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Abstract. In this paper, we study a system of the form

Bxu=v in RN,
Ayv=—u"P

wherep > 1 andA) is a sub-elliptic operator. We obtain a Liouville type themor
for the class of stable positive solutions of the system.
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1. Introduction

In this paper, we are interested in stable positive solstairthe following problem:

Axu=v in RV, (1.1)
Ayv =—u"P

wherep > 1, andA, is a sub-elliptic operator defined by

N
Av=> 0y (N0s,) .
=1

Throughout this paper, we always assume that the opefa{matisfies the following
hypotheses which are first proposed in [1] and then used ity papers [2-7].

(H1) There is a group of dilation®; )~

(St : RN — R, (.1'1, ...,l’N) — (tsll’l, ...,tEN.CL'N)
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with 1 = &; < ey < ... < ey, such that\; is 6,-homogeneous of degrée, — 1), i.e.,
(8 () =t \y(w), forallz € RY ¢ > 0,5 =1,2,..., N.

The number
Q=¢c1+e+..+en 1.2)

is called the homogeneous dimensioRdf with respect to the group of dilatiorts; ).

(H2) The functions\; satisfyA; = 1 and\;(z) = \i(z1, ..., z;—1), i.e., \; depends
only on the firs{i—1) variablesty, xs, ..., x;_1, fori = 2,3, ..., N. Moreover, the function
\;'s are continuous of®”, strictly positive and of clas§”? on R \ II where

N
II = {(xl,...,xN) € RN;HJ:Z» = 0}.
i=1

(H3) There exists a constapt> 0 such that
0 < 20 Ni(), 2302, Ni(x) < pAi(a)

forallk € {1,2,....,i—1},i=1,2,..., N andz = (21, 2o, ...,xy) € RV,
These hypotheses allow us to use

V)\ = ()\185617 )\28552, sty )\NaxN)

which satisfies\, = (V,)2. The norm corresponding to th¥, is defined by

1

N %
%[\ = (Z&HA?W) :

i=1  j#i

N
wherey =1+ > (g, — 1) > 1.
=1
Let us first consider the case = 1 fori = 1,2,..., N. Then, the problem (1.1)
becomes
Au=v N
in RY. (1.3)
Av=—uP

Based on the idea in [8] foN = 3, Lai and Ye pointed out that the system (1.3) has
no positive classical solution providéd< p < 1 in any dimension, [9]. Whep > 1,
the existence of positive classical solutions of the pnob{&.3) and of the biharmonic
problem

A%y =uP (1.4)

are equivalent, see [9-11]. In the low dimensions,= 3,4, the problem (1.4) has no
C*-positive solution [11]. In the cask > 5, the existence and the assymptotic behavior
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of radial solutions of (1.3) have been studied by many maétmemans [8, 9, 11, 12]. For
a special class of solutions, i.e., the class of stableigesblutions, an interesting and
open problem posed by Guo and Wei [10] is as follows:

Conjecture A: Letp > 1 and N > 5. A smooth stable solution {d.3) with growth rate
4
O(|z|»+7) at oo does NOT exist if and only if satisfies the following condition

~ po(V) N+2—+/44+ N2 —4/N2+ Hy
P> Do =
6— N+ 4+ N2—4/N? + Hy

2
where Hy = (W) . As shown in [10], the growth conditio®(|z|7T) in this
conjecture is natural since the equation (1.4) admitsemédial solutions with growth
rateO(r?). The following result was obtained in [10].

Theorem A.Letp > 1 and N > 5. The problen(1.4) has no classical stable solution
u(z) satisfying

u(z) = O(|z|71), as|z| — oo

provided thap > max(p, p.(N)). Here

N+2-\/4+N2—4,/NZ+ Hy, F5< N <12
Pe(N) = { 6-N4\/4+N2—4, /N2 Hy, :

+00 if N> 13

2 2

whereH}, = (N(Af“) + 22 1 and
24N
p - 6 B Na

whereN € (4,5) is the unique root of the algebraic equati8(\V — 2)(N — 4) = H}.

It is worth to noticing thap.(N) > po(N). Then, Theorem A is only a partial result and

Conjecture A is still open.

In this decade, much attention has been paid to study theielkquations and
elliptic systems involving degenerate operators suchastiushin operator [13-18], the
A,- Laplacian [3-7] and references given there. Remark thatGhushin operator is a
typical example ofA \-Laplacian, see [1] for further properties of the operaiqr

As far as we know, there has no work dealing with the systerh) (bvolving
sub-elliptic operators. The main difficulty arises from thet that there is no spherical
mean formula and one cannot use the ODE technique. Inspyredebwork [10] and
recent progress in studying degenerate elliptic systeBis\\e propose, in this paper, to
give a classification of stable positive solutions of (1.¥ptivated by [19, 20], we give
the following definition.
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Definition. Letp > 1. A positive solutiofu, v) € C*(RY) x C*(RY) of (1.1)is called
stable if there are two positive smooth functigrendn such that

A =n
{Aw =pu Pl (-9)

Theorem 1.1.Letp > 1. The syster{ill.1)has no positive stable solution provid@d< 4.

