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ON THE GENERATION OF THE CREM ONA GROUP
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Abstract. Let k be an algebraically closed field of characteristic 0. We show
that any set of generators of the Cremona groug/Qrof the projective spacg;

with n greater than 2 contains an infinite and uncountablelb®urof non trivial
birational isomorphisms.
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1. Introduction

Let Cr(n) = BIir(P}) denote the set of all birational maps of the projective
spacePy on a fieldk. It is clear that Gr(n) is a group under the composition of
dominant rational maps; called the Cremona group of ordeit contains the group
of automorphisms aPy, i.e. the group of projective linear transformations RGL+ 1).
This group is naturally identified with the Galois groupksfutomorphisms of the field
k(z1,...,x,) of rational fractions inn-variablesz, ..., z,. It was studied for the
first time by Luigi Cremona (1830 - 1903), an Italian mathdmanh. Although it has
been studied since the 19th century by many famous math&are;j it is still not well
understood. For example, we still don’t know if it has theisture of an algebraic group
of infinite dimensions (see [1, 2]).

In Dimension 1, it is not difficult to see that Gi) = PGL(2), because each
elementf € Cr(1) is of the form

f:P - P
[z:y] — [ax+by:cx+dy|.

wherea,b,c,d € k andad — bc # 0. Hence Cg(1) = PGL(2) via the following
iIsomorphism

Cr(1) — PGL(2)
= [
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wheref([z : y]) = [ax + by : cx + dy].

In Dimension 2, we consider the standard quadratic tramsftion
w IP’H%{ - ]P’]i
[x:y:z] — |yz:zx: oy

i.e. in affine coordinates(z,y) = <%, é) Note thato™! = w. We have a well-known

theorem of Noether proved by Castelnuovo.

Theorem 1.1. (Noether, Castelnuovo). If the field k is algebraically closed, then
the Cremona group G(2) of Dimension 2 is generated by the group of projective
linear transformations PGL(3) of the projective spac®? and the standard quadratic
transformationw:

Cre(2) = (PGL(3), w)

i.e. every element € Cri(2) is a product of projective linear transformations of PGR)
and the standard quadratic transformatian

Jf=piowo -0 0wop.y
wherey; € PGLg(3) for all i.

Noether stated this theorem in 1871 and Castelnuovo pravadlBO1 (see [3]).
This statement is only true if the dimensian= 2. In the case of the dimension> 2,
we have Theorem 2.1.

2. Main results

In classic algebraic geometry (see [4]), we know that a nafionap of the
projective spac@;’ is of the form

Py ozo:...ixy) =x--» ¢(x) = [Po(z) : ... : P()] € P},

where Py, ..., P, are homogeneous polynomials of same degregin- 1)-variables
xo, ..., T, and are mutually prime. The common degreeRpiis called the degree of
v; denoteddeg . In the language of linear systems; giving a rational ma asy is
equivalent to giving a linear system without fixed composerit’;

©*|Opn (1) = {Z APy X € k} :
1=0

Clearly, the degree ap is also the degree of a generic element0fOp- (1)| and the
undefined points op are exactly the base points @f|Opn (1)|.
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Note that a rational map : P; --» [P} is not in general a map of the ggf to IP;
it is only the map defined on its domain of definition D@m= P; \ V(F, ..., P,). We
say thaty is dominantf its imagep(Dom(y)) is dense irP}. By the Chevalley theorem,
the imagep(Dom(yp)) is always a constructible subset®f, hence, it is dense B} if
and only if it contains a non-empty Zariski open subsetjp{see the page 94, in [4]). In
general, we can not compose two rational maps. Howeverptin@asition) o is always
defined ify is dominant so that the set of all the dominant rational map®; --» Pj is
identified with the set of injective field homomorphisgisof the field of all the rational
fractionsk(zy, ..., x,) in n-variablesry, ..., z,. We say that a rational map: P} --»
P is birational (a birational automorphism, or birational transformatidif there exists
a rational map) : Py --» P} such that) o ¢ = idp. = ¢ o ¢ as rational maps. Clearly,
if such ay exists, then it is unique and is called tihwerseof . Moreover,p and
are both dominant. If we denote by, Cr) = Bir(Py) the set of all birational maps of
the projective spac®;, then Cg(n) is a group under composition of dominant rational
maps and is called théremona group of order or theCremona group of dimension
This group is naturally identified with the Galois groupksfutomorphisms of the field
k(z1,...,x,) of rational fractions im-variablesz,, ..., z,. We immediately have the
main following result:

Theorem 2.1. (Main theorem). If n is a positive integern > 2 then every set of
generators of the Cremona group Cn) of the projective spac@ must contain an
infinite and uncountable number of birational transfornoats of degree- 1.

