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Abstract. We establish a second main theorem for algebraically nondegenerate
entire curvesf in a projective varietyV ⊂ Pn(C) and a hypersurface target
{D1,D2, . . . ,Dq} satisfyingf∗,z = 0 for all z ∈ ∪q

j=1f
−1(Dj).
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1. Introduction

During the last century, several Second Main Theorems have been established for
linearly nondegenerate holomorphic curves in complex projective spaces intersecting
(fixed or moving) hyperplanes, and we now have satisfactory knowledge about it.
Motivated by a paper of Corvaja-Zannier [1] in Diophantine approximation, in 2004
Ru [2] proved a Second Main Theorem for algebraically nondegenerate holomorphic
curves in the complex projective spaceCPn intersecting (fixed) hypersurface targets. One
of the most important developments in 15 years pass in Nevanlinna theory is the work on
the Second Main Theorem for hypersurface targets. The interested reader is referred to
[2-9] for many interesting results on this topic.

In this paper, we establish a second main theorem with a good defect relation
for entire curves in a projective variety whose derivativesvanish on inverse image of
hypersurface targets. Our method is a combination of the techniques in [7-9].
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2. Notations

Let ν be a nonnegative divisor onC. For each positive integer (or+∞) p, we define
the counting function ofν (where multiplicities are truncated byp) by

N [p](r, ν) :=

∫ r

1

n
[p]
ν

t
dt (1 < r < ∞)

wheren[p]
ν (t) =

∑
|z|≤tmin{ν(z), p}. For brevity we will omit the character[p] in the

counting function ifp = +∞.

For a meromorphic functionϕ onC, we denote by(ϕ)0 the divisor of zeros ofϕ.
We have the following Jensen’s formula for the counting function

N(r, (ϕ)0)−N(r,

(
1

ϕ

)

0

) =
1

2π

∫ 2π

0

log
∣∣(ϕ(reiθ)

∣∣ dθ +O(1).

Let f be a holomorphic mapping ofC into P n(C) with a reduced representation̂f =

(f0, . . . , fn). The characteristic functionTf(r) of f is defined by

Tf (r) :=
1

2π

∫ 2π

0

log ‖f(reiθ)‖dθ −
1

2π

∫ 2π

0

log ‖f(eiθ)‖dθ, r > 1,

where‖f‖ = max
i=0,...,n

|fi|.

Denote byf∗,z the tangent mapping atz ∈ C of f.

Let D be a hypersurface inP n(C) defined by a homogeneous polynomialQ ∈

C[x0, . . . , xn], degQ = degD. Asumme thatf(C) 6⊂ D, then the counting function off
with respect toD is defined byN [p]

f (r,D) := N [p](r, (Q(f0, . . . , fn))0).

Let V ⊂ P n(C) be a projective variety of dimensionk. Denote byI(V ) the
prime ideal inC[x0, ..., xn] defining V. Denote byC[x0, ..., xn]m the vector space of
homogeneous polynomials inC[x0, ..., xn] of degreem (including 0). PutI(V )m :=

C[x0, ..., xn]m ∩ I(V ).

Assume thatf(C) ⊂ V , then we say thatf is algebraically nondegenerate inV if
there is no hypersurfaceD ⊂ P n(C), V 6⊂ D such thatf(C) ⊂ D.

The Hilbert functionHV of V is defined byHV (m) := dim C[x0,...,xn]m
I(V )m

.

Consider two integer numbersq, N satisfyingq ≥ N + 1, N ≥ k. Hypersurfaces
D1, . . . , Dq in P n(C) are said to be inN-subgeneral position with respect toV if V ∩

(∩N
i=0Dji) = ∅, for all 1 ≤ j0 < · · · < jN ≤ q.

