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Abstract. In this paper, we study a system of the form
{

∆λu = v

∆λv = −u−p
in R

N
,

wherep > 1 and∆λ is a sub-elliptic operator. We obtain a Liouville type theorem
for the class of stable positive solutions of the system.
Keywords: Liouville-type theorem, stable positive solutions,∆λ-Laplacian,
sub-elliptic operators.

1. Introduction

In this paper, we are interested in stable positive solutions of the following problem:
{

∆λu = v

∆λv = −u−p
in R

N , (1.1)

wherep > 1 , and∆λ is a sub-elliptic operator defined by

∆λ =

N
∑

i=1

∂xi

(

λ2i∂xi

)

.

Throughout this paper, we always assume that the operator∆λ satisfies the following
hypotheses which are first proposed in [1] and then used in many papers [2-7].

(H1) There is a group of dilations(δt)t>0

δt : R
N → R, (x1, ..., xN ) 7→ (tε1x1, ..., t

εNxN )
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with 1 = ε1 ≤ ε2 ≤ ... ≤ εN , such thatλi is δt-homogeneous of degree(εi − 1), i.e.,

λi(δt(x)) = tεi−1λi(x), for all x ∈ R
N , t > 0, i = 1, 2, ..., N.

The number
Q = ε1 + ε2 + ... + εN (1.2)

is called the homogeneous dimension ofR
N with respect to the group of dilations(δt)t>0.

(H2) The functionsλi satisfyλ1 = 1 andλi(x) = λi(x1, ..., xi−1), i.e.,λi depends
only on the first(i−1) variablesx1, x2, ..., xi−1, for i = 2, 3, ..., N . Moreover, the function
λi’s are continuous onRN , strictly positive and of classC2 onR

N \ Π where

Π =

{

(x1, ..., xN) ∈ R
N ;

N
∏

i=1

xi = 0

}

.

(H3) There exists a constantρ ≥ 0 such that

0 ≤ xk∂xk
λi(x), x

2
k∂

2
xk
λi(x) ≤ ρλi(x)

for all k ∈ {1, 2, ..., i− 1} , i = 1, 2, ..., N andx = (x1, x2, ..., xN) ∈ R
N .

These hypotheses allow us to use

∇λ := (λ1∂x1
, λ2∂x2

, ..., λN∂xN
)

which satisfies∆λ = (∇λ)
2. The norm corresponding to the∆λ is defined by

|x|λ =

(

N
∑

i=1

εi
∏

j 6=i

λ2i |xi|2
)

1

2γ

,

whereγ = 1 +
N
∑

i=1

(εi − 1) ≥ 1.

Let us first consider the caseλi = 1 for i = 1, 2, ..., N . Then, the problem (1.1)
becomes

{

∆u = v

∆v = −u−p
in R

N . (1.3)

Based on the idea in [8] forN = 3, Lai and Ye pointed out that the system (1.3) has
no positive classical solution provided0 < p ≤ 1 in any dimension, [9]. Whenp > 1,
the existence of positive classical solutions of the problem (1.3) and of the biharmonic
problem

−∆2u = u−p (1.4)

are equivalent, see [9-11]. In the low dimensions,N = 3, 4, the problem (1.4) has no
C4-positive solution [11]. In the caseN ≥ 5, the existence and the assymptotic behavior
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of radial solutions of (1.3) have been studied by many mathematicians [8, 9, 11, 12]. For
a special class of solutions, i.e., the class of stable positive solutions, an interesting and
open problem posed by Guo and Wei [10] is as follows:
Conjecture A: Let p > 1 andN ≥ 5. A smooth stable solution to(1.3)with growth rate
O(|x| 4

p+1 ) at∞ does NOT exist if and only ifp satisfies the following condition

p > p0(N) :=
N + 2−

√

4 +N2 − 4
√
N2 +HN

6−N +
√

4 +N2 − 4
√
N2 +HN

whereHN =
(

N(N−4)
4

)2

. As shown in [10], the growth conditionO(|x| 4

p+1 ) in this

conjecture is natural since the equation (1.4) admits entire radial solutions with growth
rateO(r2). The following result was obtained in [10].
Theorem A. Let p > 1 andN ≥ 5. The problem(1.4) has no classical stable solution
u(x) satisfying

u(x) = O(|x| 4

p+1 ), as |x| → ∞

provided thatp > max(p̄, p∗(N)). Here

p∗(N) =











N+2−
√

4+N2−4
√

N2+H∗

N

6−N+
√

4+N2−4
√

N2+H∗

N

if 5 ≤ N ≤ 12

+∞ if N ≥ 13

,

whereH∗
N =

(

N(N−4)
4

)2

+ (N−2)2

2
− 1 and

p̄ =
2 + N̄

6− N̄
,

whereN̄ ∈ (4, 5) is the unique root of the algebraic equation8(N − 2)(N − 4) = H∗
N .