In order to prove this theorem, we need the following resdite first discusses on
the existence of birational transformations:

If f,q € klxo,2z1,...,2,] @and ty,... t, € klxy,...,z,] are homogeneous
polynomials withdeg(f) = deg(qt;) for all i, we noteT},; : P} --» P} and
T :Pp~' - P! the rational maps defined respectively by

Trge = [frqti,. .. qtn], and T :=[ty,... t,].

Lemma 2.1. Suppose thai, ! are integers withi > [ + 1 > 2. Consider homogeneous
polynomials without common factofsq € k [z, x1, . . ., z,,| of degreesl, [ respectively
andty,...,t, € k[xy,...,z,] of degreed — [. Suppose thaf = x¢f, 1 + f4 and

q = zoq-1 + @ With fg_y, fa, -1, € k[z1,...,z] @nd fy_y # 00r g, # 0. Then
Ty,.+ is birational if and only if7" is birational.

Proof. On the one hands (T) = k (T') (a) with  := % On the other hand because
qly

thatged(f, ¢) = 1, the hypothesis orf;_; andg,_; is equivalent tof;_1q; — faqi—1 # 0,
thereforen € PGLk(PE_l)@). Hence we obtain the assertion. O

Remark 2.1. The transformations constructed in Lemma 2.1 above araestud detail
in the article [5].
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We recall that ifS C P} is a hypersurface of equatigh= 0 and a point” € P},
the multiplicity of S at P is the order of zero of’ = 0 at P.

Corollary 2.1. Suppose that > 2 andS C P} is a hypersurface of degrde> 1 and
suppose that has a point of multiplicity> [ — 1, we denote this point b§ andd is an
integer> [ + 1. Then there exists a birational transformatiorof degreed of P! so that
this hypersurface is contracted to a pointdy

Proof. Without loss of generality, we can suppda3e= [1:0: ... : 0]. Note thaty’ = 0
the equation ofS and takeh = 0 the equation of a generic plane passing throagh
Finally, we choosef := x¢fs 1 + fq With f;,1 # 0 and verifyingged(f, hq') = 1. If
q:=h*"¢ andt; = z; fori = 1,2, ..., n, then the rational map = T}, satisfies the
conclusion of the corollary O

Let ¢ € Cr(n) and suppose that C P} is a subvariety. We will say that is
generically injective onX if there exists an open subset non-emigty- P2, U N X # ()
on whichy is defined and injective. The proof of the following lemmarisiél.

Lemma 2.2. Lety = ¢; o --- 0 ¢, With ¢; € Crg(n) and suppose thak C P} is a
subvariety on whickp is not generically injective. Then there exi$tsl ¢ < n so thatX
is birationally equivalent to a subvariety on whighis not generically injective.

Proof. Now, we prove Theorem 2.1 We observe that the set of hypasesfon which a
birational transformation is not generically injectivdirsite. According to Corollary 2.1
and Lemma 2.2, it suffices to construct an uncountable faafilyypersurfaces ap} of
some degreé > 1, in pairs non birationally equivalent, that cont&an:= [1:0:...: 0]
as point of multiplicity exactly.

Consider the family of hypersurfaces of equatign, x5, z3) = 0 whereq = 0
defines a smooth curvg, of degred on the plane of equations = 24 = - - - = x,, = 0;
the surface; = 0 is birationally equivalent t&®; > x C,, and then two such surfaces are
birationally equivalent if and only i€, andC,, are isomorphic. The proof follows from
the fact that fod = 3, the set of all the classes of isomorphisms of smooth plabesis
a family with a parameter (see Chapter IV, Theorem 4.1 andd&iton 4.6. in [4]). O

Remark 2.2. The argument above shows that Lemma 5 can be a useful instrume
order to decide if a rational map belongs to or not a subgro@ign.(n) whose a subset
of generators is known; as a particular case, by the theoreNoether, a rational map of
the plane that constracts a non-rational curve is not bwatl; this fact is well-known.

3. Conclusion

In this paper, the author has acquired the main followinglted n is a positive
integer,n > 2 then every set of generators of the Cremona growygrGiof the projective
spacePy must contain an infinite and uncountable number of biratitlaasformations
of degree> 1.
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