omega)}^{2}
$$

Applying the Gronwall inequality, we obtain

$$
\|w(t)\|_{L^{2}(\Omega)} \leq\|w(0)\|_{L^{2}(\Omega)} e^{2 \ell t} \text { for all } t \in[0, T]
$$

This completes the proof.

REFERENCES

[1] R. Dautray, J.L. Lions, 1985. Mathematical Analysis and Numerical Methods for Science and Technology. Vol. I: Physical origins and classical methods, Springer-Verlag, Berlin.
[2] H. Li, S. Ma and C.K. Zhong, 2014. Long-time behavior for a class of degenerate parabolic equations. Discrete Contin. Dyn. Syst. 34, 2873-2892.
[3] P. Caldiroli and R. Musina, 2000. On a variational degenerate elliptic problem. Nonlinear Diff. Equ. Appl. 7, 187-199.
[4] C.T. Anh and T.D. Ke, 2009. Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators. Nonlinear Anal., 71, 4415-4422.
[5] C.T. Anh, N.D. Binh and L.T. Thuy, 2010. Attractors for quasilinear parabolic equations involving weighted p-Laplacian operators. Viet. J. Math. 38, 261-280.
[6] P.G. Geredeli and A. Khanmamedov, 2013. Long-time dynamics of the parabolic p-Laplacian equation. Commun. Pure Appl. Anal. 12, 735-754.
[7] N.I. Karachalios and N.B. Zographopoulos, 2006. On the dynamics of a degenerate parabolic equation: Global bifurcation of stationary states and convergence. Calc. Var. Partial Differential Equations, 25, 361-393.
[8] X. Li, C. Sun and N. Zhang, 2016. Dynamics for a non-autonomous degenerate parabolic equation in $\mathcal{D}_{0}^{1}(\Omega, \sigma)$. Discrete Contin. Dyn. Syst. 36, 7063-7079.
[9] X. Li, C. Sun and F. Zhou, 2016. Pullback attractors for a non-autonomous semilinear degenerate parabolic equation. Topol. Methods Nonlinear Anal. 47, 511-528.
[10] W. Tan, 2018. Dynamics for a class of non-autonomous degenerate p-Laplacian equations. J. Math. Anal. Appl. 458, 1546-1567.
[11] M.H. Yang, C.Y. Sun and C.K. Zhong, 2007. Global attractors for p-Laplacian equations. J. Math. Anal. Appl. 327, 1130-1142.
[12] J.-L. Lions, 1969. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris.