It is worth to noticing thatp∗(N) > p0(N). Then, Theorem A is only a partial result and
Conjecture A is still open.

In this decade, much attention has been paid to study the elliptic equations and
elliptic systems involving degenerate operators such as the Grushin operator [13-18], the
∆λ- Laplacian [3-7] and references given there. Remark that the Grushin operator is a
typical example of∆λ-Laplacian, see [1] for further properties of the operator∆λ.

As far as we know, there has no work dealing with the system (1.1) involving
sub-elliptic operators. The main difficulty arises from thefact that there is no spherical
mean formula and one cannot use the ODE technique. Inspired by the work [10] and
recent progress in studying degenerate elliptic systems [15], we propose, in this paper, to
give a classification of stable positive solutions of (1.1).Motivated by [19, 20], we give
the following definition.

38



A note on stable solutions of a sub-elliptic system with singular nonlinearity

Definition. Let p > 1. A positive solution(u, v) ∈ C2(RN )× C2(RN) of (1.1) is called
stable if there are two positive smooth functionsξ andη such that

{

∆λξ = η

∆λη = pu−p−1ξ
. (1.5)

Theorem 1.1.Letp > 1. The system(1.1)has no positive stable solution providedQ < 4.

Theorem 1.2.Letp > 1 andQ ≥ 4. Assume that

p > max(p̄, p∗(Q)). (1.6)

Here

p∗(Q) =











Q+2−
√

4+Q2−4
√

Q2+H∗

Q

6−Q+
√

4+Q2−4
√

Q2+H∗

Q

if 5 ≤ Q ≤ 12

+∞ if Q > 12

,

whereH∗
Q =

(

Q(Q−4)
4

)2

+ (Q−2)2

2
− 1 and

p̄ =
2 + Q̄

6− Q̄
,

whereQ̄ ∈ (4, 5) is the unique root of the algebraic equation8(Q − 2)(Q − 4) = H∗
Q.

Then the problem(1.1)has no stable solutionu(x) satisfying

u(x) = O(|x|
4

p+1

λ ), as|x| → ∞.

Here,Q is defined in(1.2).

Remark that [21, Theorem 1.1] is a direct consequence of Theorem 1.2 whenλi = 1
for i = 1, 2, ..., N . In order to prove Theorem 1.1, we borrow some ideas from [20-22] in
which the comparison principle and the bootstrap argument play a crucial role. Recall that
one can not use spherical mean formula to prove the comparison principle as in [21-23]
and then this requires another approach. In this paper, we prove the comparison principle
by using the maximum principle argument [15, 24]. In particular, we do not need the
stability assumption as in [21, 22].

The rest of the paper is devoted to the proof of the main result.
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2. Proof of Theorem 1.2

We begin by establishing an a priori estimate.

Lemma 2.1. Suppose that(u, v) is a stable positive solution of(1.1) satisfyingu(x) =

|x|
4

p+1

λ as|x|λ → ∞. Then forR large, there holds
∫

BR

u−pdx ≤ R
Q− 4p

p+1 (2.1)

and
∫

BR

u2dx ≤ RQ+ 8

p+1 . (2.2)

Here and in what follows

BR = {x ∈ R
N ; |xi| ≤ Rǫi, i = 1, 2, ..., N}.

Proof. It follows from the growth condition ofu that
∫

BR

u2dx ≤ CR
8

p+1

∫

BR

dx = CR
Q+ 8

p+1 .

It remains to prove (2.1). The Hölder inequality gives

∫

BR

u−pdx ≤ C

(
∫

BR

u−p−1dx

)
p

p+1

R
Q

p+1 .

Putχ(x) = φ( x1

Rǫ1
, ..., xN

RǫN
) whereφ ∈ C∞

c (RN ; [0, 1]) is a test function satisfyingφ = 1
onB1 andφ = 0 outsideB2. The stability inequality implies that

∫

BR

u−p−1dx ≤
∫

B2R

u−p−1χ2dx ≤ C

∫

B2R

|∆λχ|2dx ≤ CRQ−4.

Combining these two estimates, we deduce (2.1).

Remark that Theorem 1.1 is a direct consequence of the last estimate in the proof
of Lemma 2.1.

