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Abstract. In this paper we prove the existence and uniqueness of weatkoss
to a class of quasilinear degenerate parabolic equationdving weighted
p-Laplacian operators by combining compactness and moititiomethods.
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1. Introduction
In this paper we consider the following parabolic problem:

u; — div(a(z)|VulP~2Vu) + f(u) = g(z), x € Q,t>0,
u(z,t) =0, x €00t >0, (1.2)
u(z,0) = ug(x), x €,

where) is a bounded domain iRY(N > 2) with smooth boundarg?, 2 < p < N,
up € L*(Q) given, the coefficient(-), the nonlinearityf and the external force satisfy
the following conditions:

(H1) The functiona : 2 — R satisfies the following assumptions: € L} .(Q2) and

loc

a(z) = 0for x € ¥, anda(x) > 0 for x € Q\ 3, whereX. is a closed subset 6t
with meag>) = 0. Furthermore, we assume that

/ ! ~dx < oo for somea € (0, p); (1.2)
@ [a(z)]«

(H2) f:R — Ris aC'-function satisfying

Chlul? — Cy < f(u)u < Calu|? + Cy,  for someg > 2, (1.3)
fl(u) = =L, (1.4)

whereCy, C1, Cs, ¢ are positive constants;
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. . q pN
(H3) g € L*(2), wheres > min (q— T (N+1)p—N+a)'

The degeneracy of problem (1.1) is considered in the seradlb measurable,
nonnegative diffusion coefficient(z) is allowed to vanish somewhere. The physical
motivation of the assumptiofiff/1) is related to the modeling of reaction diffusion
processes in composite materials, occupying a boundediddman which at some
points they behave gserfect insulator Following [1, p. 79], when at some points the
medium is perfectly insulating, it is natural to assume tl{at vanishes at these points.
As mentioned in [2], the assumptid#/ 1) implies that the degenerate set may consist of
an infinite many number of points, which is different from theight of Caldiroli-Musina
type in [3, 4] that is only allowed to have at most a finite numbfezeroes. A typical
example of the weight is dist(z, 052).

Problem (1.1) contains some important classes of parabqliations, such as the
semilinear heat equation (when= 1, p = 2), semilinear degenerate parabolic equations
(whenp = 2), thep-Laplacian equations (when= 1, p # 2), etc. Itis noticed that the
existence and long-time behavior of solutions to (1.1) when 2, the semilinear case,
have been studied recently by étial. in [2]. We also refer the interested reader to [4-11]
for related results on degenerate parabolic equations.

2. Preliminary results

To study problem (1.1), we introduce the weighted Sobolmcsm/(}’p(Q,a),
defined as the closure 6§°(£2) in the norm

1
lulgran = ( [ a0ivapas)’

and denote byV —*'(Q, a) its dual space.
We now prove some embedding results, which are generalimtof the
corresponding results in the cgse- 2 of Li et al. [2].
Proposition 2.1. Assume thaf is a bounded domain iR, N > 2, anda(-) satisfies
(H1). Then the following embeddings hold:
() Wy ? (€2, a) — Wy?(Q) continuously ifl < 8 < 2
(i) Wy P(Q, a) — L"(Q) continuously ifl <7 < p, wherep!, =

(i) W, ?(Q,a) < L"(2) compactly ifl <r < pk.

pN
N—p+a*®

Proof. Applying the Holder inequality, we have

P 1 p
/|Vu\N]+Vada::/7N[a(a:)]IVN+a|Vu\Nivadx
Q Q [a(x

s

< ( /Q [a(;]gd:ﬂ)ﬁa < /Q a(x)|vu\pdx)

N
o
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Using the assumptiof¥{ 1), we complete the proof of (i).

The conclusions (ii) and (iii) follow from (i) and the welllown embedding results
for the classical Sobolev spaces. O

Putting
Lyau = —div(a(z)|VulP2Vu), ue W,"(Q,a).

The following proposition, its proof is straightforwardygs some important properties
of the operatot,, ,.

Proposition 2.2. The operator L,,, maps W,*(,a) into its dual W~ (Q, a).
Moreover,

(i) L,.. is hemicontinuous, i.e., for all, v, w € W,”(Q, a), the map\ +— (L, o(u+
Av), w) is continuous fronR to R;

(i) L, , is strongly monotone when> 2, i.e.,

(Lpat — Lpqv,u —v) > §lju — vHa/&,p(Q,a) forall u,v € W,7(Q,a).

