
HNUE JOURNAL OF SCIENCE DOI: 10.18173/2354-1059.2019-0025
Natural Science, 2019, Volume 64, Issue 6, pp. 3-11
This paper is available online at http://stdb.hnue.edu.vn
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Abstract. In this paper we prove the existence and uniqueness of weak solutions
to a class of quasilinear degenerate parabolic equations involving weighted
p-Laplacian operators by combining compactness and monotonicity methods.
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1. Introduction

In this paper we consider the following parabolic problem:










ut − div(a(x)|∇u|p−2∇u) + f(u) = g(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

whereΩ is a bounded domain inRN(N ≥ 2) with smooth boundary∂Ω, 2 ≤ p ≤ N ,
u0 ∈ L2(Ω) given, the coefficienta(·), the nonlinearityf and the external forceg satisfy
the following conditions:

(H1) The functiona : Ω → R satisfies the following assumptions:a ∈ L1
loc(Ω) and

a(x) = 0 for x ∈ Σ, anda(x) > 0 for x ∈ Ω \ Σ, whereΣ is a closed subset ofΩ
with meas(Σ) = 0. Furthermore, we assume that

∫

Ω

1

[a(x)]
N
α

dx <∞ for someα ∈ (0, p); (1.2)

(H2) f : R → R is aC1-function satisfying

C1|u|
q − C0 ≤ f(u)u ≤ C2|u|

q + C0, for someq ≥ 2, (1.3)

f ′(u) ≥ −ℓ, (1.4)

whereC0, C1, C2, ℓ are positive constants;
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(H3) g ∈ Ls(Ω), wheres ≥ min

(

q

q − 1
,

pN

(N + 1)p−N + α

)

.

The degeneracy of problem (1.1) is considered in the sense that the measurable,
nonnegative diffusion coefficienta(x) is allowed to vanish somewhere. The physical
motivation of the assumption(H1) is related to the modeling of reaction diffusion
processes in composite materials, occupying a bounded domain Ω, in which at some
points they behave asperfect insulator. Following [1, p. 79], when at some points the
medium is perfectly insulating, it is natural to assume thata(x) vanishes at these points.
As mentioned in [2], the assumption(H1) implies that the degenerate set may consist of
an infinite many number of points, which is different from theweight of Caldiroli-Musina
type in [3, 4] that is only allowed to have at most a finite number of zeroes. A typical
example of the weighta is dist(x, ∂Ω).

Problem (1.1) contains some important classes of parabolicequations, such as the
semilinear heat equation (whena = 1, p = 2), semilinear degenerate parabolic equations
(whenp = 2), thep-Laplacian equations (whena = 1, p 6= 2), etc. It is noticed that the
existence and long-time behavior of solutions to (1.1) whenp = 2, the semilinear case,
have been studied recently by Liet al. in [2]. We also refer the interested reader to [4-11]
for related results on degenerate parabolic equations.

2. Preliminary results

To study problem (1.1), we introduce the weighted Sobolev spaceW 1,p
0 (Ω, a),

defined as the closure ofC∞

0 (Ω) in the norm

‖u‖W 1,p
0

(Ω,a) :=

(
∫

Ω

a(x)|∇u|pdx

)
1

p

,

and denote byW−1,p′(Ω, a) its dual space.
We now prove some embedding results, which are generalizations of the

corresponding results in the casep = 2 of Li et al. [2].

Proposition 2.1. Assume thatΩ is a bounded domain inRN , N ≥ 2, anda(·) satisfies
(H1). Then the following embeddings hold:

(i) W 1,p
0 (Ω, a) →֒ W

1,β
0 (Ω) continuously if1 ≤ β ≤ pN

N+α
;

(ii) W 1,p
0 (Ω, a) →֒ Lr(Ω) continuously if1 ≤ r ≤ p∗α, wherep∗α = pN

N−p+α
.

(iii) W 1,p
0 (Ω, a) →֒ Lr(Ω) compactly if1 ≤ r < p∗α.

Proof. Applying the Hölder inequality, we have
∫

Ω

|∇u|
pN

N+αdx =

∫

Ω

1

[a(x)]
N

N+α

[a(x)]
N

N+α |∇u|
pN

N+αdx

≤

(

∫

Ω

1

[a(x)]
N
α

dx

)
α

N+α (∫

Ω

a(x)|∇u|pdx

)
N
α

.
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Using the assumption(H1), we complete the proof of (i).
The conclusions (ii) and (iii) follow from (i) and the well-known embedding results

for the classical Sobolev spaces.