Lemma 2.2. For anyϕ, ψ ∈ C4(RN), there holds

∆λϕ∆λ(ϕψ
2) = (∆λ(ϕψ))

2 − 4(∇λϕ · ∇λψ)
2 + 2ϕ∆λϕ|∇λψ|2

− 4ϕ∆λψ∇λϕ · ∇λψ − ϕ2(∆λψ)
2.

The proof of Lemma 2.2 is elementary, see e.g., [25]. We then omit the details.
Consequently, we obtain
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Lemma 2.3. For anyϕ ∈ C4(RN) andψ ∈ C4
c (R

N), we have
∫

RN

∆λϕ∆λ(ϕψ
2)dx =

∫

RN

(∆λ(ϕψ))
2
dx+

∫

RN

(

−4(∇λϕ · ∇λψ)
2 + 2ϕ∆λϕ|∇λψ|2

)

dx

+

∫

RN

ϕ2
(

2∇λ(∆λψ) · ∇λψ + (∆λψ)
2
)

dx (2.3)

and

2

∫

RN

|∇λϕ|2|∇λψ|2dx = 2

∫

RN

ϕ(−∆λϕ)|∇λψ|2dx+
∫

RN

ϕ2∆λ(|∇λψ|2)dx. (2.4)

We next give a preparation to the bootstrap argument.

Lemma 2.4. Letp > 1 and assume that(u, v) is a stable positive solution of(1.1). Then,
for R > 0,

∫

BR

(

v2 + u−p+1
)

dx ≤ CR
Q−4+ 8

p+1 .

Proof. From (1.1) and an integration by parts, we have forϕ ∈ C4
c (R

N),
∫

RN

u−pϕdx = −
∫

RN

∆λu∆λϕdx. (2.5)

On the other hand, the stability assumption (see e.g., [20, Lemma 7]) implies the following
stability inequality

p

∫

RN

u−p−1ϕ2dx ≤
∫

RN

|∆λϕ|2dx. (2.6)

Putχ(x) = φ( x1

Rǫ1
, ..., xN

RǫN
) whereφ ∈ C∞

c (RN ; [0, 1]) is a test function satisfyingφ = 1
onB1 andφ = 0 outsideB2. An elementary calculation combined with the assumptions
(H1), (H2) and (H3) gives

|∇λχ| ≤
C

R
and|∆λχ| ≤

C

R2
.

Similarly, we also have

|∇λ(∆λ)χ| ≤
C

R3
.

Choosingϕ = uχ2 in (2.5) and (2.5), there holds
∫

RN

u−p+1χ2dx = −
∫

RN

∆λu∆λ(uχ
2)dx (2.7)
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and

p

∫

RN

u−p+1χ2dx ≤
∫

RN

|∆λ(uχ)|2dx. (2.8)

It follows from (2.7) and (2.8) and Lemma 2.3 that

(p+ 1)

∫

RN

up+1χ2dx =

∫

RN

|∆λ(uχ)|2dx−
∫

RN

∆λu∆λ(uχ
2)dx

≤
∫

RN

(

4(∇λu · ∇λχ)
2 − 2u∆λu|∇λχ|2

)

dx−
∫

RN

u2
(

2∇λ(∆λχ) · ∇λχ+ |∆λχ|2
)

dx.

By using simple inequality combined with (2.4), we obtain
∫

RN

(

4(∇λu · ∇λχ)
2 − 2u∆λu|∇λχ|2

)

dx ≤
∫

RN

4|∇λu|2|∇λχ|2dx+
∫

RN

2uv|∇λχ|2dx

≤ C

∫

RN

uv|∇λχ|2dx+ C

∫

RN

u2∆λ(|∇λχ|2)dx.

Consequently,
∫

RN

u−p+1χ2dx ≤ C

∫

RN

uv|∇λχ|2dx

+ C

∫

RN

u2
(

∆λ(|∇λχ|2) + |∇λ(∆λχ) · ∇λχ|+ |∆λχ|2
)

dx.

(2.9)

It is easy to see that∆λ(uχ) = vχ+ 2∇λu · ∇λχ+ u∆λχ or equivalently

∆λ(uχ)− vχ = 2∇λu · ∇λχ + u∆λχ.

Therefore,
∫

RN

v2χ2dx ≤ C

∫

RN

(

|∇λu · ∇λχ|2 + u2|∆λχ|2 + |(∆λ(uχ)|2
)

dx.

