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Abstract. We establish a second main theorem for algebraically n@riagte
entire curvesf in a projective varietyl’ c P"(C) and a hypersurface target
{D1, Dy, ..., D,} satisfyingf. . = 0forall z € Uj_, f~1(D;).
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1. Introduction

During the last century, several Second Main Theorems haga bstablished for
linearly nondegenerate holomorphic curves in complexgutdoje spaces intersecting
(fixed or moving) hyperplanes, and we now have satisfactargwkedge about it.
Motivated by a paper of Corvaja-Zannier [1] in Diophantingeoximation, in 2004
Ru [2] proved a Second Main Theorem for algebraically noedegate holomorphic
curves in the complex projective spaCB” intersecting (fixed) hypersurface targets. One
of the most important developments in 15 years pass in Nevantheory is the work on
the Second Main Theorem for hypersurface targets. Theeistied reader is referred to
[2-9] for many interesting results on this topic.

In this paper, we establish a second main theorem with a gebéecdrelation
for entire curves in a projective variety whose derivativagsish on inverse image of
hypersurface targets. Our method is a combination of theniqaes in [7-9].
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2. Notations

Let v be a nonnegative divisor db. For each positive integer (arco) p, we define
the counting function of (where multiplicities are truncated by by

rnl[?]
NP 1) ::/ ; dt (1 <r<oo)
1

wheren? (t) = >, j<; min{r(z),p}. For brevity we will omit the charactep] in the
counting function ifp = +oo.

For a meromorphic functiop on C, we denote byy), the divisor of zeros op.
We have the following Jensen’s formula for the counting fiorc

N o) = N0 () ) = 3 [ st b+ 01,

2 ™ Jo

Let f be a holomorphic mapping @ into P"(C) with a reduced representatiq?n:
(fo,- -, fn). The characteristic functiofi;(r) of f is defined by

1 2m ] 1 2 ]
Ty(r) = %/0 log || f(re)||do — %/0 log || f(e)||d6, r>1,

where f|| = max |fi|

Denote byf. . the tangent mapping ate C of f.

Let D be a hypersurface i*"(C) defined by a homogeneous polynomial
Clzxo, - . ., x,], deg Q@ = deg D. Asumme thatf (C) ¢ D, then the counting function of
with respect taD is defined byN}p} (r,D) :== NP (r (Q(fo, ..., fa))o)-

Let V. C P"(C) be a projective variety of dimensiohh Denote by/(V) the
prime ideal inC[z, ..., z,,] defining V. Denote byC|xy, ..., z,|,, the vector space of
homogeneous polynomials ii[x, ..., z,] of degreem (including 0). Putl/(V),, :=
Clzo, ooy Tp)m N I(V).

Assume thaff (C) C V, then we say thaf is algebraically nondegeneratelinif

there is no hypersurfade c P*(C),V ¢ D such thatf(C) C D.

The Hilbert functionHy of V is defined byH, (m) := dim S&pstele

Consider two integer numbegs N satisfyingg > N + 1, N > k. Hypersurfaces
Dy, ..., D, in P"(C) are said to be inV-subgeneral position with respect toif V' N

(NYyD;) =2, foralll1 <jy<---<jy<gq.

3. Main result

Theorem 3.1. Let V C P"(C) be a complex projective variety of dimension k (1 < k <
n). Let @y, ..., Q, be hypersurfacesin P"(C) in N-subgeneral position with respect to
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V,deg@Q; = d;, where N > kandq > (N — k+ 1)(k + 1). Denote by d the common
multiple of d;’s. Let f be an algebraically entire curve in V' satisfying f.. = 0 for all
z € Uj_, f71(Q;). Then, for each ¢ > 0,

=V =k 0+ 1) = Ty () < T S0 N Q) +olT) ()

j=1

where M = k + d*degV ([(2k + 1)(N — k + 1)?(k + 1)2d* ' deg Ve '] + 1)’“ . Here,
we denote [x] := max{t € Z : t < x} for each real number z, and as usual, by the
notation HP we mean the assertion P holdsfor all r € [1, +00) excluding a Borel subset
E of (1, 400) with [, dr < +o0.

We would like to remark that Chen-Ru-Yan [10], Giang [11],&Qg [7] established
degeneracy second main theorems with truncated countimgidms. With notations as
in Theorem 3.1, Quang [7] gave the following inequality:

(@~ =kt 1)k + 1) = Tr) < 30 NP, Q) + 0Ty ().

j=1 "

Proof. Firstly, we prove the theorem for the case where all hypéasas(),’s have the
same degreé. Denote byZ the set of all permutations of the sgt, ..., ¢}. We have
no = #I = q!. WewriteZ = {[,,...,I,,} andl; = ([;(1),..., L;(q)) wherel; < I, <

--- < I, in the lexicographic order. Sineg, . . ., ), are inN-subgeneral position with
respect td/, we havel);, )N ---NQpnv+1y NV =@ foralli € {1,...,n0}. Therefore,
by Lemma 3.1in[7], for eaclh; € Z, there are linearly combinationg;, ), . . ., Qr,(v+1)

in the following forms:

N—k+s
P =Quay P= Y byQny (2<s<k+1b,;€C)  (3.1)
=2

suchthat?, ;N ---NP NV =2.
We defineamag : V — P“LC) (£ :=ng(k+ 1)) by
@(.Z') = (Pl,l(x) Do PLkJrl(.fIZ') Lo Pno’l(x) IR Pn07k+1(x)).