3. Main result

Theorem 3.1. Let V ⊂ P n(C) be a complex projective variety of dimension k (1 ≤ k ≤

n). Let Q1, . . . , Qq be hypersurfaces in P n(C) in N-subgeneral position with respect to
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V , degQj = dj , where N ≥ k and q > (N − k + 1)(k + 1). Denote by d the common
multiple of dj’s. Let f be an algebraically entire curve in V satisfying f∗,z = 0 for all
z ∈ ∪q

j=1f
−1(Qj). Then, for each ǫ > 0,

∥∥∥ (q − (N − k + 1)(k + 1)− ǫ) Tf (r) ≤
M2 +M − 1

M2 +M

q∑

j=1

1

dj
Nf (r, Qj) + o(Tf (r)),

where M = k + dk deg V
(
[(2k + 1)(N − k + 1)2(k + 1)2dk−1 deg V ǫ−1] + 1

)k
. Here,

we denote [x] := max{t ∈ Z : t ≤ x} for each real number x, and as usual, by the
notation

∥∥P we mean the assertion P holds for all r ∈ [1,+∞) excluding a Borel subset
E of (1,+∞) with

∫
E
dr < +∞.

We would like to remark that Chen-Ru-Yan [10], Giang [11], Quang [7] established
degeneracy second main theorems with truncated counting functions. With notations as
in Theorem 3.1, Quang [7] gave the following inequality:

∥∥∥ (q − (N − k + 1)(k + 1)− ǫ) Tf (r) ≤

q∑

j=1

1

dj
N

[M0]
f (r, Qj) + o(Tf(r)).

Proof. Firstly, we prove the theorem for the case where all hypersurfacesQj ’s have the
same degreed. Denote byI the set of all permutations of the set{1, . . . , q}. We have
n0 := #I = q!. We writeI = {I1, . . . , In0} andIi = (Ii(1), . . . , Ii(q)) whereI1 < I2 <

· · · < In0 in the lexicographic order. SinceQ1, . . . , Qq are inN-subgeneral position with
respect toV , we haveQIi(1) ∩ · · · ∩QIi(N+1) ∩ V = ∅ for all i ∈ {1, . . . , n0}. Therefore,
by Lemma 3.1 in [7], for eachIi ∈ I, there are linearly combinationsQIi(1), . . . , QIi(N+1)

in the following forms:

Pi,1 := QIi(1), Pi,s :=
N−k+s∑

j=2

bsjQIi(j) (2 ≤ s ≤ k + 1, bsj ∈ C) (3.1)

such thatPi,1 ∩ · · · ∩ Pi,k+1 ∩ V = ∅.

We define a mapΦ : V → P ℓ−1(C) (ℓ := n0(k + 1)) by

Φ(x) = (P1,1(x) : · · · : P1,k+1(x) : · · · : Pn0,1(x) : · · · : Pn0,k+1(x)).

ThenΦ is a finite morphism onV . We have thatY := ImΦ is a complex projective variety
of P ℓ−1(C) anddimY = k and

△ := deg Y ≥ dk deg V.

Let f̂ = (f0, . . . , fn) be a reduced presentation off . For each positive integeru,
we takev1, . . . , vHY (u) in C[y1,1, . . . , y1,k+1, . . . , yn0,1, . . . , yn0,k+1]u such that they form
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a basis of
C[y1,1,...,y1,k+1,...,yn0,1,...,yn0,k+1]u

IY (u)
. We consider an entire curveF in PHY (u)−1(C)

with a reduced representation

F̂ (z) = (v1(Φ(f̂(z))), . . . , vHY (u)(Φ(f̂(z)))).

Since f is algebraically nondegenerate, we have thatF is linearly nondegenerate.
By (3.12) in [7], for everyǫ′ > 0 (which will be chosen later) we have

(q − (N − k + 1)(k + 1)) Tf(r)

≤

q∑

j=1

1

d
Nf (r, Qj)−

(N − k + 1)(k + 1)

duHY (u)

(
N(r, (W (F̂ ))0)− ǫ′duTf(r)

)

+
(N − k + 1)(2k + 1)(k + 1)△

ud

∑

1≤i≤n0,1≤j≤k+1

mf (r, Pi,j). (3.2)

For eachi ∈ {1, . . . , HY (u)}, we have

(
vi(Φ(f̂(z))

)′
=

n∑

s=0

∂(viΦ)

∂xs

(f̂(z)) · f ′
s(z). (3.3)

On the other hand, sincef∗,z = 0 for all z ∈ ∪q
j=1f

−1(Qj), we have

(f0(z) : · · · : fn(z)) = (f ′
0(z) : · · · : f

′
n(z))

for all z ∈ ∪q
j=1f

−1(Qj).