Putting
Lp,au = −div(a(x)|∇u|p−2∇u), u ∈ W

1,p
0 (Ω, a).

The following proposition, its proof is straightforward, gives some important properties
of the operatorLp,a.

Proposition 2.2. The operatorLp,a maps W 1,p
0 (Ω, a) into its dual W−1,p′(Ω, a).

Moreover,

(i) Lp,a is hemicontinuous, i.e., for allu, v, w ∈ W
1,p
0 (Ω, a), the mapλ 7→ 〈Lp,a(u+

λv), w〉 is continuous fromR to R;

(ii) Lp,a is strongly monotone whenp ≥ 2, i.e.,

〈Lp,au− Lp,av, u− v〉 ≥ δ‖u− v‖p
W

1,p
0

(Ω,a)
for all u, v ∈ W

1,p
0 (Ω, a).

3. Existence and uniqueness of global weak solutions

Denote

ΩT = Ω× (0, T ),

V = Lp(0, T ;W 1,p
0 (Ω, a)) ∩ Lq(0, T ;Lq(Ω)),

V ∗ = Lp′(0, T ;W−1,p′(Ω, a)) + Lq′(0, T ;Lq′(Ω)).

Definition 3.1. A functionu is called a weak solution of problem(1.1) on the interval
(0, T ) if

u ∈ V,
du

dt
∈ V ∗,

u|t=0 = u0 a.e. in Ω,

and
∫

ΩT

(

∂u

∂t
η + a(x)|∇u|p−2∇u∇η + f(u)η − gη

)

dxdt = 0, (3.1)

for all test functionsη ∈ V .

It is known (see e.g. [4]) that ifu ∈ V and
du

dt
∈ V ∗, thenu ∈ C([0, T ];L2(Ω)).

This makes the initial condition in problem (1.1) meaningful.

Lemma 3.1. Let {un} be a bounded sequence inLp(0, T ;W 1,p
0 (Ω, a)) such that{u′n} is

bounded inV ∗. If (H1) and(H3) hold, then{un} converges almost everywhere inΩT up
to a subsequence.
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Proof. By Proposition 2.1, one can take a numberr ∈ [2, p∗α) such that

W
1,p
0 (Ω, a) →֒→֒ Lr(Ω). (3.2)

Sincer′ ≤ 2, we have
Lp(Ω) ∩ Lq(Ω) →֒ Lr′(Ω),

and therefore,
Lr(Ω) →֒ Lp′(Ω) + Lq′(Ω). (3.3)

Using Proposition 2.1 once again and noticing thatp ≤ p∗α sinceα ∈ (0, p), we see that

W
1,p
0 (Ω, a) →֒ Lp(Ω).

This and (3.3) follow that

Lr(Ω) →֒ W−1,p′(Ω, a) + Lq′(Ω).

Now with (3.2), we have an evolution triple

W
1,p
0 (Ω, a) →֒→֒ Lr(Ω) →֒ W−1,p′(Ω, a) + Lq′(Ω).

The assumption of{u′n} in V ∗ implies that

{u′n} is also bounded inLs(0, T ;W−1,p′(Ω, a) + Lq′(Ω)), wheres = min{p′, q′}.

Thanks to the well-known Aubin-Lions compactness lemma (see [12, p. 58]),{un} is
precompact inLp(0, T ;Lr(Ω)) and therefore inLt(0, T ;Lt(Ω)), t = min(p, r), so it has
an a.e. convergent subsequence.

The following lemma is a direct consequence of Young’s inequality and the
embeddingW 1,p

0 (Ω, a) →֒ Lp∗α(Ω), wherep∗α = pN

N−p+α
, which is frequently used later.

Lemma 3.2. Let condition(H3) hold andu ∈ W
1,p
0 (Ω, a) ∩ Lq(Ω). Then for anyε > 0,

we have

∣

∣

∣

∣

∫

Ω

gudx

∣

∣

∣

∣

≤

{

ε‖u‖p
W

1,p
0

(Ω,a)
+ C(ε)‖g‖sLs(Ω) if s ≥ pN

(N+1)p−N+α
,

ε‖u‖q
Lq(Ω) + C(ε)‖g‖sLs(Ω) if s ≥ q

q−1
.

The following theorem is the main result of the paper.