Theorem 1.2.Letp > 1 and@ > 4. Assume that

p > max(p, p(Q)). (1.6)

Here

2—./4 24 2L H*
Q+2-/14+Q2 -4, /QP+ I, it5<0<12
pe(Q) = { 6-Q+/4+Q2—4,/Q7+H, ,

+00 if Q> 12

2
whereH}, = <Q(%’4)> + (Q;2)2 —1and

2+Q

6—Q

where@ € (4,5) is the unigue root of the algebraic equati®(r) — 2)(Q — 4) = H},.
Then the problen(l.1) has no stable solution(z) satisfying

ﬁ:

u(w) = O(z[77), asla| — oc.
Here,Q is defined in(1.2).

Remark that [21, Theorem 1.1] is a direct consequence offEnet.2 when\; = 1
fori =1,2,..., N. In order to prove Theorem 1.1, we borrow some ideas from22dn
which the comparison principle and the bootstrap argumlagtacrucial role. Recall that
one can not use spherical mean formula to prove the compapisaciple as in [21-23]
and then this requires another approach. In this paper, s phe comparison principle
by using the maximum principle argument [15, 24]. In pafacuwe do not need the
stability assumption as in [21, 22].

The rest of the paper is devoted to the proof of the main result
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2. Proof of Theorem 1.2

We begin by establishing an a priori estimate.
Lemma 2.1. Suppose thatu, v) is a stable positive solution dfL.1) satisfyingu(z) =
_4
|z|*" as|z|y — oco. Then forR large, there holds
/ wPde < RO (2.1)
Br
and
/ wdx < ROV, (2.2)
Bgr
Here and in what follows
Br={r e RY;|z;| < R%,i=1,2,..,N}.

Proof. It follows from the growth condition of, that

/ wlde < CRwit / dr = CROV ot
Br

Bgr

It remains to prove (2.1). The Holder inequality gives

/ u Pde < C (/ upldx) Rp+T,
Bgr Br

Putx(z) = (&5, ..., %) whereg € C°(R”;[0,1]) is a test function satisfying = 1

on B; and¢ = 0 outsideB,. The stability inequality implies that

/ u P e < / w P I3dx < C |Ayx|*de < CRO™.
Bgr Bar Bagr

Combining these two estimates, we deduce (2.1). O

Remark that Theorem 1.1 is a direct consequence of the lastags in the proof
of Lemma 2.1.

Lemma 2.2. For anyp, ¢ € C*(R"), there holds
AxpAx(p?) = (Ax(0))* = 4(Vagp - Va)? + 20A50| Vb
— 4 APV - Vb — @ (Axe)?.

The proof of Lemma 2.2 is elementary, see e.g., [25]. We thait the details.
Consequently, we obtain
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Lemma 2.3. For anyy € C*4(R") andy € C*(RY), we have

/ AnpAn(pu?)de = / (Ax(pw) de + / (—4(Vag - Vav)® + 2000|VatP?) de

RN RN RN
4 / 2 (2VA(Avt) - Vv + (Ant)?) de (2.3)
RN
and

2 / Vg Ve 2de = 2 / (= D) Va2 + / PANVre)dz.  (2.4)

RN RN RN
We next give a preparation to the bootstrap argument.

Lemma 2.4. Letp > 1 and assume thdt, v) is a stable positive solution @fL.1). Then,
for R > 0,

/ (v2 + u_p+1) dx < CRO 5,
Br
Proof. From (1.1) and an integration by parts, we havedar C4(R"),

/upgpdx: —/A,\uAAcpdx. (2.5)

RN RN

Onthe other hand, the stability assumption (see e.g., [@®yha 7]) implies the following
stability inequality

p/uplcpde < / | Axp|*da. (2.6)
RN RN
Puty(z) = ¢(&5, ..., %) whereg € C°(R”;[0,1]) is a test function satisfying = 1

on B; and¢ = 0 outsideB,. An elementary calculation combined with the assumptions
(H1), (H2) and (H3) gives

C C
Vx| < In and|Ayx| < ook

Similarly, we also have
C
IVA(AAIX] < 25
Choosingp = uy? in (2.5) and (2.5), there holds

/u_p+lx2da: = —/A)\UA)\(UX2)d$ (2.7)

RN RN
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and
p/upHXde §/|A,\(ux)\2d1’. (2.8)

RN RN
It follows from (2.7) and (2.8) and Lemma 2.3 that

(p+1)/up+1x2d$:/‘A)\(UX)Fdl’—/A)\UA)\(UXQ)dQZ

RN RN RN
< / (4(Vau - Vax)® = 2uld\u|Vix|?) de — /U2 (2VA(ANX) - Vax + [Axx]?) dz.
RN RN
By using simple inequality combined with (2.4), we obtain