Then® is a finite morphism oiv. We have that” := Im® is a complex projective variety
of P~1(C) anddim Y = k and

A =degY > d"degV.

Let f = (fo,..., fn) be areduced presentation pf For each positive intege,
we takevy, ..., vgy ) N Clyit, - s Yikt1s - - Ynools - - - Ynok+1]u SUCH that they form
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a basis of-lilm bkl bng Lsbng kel e consider an entire cundg in PRy (-1(C)

Iy (u)

with a reduced representation

~ ~ ~

F(z) = (vi(@(f(2)), - - vry () (®(f(2))))-

Since f is algebraically nondegenerate, we have thats linearly nondegenerate.
By (3.12) in [7], for everye’ > 0 (which will be chosen later) we have

(¢ = (N =k +1)(k+1)) T(r)

< ; %Nf(r, Qj) — (v —dzzyl()il)c +1) <N(r, (W(F))o) — GIdUTf(m)
LNk 1)(2jd+ D(k+1)A S i) 52

1<i<ng,1<j<k+1

Foreachi € {1,..., Hy(u)}, we have

n

(n@Fn) =3 202 fey)- 1o (3.3)

On the other hand, singg . = 0 for all z € Uj_, f~1(Q;), we have

(fo(2) s+ ful2)) = (fo(2) s -+ 2 fu(2)

forall z € UI_, f~1(Q;).
Hence, by (3.3) and by Euler formula (for homogenous polyiatsmw;(®(z)) €
Clzo, ..., x)), forall z € UL, f71(Q;)

= (0(@(F(2)) -+ vy (@(F(2)))) (34)

We consider an arbitrary € UJ_, f~'(Q;) (if this set is nonempty). Then there exists
I, € T such that

~ ~ ~

(Qr,1)(F))ola) = (Qr@)()o(a) = - = (@) (f))o(a). (3.5)
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SinceQ);, ..., Q, are inN-subgeneral position with respectitq we have

~

(Qri)(f)ola) =0 forall je{N+1,...,q}. (3.6)

Setc,, == (P.y(f))o(a) and

C:::(CL17“‘7CLk+l7‘“7Cn0J7"'7cnmk+1)
Then there are; = (a;,,, ..., @, ., NCR .,aino}kﬂ), i=1,2,..., Hy(u), such
thaty“', ...,y v form a basis ofc[yl’l’“"yl’k“;;’(fgo’l """ o krile gng
Hy (u)
Sy(U,C) a; * C,
=1

wherey = (Y11, - s Y1kt1s > Unols - -+ Yno,kt1)-
Hence, there are linearly independent (o@e)rforms Ly, ..., Ly, such thaty =

1 (C s d LR+ 1y0 nQo,Ly n
Li(vi, ..., vgy () in [y yl"““ly(yu)o LeUngdkiile Than we have

-~ ~

Li(F) = Li(w(®(f)), - s vy ) (®(]))

~

=P (f) 12ffl(f) P () Pl (), (3.7)

foralli € {1,2,... Hy(u)}.
Hence, foral € {1,2,... Hy(u)}

LEo@)= Y (P (Fola) =a-c.

1<u<ng,1<v<k+1

Hence,
Hy (u) N Hy (u)
Z (Li(F))o(a) = Z a; - ¢ = Sy(u,c). (3.8)
By (3.4), we have
(Ly(F(a) : -+ ¢ Ly (F(a))) = (La(F)) (@) : -+ < (Lyy(F))' (@) (3.9)
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By Laplace expansion Theorem, we have

W(Li(F)) -+ Ly (F))
(L1 (F)) (Lo(F)) e (Lty () (F))
(L1(ﬁ))(Hy(u)—1) (LQ(A))(Hy(u)—l) (LHy(u)(F\))(Hy(u)—l)
=y BB ) e a, (3.10)
1<s<t<Hy (u) Ly(F)" Li(F)
where A, is the matrix which is defined from the matr@Li(ﬁ)(”» by
1<iw+1<Hy (u)

omitting two first rows and’, ¢ columns.
Foreachl < s <t < Hy(u), itis clear that

Hy (u)

(det Ag)o > > max{(Ly(f))o — Hy (u) 4+ 1,0}. (3.11)
ve{l,....Hy (u)}\{s,t}

We now prove that

(Lo(F) - LY = Lo(F) - L(FY') (a) = max{(L.(F))o(a) = Hy (u) + 1,0}
+ max{(Ly(F))o(a) — Hy (u) + 1,0} + 1. (3.12)
We distinguish three cases.
Casel. (Ly(F))o(a) < Hy(u) — 1 and(H;,(F))o(a) < Hy (u) — 1.