Hence, by (3.3) and by Euler formula (for homogenous polynomials vi(Φ(x)) ∈

C[x0, . . . , xn]), for all z ∈ ∪q
j=1f

−1(Qj)

((
v1(Φ(f̂(z)))

)′
: · · · :

(
vHY (u)(Φ(f̂(z)))

)′)

=

(
n∑

s=0

∂(v1Φ)

∂xs

(f̂(z)) · f ′
s(z) : · · · :

n∑

s=0

∂(vHY (u)Φ)

∂xs

(f̂(z)) · f ′
s(z)

)

=

(
n∑

s=0

∂(v1Φ)

∂xs

(f̂(z)) · fs(z) : · · · :
n∑

s=0

∂(vHY (u)Φ)

∂xs

(f̂(z)) · fs(z)

)

=
(
v1(Φ(f̂(z))) : · · · : vHY (u)(Φ(f̂(z)))

)
. (3.4)

We consider an arbitrarya ∈ ∪q
j=1f

−1(Qj) (if this set is nonempty). Then there exists
Ip ∈ I such that

(QIp(1)(f̂))0(a) ≥ (QIp(2)(f̂))0(a) ≥ · · · ≥ (QIp(q)(f̂))0(a). (3.5)
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SinceQ1, . . . , Qq are inN-subgeneral position with respect toV , we have

(QIp(j)(f̂))0(a) = 0 for all j ∈ {N + 1, . . . , q}. (3.6)

Setct,s := (Pt,s(f̂))0(a) and

c := (c1,1, . . . , c1,k+1, . . . , cn0,1, . . . , cn0,k+1).

Then there areai = (ai1,1 , . . . , ai1,k+1
, . . . , ain0,1

, . . . , ain0,k+1
), i = 1, 2, . . . , HY (u), such

thatya1 , . . . , yaHY (u) form a basis of
C[y1,1,...,y1,k+1,...,yn0,1,...,yn0,k+1]u

IY (u)
and

SY (u, c) =

HY (u)∑

i=1

ai · c,

wherey = (y1,1, . . . , y1,k+1, . . . , yn0,1, . . . , yn0,k+1).

Hence, there are linearly independent (overC) forms L1, . . . , LHY (u) such thatyai =

Li(v1, . . . , vHY (u)) in
C[y1,1,...,y1,k+1,...,yn0,1,...,yn0,k+1]u

IY (u)
. Then we have

Li(F̂ ) = Li(v1(Φ(f̂)), · · · , vHY (u)(Φ(f̂)))

= P
ai1,1
1,1 (f̂) · · ·P

ai1,k+1

1,k+1 (f̂) · · ·P
ain0,1

n0,1
(f̂) · · ·P

ain0,k+1

n0,k+1 (f̂), (3.7)

for all i ∈ {1, 2, . . .HY (u)}.

Hence, for ali ∈ {1, 2, . . .HY (u)}

(Li(F̂ ))0(a) =
∑

1≤u≤n0,1≤v≤k+1

ait,s(Pit,s(f̂))0(a) = ai · c.

Hence,

HY (u)∑

i=1

(Li(F̂ ))0(a) =

HY (u)∑

i=1

ai · c = SY (u, c). (3.8)

By (3.4), we have

(L1(F̂ (a)) : · · · : LHY (u)(F̂ (a))) = ((L1(F̂ ))′(a) : · · · : (LHY (u)(F̂ ))′(a)) (3.9)
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By Laplace expansion Theorem, we have

W (L1(F̂ )) : · · · : LHY (u)(F̂ ))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

L1(F̂ ) L2(F̂ ) . . . LHY (u)(F̂ )

(L1(F̂ ))′ (L2(F̂ ))′ . . . (LHY (u)(F̂ ))′

· · · · · ·

· · · · · ·

· · · · · ·

(L1(F̂ ))(HY (u)−1) (L2(F̂ ))(HY (u)−1) . . . (LHY (u)(F̂ ))(HY (u)−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

1≤s<t≤HY (u)

(−1)1+s+t

∣∣∣∣∣
Ls(F̂ ) Lt(F̂ )

Ls(F̂ )′ Lt(F̂ )′

∣∣∣∣∣ detAst (3.10)

whereAst is the matrix which is defined from the matrix
(
Li(F̂ )(v)

)
1≤i,v+1≤HY (u)

by

omitting two first rows andsth, tth columns.