3. Existence and uniqueness of global weak solutions
Denote
Qr =Q x(0,7),
V = LP(0,T; Wy P(9,a)) N L0, T; LY(Q)),
V* = [P0, T; W= (Q,a)) + L(0,T; L7 (Q)).

Definition 3.1. A functionu is called a weak solution of proble(.1) on the interval
(0,7) if

u€elV, d—ueV*,
dt

Ulg—o = ug a.e.in Q,

and

0
/Q <a—?:77 + a(z)|VulP2VuVn + f(u)n — gn) dzdt =0, (3.2)

for all test functions) € V.

It is known (see e.g. [4]) thatif € V andd—u € V*, thenu € C([0,T]; L*(2)).
This makes the initial condition in problem (1.1) meanirigfu
Lemma 3.1. Let {u,,} be a bounded sequencelif(0,T; W,"(Q, a)) such that{v/,} is

bounded in/*. If (H1) and(H 3) hold, ther{u,,} converges almost everywhereig up
to a subsequence.
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Proof. By Proposition 2.1, one can take a numbet [2, p};) such that
Wy (Q,a) —— L7(Q). (3.2)

Sincer’ < 2, we have
LP(Q) N LYQ) — L (),

and therefore,
L'(Q) = LF'(Q) + L7 (Q). (3.3)

Using Proposition 2.1 once again and noticing that p}, sincea € (0, p), we see that
WyP(Q, a) — LP(Q).
This and (3.3) follow that
L'(Q) — W (Q,a) + L7 (Q).
Now with (3.2), we have an evolution triple
WeP(Q,a) —— L™(Q) — W (Q,a) + L7 (Q).
The assumption ofu/, } in V* implies that
{u/} is also bounded ith* (0, T; W~ (Q, a) + L7 (Q)), wheres = min{p’, ¢'}.
Thanks to the well-known Aubin-Lions compactness lemma (8€, p. 58]),{u,} is
precompact inL?(0,7; L"(2)) and therefore ir.!(0, T'; L(€2)), ¢ = min(p,r), so it has

an a.e. convergent subsequence. 0]

The following lemma is a direct consequence of Young’s iradityy and the

embeddingV, ?(Q, a) — L"+(Q), wherep!, = Nfgm, which is frequently used later.

Lemma 3.2. Let condition( H3) hold andu € W, (2, a) N L(£2). Then for any > 0,

we have
/ gudx
Q

The following theorem is the main result of the paper.

. pN
ifs > mrtp—nra

o)

p
S {gHuHWOl;P(Q’a) + C(€)||g
ellul|7qq) + Cle)lg]

P PP

Theorem 3.1.Under assumptiongH 1) — (H3), for eachu, € L?(Q2) andT > 0 given,
problem(1.1) has a unique weak solution @6, 7'). Moreover, the mapping, — u(t) is
continuous or’.%(€2).
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Proof. (i) ExistenceConsider the approximating solutian(¢) in the form

= um(t)ex,
k=1

where{e;}22, is a basis ofV,”(Q, a) N L9(Q), which is orthogonal ir.?(2). We getu,
from solving the problem

(B0 ) 4 { Lyt ) + (F ). €2) = (9,04),

(un(o)aek) = (U(),ek), k=1,....n

By the Peano theorem, we obtain the local existenag,of
We now establish sonmeepriori estimates for,,. Since

1d
thHun( )H%Q(Q)+/&(x)‘vun‘pdx+/f(un)undx:/gundx'
Q Q Q

Using (1.3) and Lemma 3.2, we have

d
il +© ([ a@ivurde s [ julrds) < Cllal. 19D

Integrating from0 to ¢, 0 < ¢t < 7" and using the fact thaftu,, (0) | .2y < [JuollL2), We

obtain
e ()220 +c// |Vun|pdxdt+(]/ /|un|qudt

< ”U0”L2(Q) +TC (g5 [$2])-

It follows that
e {u,} is boundedin.>(0,T; L*(Q));
e {u,} is boundedinL?(0,T; W, ”(Q,a));
e {u,} isboundedin (0, T; L(f2)).

The Holder inequality yields

\/ L, o, v)dt| = |/ / 7)|Vu, P2 Vu, Vodzdt|
g/ / (a(2)"7 [Vun [P~ (a(x) | Vo) dudt

< Hu”“m(o WP (2,0) ||UHLP(0,T;W§"”(Q¢1))’
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for any v € LP(0,T;WyP(Q,a)). Using the boundedness ofu,}
LP(0,T; Wy (Q,a)), we infer that{ L, ,u, } is bounded inl? (0, T; W% (Q, a)). From
(1.3), we have

[f(@)] < C(luf~ +1).