This together with (2.9), (2.7) and Lemma 2.2 yield
∫

RN

(

v2 + u−p+1
)

χ2dx ≤ C

∫

RN

uv|∇λχ|2dx

+ C

∫

RN

u2
(

|∆λ(|∇λχ|2)|+ |∇λ(∆λχ) · ∇λχ|+ |∆λχ|2
)

dx.
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Next, the functionχ in the inequality above is replaced byχm, wherem is chosen
later on, one gets

∫

RN

(

u−p+1 + v2
)

χ2mdx ≤
∫

RN

uvχ2(m−1)|∇λχ|2dx

+ C

∫

RN

u2
(

|∆λ(|∇λχ
m|2)|+ |∇λ(∆λχ

m) · ∇λχ
m|+ |∆λχ

m|2
)

dx. (2.10)

Moreover, it follows from the Young inequality, forε > 0,
∫

RN

uvχ2(m−1)|∇λχ|2dx ≤ ε

∫

RN

v2χ2mdx+
1

4ε

∫

RN

u2χ2(m−2)|∇λχ|4dx.

Combining this and (2.10), one has
∫

RN

(

v2 + u−p+1
)

χ2mdx ≤ C

∫

RN

u2χ2(m−2)|∇λχ|4dx

+ C

∫

RN

u2
(

|∆λ(|∇λχ
m|2)|+ |∇λ(∆λχ

m) · ∇λχ
m|+ |∆λχ

m|2
)

dx.

Consequently, forR > 0,
∫

BR

(

v2 + u−p+1
)

dx ≤
∫

RN

(

v2 + u−p+1
)

χ2mdx ≤ CRQ−4− 8

p−1 .

Lemma 2.5.Letp > 1. Assume that(u, v) is a positive solution of(1.1). Then, pointwise
in R

N , the following inequality holds

v2

2
≥ u1−p

p− 1
.

Proof. To simplify the notations, let us put

l :=

√

2

p− 1
andσ :=

1− p

2
.

Sincep > 1, we get
0 < l andσ < 0.

It is enough to prove that
v ≥ luσ.
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Setw = luσ − v. We shall show thatw ≤ 0 by contradiction argument. Suppose in
contrary that

sup
RN

w > 0.

A straightforward computation combined with the relation−∆λv = up implies that

∆λw = lσuσ−1∆λu+ lσ(σ − 1)uσ−2|∇λu|2 −∆λv

≥ lσuσ−1∆λu−∆λv

= lσuσ−1v + u−p

=
1

l
uσ−1w.

Consequently, we arrive at

∆λw ≥ 1

l
uσ−1w. (2.11)

We now consider two possible cases of the supremum ofw. First, if there existsx0 such
that

sup
RN

w = w(x0) = luσ(x0)− v(x0) > 0,

then we must have∂w
∂xi

= 0 and ∂2w
∂x2

i

≤ 0 for i = 1, 2, ..., N . This together with the
assumption (H2) gives

∇λw(x
0) = 0 and∆λw(x

0) ≤ 0.

However, the right hand side of (2.11) atx0 is positive thanks to (2.11). Thus, we obtain
a contradiction.

It remains to consider the case where the supremum ofw is attained at infinity. Let
φ ∈ C∞

c (RN ; [0, 1]) be a cut-off function satisfyingφ = 1 on B1 andφ = 0 outside
B2. PutφR(x) = φm( x1

Rε1
, x2

Rε2
, ..., xN

RεN
) wherem > 0 chosen later. A simple calculation

combined with the assumptions (H1), (H2) show that

|∆λφR| ≤
C

R2
φ

m−2

m

R and
|∇λφR|2
φR

≤ C

R2
φ

m−2

m

R . (2.12)

Put wR(x) = w(x)φR(x) and then there existsxR ∈ B2R such thatwR(xR) =
maxRN wR(x). Therefore, as above

∇λwR(xR) = 0 and∆λwR(xR) ≤ 0.

This implies that atxR
∇λw = −φ−1

R w∇λφR (2.13)

and
φR∆λw ≤ (2φ−1

R |∇λφR|2 −∆λφR)w. (2.14)
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From (2.12), (2.13) and (2.14), one has

φR∆λw ≤ C

R2
φ

m−2

m

R w. (2.15)

Multiplying (2.11) byφR and using (2.15), we obtain atxR

φRlσu
σ−1w ≤ C

R2
φ

m−2

m φRw

or equivalently

φ
2

m

R (xR)u
σ−1(xR) ≤

C

R2
.

By choosingm = 2
σ−1

> 0, there holds

uσ−1
R ≤ C

R2
.

Remark thatσ < 0. Thus, lim
R→+∞

uR(xR) = ∞ and we obtain a contradiction since

sup
RN

w ≤ lim
R→+∞

uσR(xR) = 0.

With Lemma 2.4 and Lemma 2.5 at hand, it is enough to follow thebootstrap
argument in [10] to obtain the proof of Theorem 1.2.
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