For each1 ≤ s < t ≤ HY (u), it is clear that

(detAst)0 ≥

HY (u)∑

v∈{1,...,HY (u)}\{s,t}

max{(Lv(f))0 −HY (u) + 1, 0}. (3.11)

We now prove that
(
Ls(F̂ ) · Lt(F̂ )′ − Lt(F̂ ) · Ls(F̂ )′

)
0
(a) ≥ max{(Ls(F̂ ))0(a)−HY (u) + 1, 0}

+max{(Lt(F̂ ))0(a)−HY (u) + 1, 0}+ 1. (3.12)

We distinguish three cases.

Case 1. (Ls(F̂ ))0(a) ≤ HY (u)− 1 and(Hit(F̂ ))0(a) ≤ HY (u)− 1.

Then, the right side of (3.12) is equal to 1, but by (3.9), the left side of (3.12) is not less
than 1.

Case 2. (Ls(F̂ ))0(a) > HY (u)− 1 and(Lt(F̂ ))0(a) > HY (u)− 1.

We have
(
Ls(F̂ ) · (Lt(F̂ ))′ − Lt(F̂ ) · (Ls(F̂ ))′

)
0
(a) ≥

(
Ls(F̂ )

)
0
(a) +

(
Lt(F̂ )

)
0
(a)− 1

≥
(
(Ls(F̂ ))0(a)−HY (u) + 1

)
+
(
(Lt(F̂ ))0(a)−HY (u) + 1

)
+ 1

= max{(Ls(F̂ ))0(a)−HY (u) + 1, 0}+max{(Lt(F̂ ))0(a)−HY (u) + 1, 0}+ 1.

Case 3. (Ls(F̂ ))0(a) > HY (u)− 1 and(Lt(F̂ ))0(a) < HY (u)− 1 (and similarly for the
case where(Ls(F̂ ))0(a) < HY (u)− 1 and(Lt(F̂ ))0(a) > HY (u)− 1).
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We have

(
Ls(F̂ ) · (Lt(F̂ ))′ − Lt(F̂ ) · (Ls(F̂ ))′

)
0
(a) ≥ (Ls(F̂ ))0(a)− 1

≥
(
(Ls(F̂ ))0(a)−HY (u) + 1

)
+ 1

= max{(Ls(F̂ ))0(a)−HY (u) + 1, 0}+max{(Lt(F̂ ))0(a)−HY + 1, 0}+ 1.

We have completed the proof of (3.12).

By (3.10), (3.11) and (3.12), we have

(W (F̂ ))0(a) =
(
W (L1(F̂ ), . . . , LHY (u)(F̂ ))

)
0
(a)

≥

HY (u)∑

i=1

max{(Li(F̂ ))0(a)−HY (u) + 1, 0}+ 1

=

HY (u)∑

i=1

(
max{(Li(F̂ ))0(a)−HY (u) + 1, 0}+

1

HY (u)

)

≥
1

HY (u)(HY (u)− 1)

HY (u)∑

i=1

(Li(F̂ ))0(a)

(note thatmax{x− y, 0}+ 1
z
≥ 1

yz
x for all x ≥ 0, y, z > 1).

Combining with (3.8), we get

(W (F̂ ))0(a) ≥
1

HY (u)(HY (u)− 1)
SY (u, c). (3.13)

By the definition ofPi,j, Pp,1 ∩ · · · ∩ Pp,k+1 ∩ V = ∅, hence, by Lemma 3.2 in [5] (or
Theorem 2.1 and Lemma 3.2 in [3]), we have

1

uHY (u)
SY (u, c) ≥

1

(k + 1)
(cp,1 + · · ·+ cp,k+1)−

(2k + 1)△

u
max

1≤t≤n0,1≤s≤k+1
ct,s

=
1

(k + 1)

k+1∑

s=1

(Pp,s(f̂))0(a)−
(2k + 1)△

u

∑

1≤t≤n0,1≤s≤k+1

(Pt,s(f̂))0(a). (3.14)