Theorem 3.1.Under assumptions(H1)− (H3), for eachu0 ∈ L2(Ω) andT > 0 given,
problem(1.1)has a unique weak solution on(0, T ). Moreover, the mappingu0 7→ u(t) is
continuous onL2(Ω).
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Proof. (i) Existence.Consider the approximating solutionun(t) in the form

un(t) =
n
∑

k=1

unk(t)ek,

where{ej}∞j=1 is a basis ofW 1,p
0 (Ω, a)∩Lq(Ω), which is orthogonal inL2(Ω). We getun

from solving the problem






〈
dun

dt
, ek〉+ 〈Lp,aun, ek〉+ 〈f(un), ek〉 = 〈g, ek〉,

(un(0), ek) = (u0, ek), k = 1, . . . , n.

By the Peano theorem, we obtain the local existence ofun.
We now establish somea priori estimates forun. Since

1

2

d

dt
‖un(t)‖

2
L2(Ω) +

∫

Ω

a(x)|∇un|
pdx+

∫

Ω

f(un)undx =

∫

Ω

gundx.

Using (1.3) and Lemma 3.2, we have

d

dt
‖un‖

2
L2(Ω) + C

(
∫

Ω

a(x)|∇un|
pdx+

∫

Ω

|un|
qdx

)

≤ C(‖g‖Ls(Ω), |Ω|).

Integrating from0 to t, 0 ≤ t ≤ T and using the fact that‖un(0)‖L2(Ω) ≤ ‖u0‖L2(Ω), we
obtain

‖un(t)‖
2
L2(Ω) + C

∫ t

0

∫

Ω

a(x)|∇un|
pdxdt+ C

∫ t

0

∫

Ω

|un|
qdxdt

≤ ‖u0‖
2
L2(Ω) + TC(‖g‖Ls(Ω), |Ω|).

It follows that

• {un} is bounded inL∞(0, T ;L2(Ω));

• {un} is bounded inLp(0, T ;W 1,p
0 (Ω, a));

• {un} is bounded inLq(0, T ;Lq(Ω)).

The Hölder inequality yields

|

∫ T

0

〈Lp,aun, v〉dt| = |

∫ T

0

∫

Ω

a(x)|∇un|
p−2∇un∇vdxdt|

≤

∫ T

0

∫

Ω

(

a(x)
p−1

p |∇un|
p−1)(a(x)

1

p |∇v|
)

dxdt

≤ ‖un‖
p

p′

Lp(0,T ;W 1,p
0

(Ω,a))
‖v‖Lp(0,T ;W 1,p

0
(Ω,a)),
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for any v ∈ Lp(0, T ;W 1,p
0 (Ω, a)). Using the boundedness of{un} in

Lp(0, T ;W 1,p
0 (Ω, a)), we infer that{Lp,aun} is bounded inLp′(0, T ;W−1,p′(Ω, a)). From

(1.3), we have
|f(u)| ≤ C(|u|p−1 + 1).

Hence, since{un} is bounded inLq(0, T ;Lq(Ω)), one can check that{f(un)} is bounded
in Lq′(0, T ;Lq′(Ω)). Rewriting (1.1) inV ∗ as

u′n = g − Lp,aun − f(un) (3.4)

and using the above estimates, we deduce that{u′n} is bounded inV ∗.
From the above estimates, we can assume that

• u′n ⇀ u′ in V ∗;

• Lp,aun ⇀ ψ in Lp′(0, T ;W−1,p′(Ω, a));

• f(un)⇀ χ in Lq′(ΩT ).

By Lemma 3.1,un → u a.e. inΩT , sof(un) → f(u) a.e. inΩT sincef(·) is continuous.
Thus,χ = f(u) thanks to Lemma 1.3 in [12]. Now taking (3.4) into account, weobtain
the following equation inV ∗,

u′ = g − ψ − f(u). (3.5)

We now show thatψ = Lp,au. We have for everyv ∈ Lp(0, T ;W 1,p
0 (Ω, a)),

Xn :=

∫ T

0

〈Lp,aun − Lp,av, un − v〉 ≥ 0.