Then, the right side of (3.12) is equal to 1, but by (3.9), #fedide of (3.12) is not less
than 1.

Case2. (Ly(F))o(a) > Hy(u) — 1 and(Ly(F))o(a) > Hy (u) — 1.
We have
(Lo(E) - (L(F)) = Li(F) - (L F))') (a) = (Lo(F)) (@) + (Li(F)) (@) —1
> ((La(F)ola) = Hy () +1) + ((Lo(F))o(a) — Hy(u) +1) +1
= max{(Ls(F))o(a) — Hy (u) + 1,0} + max{(Li(F))o(a) — Hy(u) + 1,0} + 1.

~ ~

Case3. (Ls(F))o(a) > Hy(u) —1and(L,(F))o(a) < Hy(u) — 1 (and similarly for the
case wheréL,(F))o(a) < Hy (u) — 1 and(L,(F))o(a) > Hy (u) — 1).
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We have

(E(B) - (L F)Y = LlF) - (L(F))') (a) 2 (Eo(F))ola) — 1
> ((Lo(F))o(a) — Hy(w) +1) +1
= max{(Ly(F))o(a) — Hy (u) + 1,0} + max{(L,(F))o(a) — Hy + 1,0} + 1.

We have completed the proof of (3.12).
By (3.10), (3.11) and (3.12), we have
(W(E)o(a) = (W(Li(F),. .. Liy(F))) (a)
Hy (u

)
> Z max{(Li(ﬁ))o(@) — Hy(u)+1,0} +1

Hy (u)

R 1
= ; (max{(Li(F))o(a) — Hy (u) +1,0} + m)

Hy (u)

(Li(F))o(a)

=1

1
>
~ Hy(u)(Hy(u) — 1)
(note thatmax{z — y,0} + ; > Lo forallz > 0,y,2 > 1).
Combining with (3.8), we get

~ 1

Sy (u, c). (3.13)

By the definition of P, ;, P,1 N ---N Py r1 NV = &, hence, by Lemma 3.2 in [5] (or
Theorem 2.1 and Lemma 3.2 in [3]), we have

1 1 (2k +1)A
tu(u) SY(“? C) Z (k + 1) (cp,l + -+ Cp,k:Jrl) - w lgtgnror,llagxsgk-i—l Cis
k+1
1 - 2% + 1)A .
S IO D DGR NONICED
s=1 1<t<ng,1<s<k+1

~ ~

By (3.13) and (3.5), we havi, 1 (1))o(a) = (Qu,1)())o(a) and

~ ~

(Pps(f))o(@) > (Qr,(v—k+5)(f))o(a)

foralls e {1,...,k+1}.
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Hence, by (3.5), (3.6), we have

q N+1

Z(Qj(f))O(a) = Z(le(t)(f))O(a)

j=1 t=1

< (N —k+D)@Qnm(Nola)+ > Qe (f))ola)
t=N—k-+2
k+1
< (N =k +1)(Ppa(f))ola) + D _(Pps(F)o(a)
<(N=k+1)> (Ppsl)ola).
Hence, by (3.14), we have
1 1 a -
SRS (Bl

U0, o

Combining with (3.13) we get
(N—k+1)(k+1) ~ (N—k+1)(k+1)

dutly () V@) 2 G s g — 1y (9
1 1 ~
> = 2 )

2k + 1)(N — k + 1)(k + 1)A
duHy (u)(Hy (u) — 1)

ST (Pu())ola)

U0yt o>

q

1 ~
2 T ;(Qj(f))o(a)

(2k+1)(N —k+1)(k+1)A -
du S (BuD)ola),

U0 o >

foralla € UL, f~1(Q;).

Hence,
(N—k+1)(k+1) - 1 a
ity W) 2 e S =) ;Nf(“ Qi)
2k +1)(N — &+ 1)(k + 1A

- = > NEAUD).

U0 o >
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Combining with (3.2) we have

H(q—(N—kH)(k;H <Z Ny (r.Qj)

1 (N—k+1)(k+1)6'
D S V) -
LR —d’z+ 1>(k +1)A | Z. (N(r, Pos())o) +my(r, Pij)
HY HY

< Z a )
((N - kgyl(zi()k + 1) LR —d’jf D(k + 1)A) 7).  (3.15)
For eache > 0, we chooseu = uy = [(%H)(N_kdtl)g(kH)M] +1, ande’ =

(kA1) (N kA1) (kDA

(N—k-i—el)(k-f—l) du
Then, we have
Hy (up) < k + deg Yul
<k+d*degV ([(2k + 1)(N — k+1)2(k +1)2d* " deg Ve '] + 1)
= ]\4’7

(note thatdeg Y = A < d*deg V).
Hence, by (3.15) we have

Jta= v =k e~ 1) < M SN ).
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