By (3.13) and (3.5), we have(Pp,1(f̂))0(a) = (QIp(1)(f̂))0(a) and

(Pp,s(f̂))0(a) ≥ (QIp(N−k+s)(f̂))0(a)

for all s ∈ {1, . . . , k + 1}.
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Hence, by (3.5), (3.6), we have
q∑

j=1

(Qj(f̂))0(a) =
N+1∑

t=1

(QIp(t)(f̂))0(a)

≤ (N − k + 1)(QIp(1)(f̂))0(a) +

N+1∑

t=N−k+2

(QIp(t)(f̂))0(a)

≤ (N − k + 1)(Pp,1(f̂))0(a) +

k+1∑

s=2

(Pp,s(f̂))0(a)

≤ (N − k + 1)
k+1∑

s=1

(Pp,s(f̂))0(a).

Hence, by (3.14), we have

1

uHY (u)
SY (u, c) ≥

1

(k + 1)(N − k + 1)

q∑

j=1

(Qj(f̂))0(a)

−
(2k + 1)△

u

∑

1≤t≤n0,1≤s≤k+1

(Pt,s(f̂))0(a).

Combining with (3.13) we get

(N − k + 1)(k + 1)

duHY (u)
(W (F̂ ))0(a) ≥

(N − k + 1)(k + 1)

duH2
Y (u)(HY (u)− 1)

SY (u, c)

≥
1

dHY (u)(HY (u)− 1)

q∑

j=1

(Qj(f̂))0(a)

−
(2k + 1)(N − k + 1)(k + 1)△

duHY (u)(HY (u)− 1)

∑

1≤t≤n0,1≤s≤k+1

(Pt,s(f̂))0(a)

≥
1

dHY (u)(HY (u)− 1)

q∑

j=1

(Qj(f̂))0(a)

−
(2k + 1)(N − k + 1)(k + 1)△

du

∑

1≤t≤n0,1≤s≤k+1

(Pt,s(f̂))0(a),

for all a ∈ ∪q
j=1f

−1(Qj).

Hence,

(N − k + 1)(k + 1)

duHY (u)
N(r,W (F̂ ))0) ≥

1

dHY (u)(HY (u)− 1)

q∑

j=1

Nf (r, Qj)

−
(2k + 1)(N − k + 1)(k + 1)△

du

∑

1≤t≤n0,1≤s≤k+1

N(r, Pt,s(f̂))0).
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Combining with (3.2) we have

∥∥∥ (q − (N − k + 1)(k + 1))Tf (r) ≤

q∑

j=1

1

d
Nf (r, Qj)

−
1

dHY (u)(HY (u)− 1)

q∑

j=1

Nf (r, Qj) +
(N − k + 1)(k + 1)ǫ′

HY (u)
Tf (r)

+
(2k + 1)(N − k + 1)(k + 1)△

du

∑

1≤i≤n0,1≤j≤k+1

(N(r, Pt,s(f̂))0) +mf (r, Pi,j))

≤
HY (u)(HY (u)− 1)− 1

HY (u)(HY (u)− 1)

q∑

j=1

1

d
Nf (r, Qj)

+

(
(N − k + 1)(k + 1)ǫ′

HY (u)
+

(2k + 1)(N − k + 1)(k + 1)△

du

)
Tf (r). (3.15)

For eachǫ > 0, we chooseu = u0 := [ (2k+1)(N−k+1)2(k+1)2△
dǫ

] + 1, and ǫ′ :=
ǫ

(N−k+1)(k+1)
− (2k+1)(N−k+1)(k+1)△

du
.

Then, we have

HY (u0) ≤ k + deg Y uk
0

≤ k + dk deg V
(
[(2k + 1)(N − k + 1)2(k + 1)2dk−1 deg V ǫ−1] + 1

)k

= M,

(note thatdeg Y = △ ≤ dk deg V ).

Hence, by (3.15) we have

∥∥∥ (q − (N − k + 1)(k + 1)− ǫ) Tf (r) ≤
M(M − 1)− 1

M(M − 1)

q∑

j=1

1

d
Nf (r, Qj).
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