Hence, sincdu,, } is bounded in.?(0, T"; L(£2)), one can check thdtf (u,)} is bounded
in L9(0,T; LY (Q)). Rewriting (1.1) inV* as

u;z =g — Lp,aun - f(un) (34)

and using the above estimates, we deducef{tiig} is bounded in/*.
From the above estimates, we can assume that

o ul, —u'inV¥
o L,,u, —in LY (0, T; W=7 (Q,a));
o f(uy) — xin L7 (Qp).

By Lemma 3.1u,, — u a.e. inQr, sof(u,) — f(u) a.e. inQy sincef(-) is continuous.
Thus,x = f(u) thanks to Lemma 1.3 in [12]. Now taking (3.4) into account,atéain
the following equation iri/*,

u'=g—1— flu) (3.5)
We now show that) = L, ,u. We have for every € L?(0,T; W, *(Q, a)),

T
X, = / (Lp oty — Ly g0, u, — v) > 0.
0

Noticing that

T T
/ < p,aUn, un /
0 0

/T
0

/T
0

a(x)|Vu,|Pdxdt

Up ) Uy, — Ub Uy )dxdt

1 1
= f(wn)un)dwdt + 5 [[un(0)[[729) = 5llun(T)72()-

(3.6)

(gun —
(gun

:a\:a\:a\

Therefore,
1 2 1 2
X, gun— (Un)up)drdt + Hun(O)HLz(m—gllun(T)HLg(m

T
—/ (Lyp g, )dt—/ (Lp.qv, u, — v)dt.
0 0
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It follows from the formulation ofw,(0) thatw, (0) — wo in L*(2). Moreover, by the
lower semi-continuity of|.|| .2(o) we obtain

[u(T) |22y < lim inf [jun(T)]|22(0)- (3.7)

Meanwhile, by the Lebesgue dominated theorem, one can ¢hatk

/ /gu— u)dxdt = lim/ /gun (un)uy)dzdt.
n—oo

This fact and (3.6), (3.7) imply that

. 1
i X, < [ [ (gu = s@uidadt-+ Hu0)l0, - S0
., (3.8)
—/ (¢, v)dt — / (Lpqv,u —v)dt.
0 0
In view of (3.5), we have
2 1 2 g
gu — fuu)dzdt + —IIU( Nz = 5 lu(D) Iz = i (¥, u)dt.
This and (3.8) deduce that
T
/ (Y — L, qv,u—v)dt > 0. (3.9
0

Puttingy = u — Aw, w € LP(0,T; W, ?(Q,a)), A > 0. Since (3.9) we have

T
)\/ (Y — Ly o(u — Aw), w)dt > 0.
0
Then
T
/ () — Ly o(u — Aw),w)dt > 0.
0
Taking the limitA — 0 and noticing that., , is hemicontinuous, we obtain
T
/ (¢ — Ly qu, w)dt > 0,
0
forall w € LP(0,T; Wy P(Q, a)). Thus,y = L, 4u.

We now prove.(0) = ug. Choosing some test functigne C*([0, T); W, (Q, a)N
L1(Q2)) with o(T') = 0 and integrating by parts inin the approximate equations, we have

/0 (st + / (Lpattn, @)t + / (f(un)o — g)dadt = (un(0), 9(0)).
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Taking limits asn — oo, we obtain

/0 (vt + / (Lot £}t + /Q (f(w)p — g@)dadt = (u, 9(0)),  (3.10)

sinceu,,(0) — uy. On the other hand, for the "limiting equation”, we have

| twerir [+ | (= godedt = ((0).(0). @11

Comparing (3.10) and (3.11), we g&d) = wuy.

(i) Unigueness and continuous dependentet u, v be two weak solutions of
problem (1.1) with initial data, vy in L*(2). Thenw := v — v satisfies

{ B (Lt — Lyav) + () — f(0)) =0,

w(0) = up — vg.

Hence

1d

3310l + (Lt = Lyavsu = o) + [ (F(@) = F0))(u— v)do =0,

Q

Using (1.4) and the monotonicity of the operafgy,, we have
Tlwliag) < 20w]zzq).

Applying the Gronwall inequality, we obtain

Hw(t)HLz(Q) < H’LU(O)”[;(Q)éQ& forallt € [0, T]

This completes the proof. O
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