/ (4(Vau - Vax)? = 2uld u|Vax|?) da < /

41V \u2| Vx| dx + / 2uv|Vax|*dz
RN

RN R
< C’/uv\v,\x|2dx+C’/U2A>\(|V>\X‘2)dx'
RN RN

Consequently,

/u‘p+lx2dx < C/uv|VAx|2dx

RN RN (29)

+ C/u2 (AX(IVaxP?) + [VA(AAX) - Vx| + [Axx[?) da.
RN

It is easy to see thak, (uy) = vx + 2V, u - Vi x + ul,x or equivalently
Ax(ux) —vx =2V u - Vax + uA,x.
Therefore,

/UQXQdIB < C/ (IVau - Vax? + w[Axx]? + [(Ax(ux)]?) d.

RN RN
This together with (2.9), (2.7) and Lemma 2.2 yield
/ (v2 + u_p+1) Yidr < C’/uv|VAx|2dx
RN RN

+ C/u2 (IANIVAXID)] + [VA(ANX) - Vx| + [Axx ) da.

RN
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Next, the functiony in the inequality above is replaced kY, wherem is chosen
later on, one gets

/ (u P+ 0%) x*da < /quQ(ml)\V,\Mde

RN RN

+ 0/U2 (IANIVX™ )]+ [VAANX™) - Vax™] + [Axx™[?) da. (2.10)

RN

Moreover, it follows from the Young inequality, far> 0,

1
/quQ(m_l)\V,\Mde < 6/U2X2mdx—|— 4—6/u2x2(m_2)|v>\x\4d9&.
RN

RN RN

Combining this and (2.10), one has

/<U2 +u—p+1) Xdex < C/U2X2(m_2)‘V)\X|4dZL’

RN RN

+ O/U2 (IAN(VAX™P) A+ IVAAX™) - Vax™] + [Ax™?) da.

RN
Consequently, foRR > 0,
/ (v* +u ) de < / (v* +u ) y?"de < CRO 7T,
Br RN
O

Lemma 2.5.Letp > 1. Assume thatu, v) is a positive solution of1.1). Then, pointwise
in RY, the following inequality holds

v2  ulP
2 T p—1

Proof. To simplify the notations, let us put

2 1-—
[ :=,/——ando := _p
Vp—1 2

0 <lando < 0.

Sincep > 1, we get

It is enough to prove that
v > ul.
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Setw = lu” — v. We shall show thatv < 0 by contradiction argument. Suppose in
contrary that

supw > 0.
RN

A straightforward computation combined with the relatieth ,v = u? implies that

Ayw = lou” P Ayu+lo(o — Du 2| Vaul? — Ayv
> lou’ TA\u — Ayv
=lou" v +u?
1
= —ulw.

l

Consequently, we arrive at
1
Ayw > ju"’lw. (2.11)

We now consider two possible cases of the supremum. dfirst, if there exista® such
that
supw = w(z?) = w?(2°) — v(z?) > 0,
RN
then we must hav% =0 andg%g < 0for: = 1,2,..., N. This together with the
assumption (H2) gives l
Vaw(z?) = 0 andAyw(z®) < 0.

However, the right hand side of (2.11)#tis positive thanks to (2.11). Thus, we obtain
a contradiction.

It remains to consider the case where the supremumisfattained at infinity. Let
¢ € C=(RY;[0,1]) be a cut-off function satisfying = 1 on B, and¢ = 0 outside
Bs. Putgr(z) = ¢" (34, 5, - 7o) Wherem > 0 chosen later. A simple calculation
combined with the assumptions (H1), (H2) show that

¢ m=2 Vaog|?  C  m=2
|A)\¢R| < E¢Rm and‘ ;\SRR‘ < E¢Rm . (2.12)
Put wr(z) = w(z)¢r(x) and then there existsy € Byg such thatwg(zr) =

maxpy wg(z). Therefore, as above

V,\wR(xR) =0 andA,\wR(xR) <0

This implies that at:
Vaw = —¢R'wV g (2.13)

and
PrAw < (205" |Vadr|> — Ardr)w. (2.14)
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From (2.12), (2.13) and (2.14), one has

C m=2
¢RA)\UJ S ﬁ Rm w. (215)

Multiplying (2.11) by¢z and using (2.15), we obtain ag

pplou’ w < %wﬁdmw

or equivalently

SR ) o) < 1

By choosingn = -2 > 0, there holds

o—1
Up S ﬁ

Remark that < 0. Thus,Rlim ur(xr) = co and we obtain a contradiction since

—+00

supw < lim u%(zg) = 0.

O

With Lemma 2.4 and Lemma 2.5 at hand, it is enough to follow libetstrap

argument in [10] to obtain the proof of Theorem 1.2.
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