Noticing that

∫ T

0

〈Lp,aun, un〉dt =

∫ T

0

∫

Ω

a(x)|∇un|
pdxdt

=

∫ T

0

∫

Ω

(gun − f(un)un − u′nun)dxdt

=

∫ T

0

∫

Ω

(gun − f(un)un)dxdt+
1

2
‖un(0)‖

2
L2(Ω) −

1

2
‖un(T )‖

2
L2(Ω).

(3.6)
Therefore,

Xn =

∫ T

0

∫

Ω

(gun − f(un)un)dxdt+
1

2
‖un(0)‖

2
L2(Ω) −

1

2
‖un(T )‖

2
L2(Ω)

−

∫ T

0

〈Lp,aun, v〉dt−

∫ T

0

〈Lp,av, un − v〉dt.
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It follows from the formulation ofun(0) thatun(0) → u0 in L2(Ω). Moreover, by the
lower semi-continuity of‖.‖L2(Ω) we obtain

‖u(T )‖L2(Ω) ≤ lim inf
n→∞

‖un(T )‖L2(Ω). (3.7)

Meanwhile, by the Lebesgue dominated theorem, one can checkthat
∫ T

0

∫

Ω

(gu− f(u)u)dxdt = lim
n→∞

∫ T

0

∫

Ω

(gun − f(un)un)dxdt.

This fact and (3.6), (3.7) imply that

lim sup
n→∞

Xn ≤

∫ T

0

∫

Ω

(gu− f(u)u)dxdt+
1

2
‖u(0)‖2L2(Ω) −

1

2
‖u(T )‖2L2(Ω)

−

∫ T

0

〈ψ, v〉dt−

∫ T

0

〈Lp,av, u− v〉dt.

(3.8)

In view of (3.5), we have
∫ T

0

∫

Ω

(gu− f(u)u)dxdt+
1

2
‖u(0)‖2L2(Ω) −

1

2
‖u(T )‖2L2(Ω) =

∫ T

0

〈ψ, u〉dt.

This and (3.8) deduce that
∫ T

0

〈ψ − Lp,av, u− v〉dt ≥ 0. (3.9)

Puttingv = u− λw, w ∈ Lp(0, T ;W 1,p
0 (Ω, a)), λ > 0. Since (3.9) we have

λ

∫ T

0

〈ψ − Lp,a(u− λw), w〉dt ≥ 0.

Then
∫ T

0

〈ψ − Lp,a(u− λw), w〉dt ≥ 0.

Taking the limitλ→ 0 and noticing thatLp,a is hemicontinuous, we obtain

∫ T

0

〈ψ − Lp,au, w〉dt ≥ 0,

for all w ∈ Lp(0, T ;W 1,p
0 (Ω, a)). Thus,ψ = Lp,au.

We now proveu(0) = u0. Choosing some test functionϕ ∈ C1([0, T ];W 1,p
0 (Ω, a)∩

Lq(Ω)) with ϕ(T ) = 0 and integrating by parts int in the approximate equations, we have
∫ T

0

−〈un, ϕ
′〉dt+

∫ T

0

〈Lp,aun, ϕ〉dt+

∫

ΩT

(f(un)ϕ− gϕ)dxdt = (un(0), ϕ(0)).
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Taking limits asn→ ∞, we obtain

∫ T

0

−〈u, ϕ′〉dt+

∫ T

0

〈Lp,au, ϕ〉dt+

∫

ΩT

(f(u)ϕ− gϕ)dxdt = (u0, ϕ(0)), (3.10)

sinceun(0) → u0. On the other hand, for the ”limiting equation”, we have

∫ T

0

−〈u, ϕ′〉dt+

∫ T

0

〈Lp,au, ϕ〉dt+

∫

ΩT

(f(u)ϕ− gϕ)dxdt = (u(0), ϕ(0)). (3.11)

Comparing (3.10) and (3.11), we getu(0) = u0.

(ii) Uniqueness and continuous dependence.Let u, v be two weak solutions of
problem (1.1) with initial datau0, v0 in L2(Ω). Thenw := u− v satisfies







dw

dt
+ (Lp,au− Lp,av) + (f(u)− f(v)) = 0,

w(0) = u0 − v0.

Hence

1

2

d

dt
‖w‖2L2(Ω) + 〈Lp,au− Lp,av, u− v〉+

∫

Ω

(f(u)− f(v))(u− v)dx = 0.

Using (1.4) and the monotonicity of the operatorLp,a, we have

d

dt
‖w‖2L2(Ω) ≤ 2ℓ‖w‖2L2(Ω).

Applying the Gronwall inequality, we obtain

‖w(t)‖L2(Ω) ≤ ‖w(0)‖L2(Ω)e
2ℓt for all t ∈ [0, T ].

This completes the proof.
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Linéaires. Dunod, Paris.

11


