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Abstract. By means of the second quantization formalism, the condensate density 
of an infinite Bose gas and finite Bose gas is studied in the broken phase. Our results 
show that the compactification in one-direction makes the remarkable changes in the 
condensate density.  
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1.   Introduction  

It is well-known that the system of indistinguishable Bose particles is not affected by 
the Heisenberg uncertainty principle. Thereby, the particles are allowed to occupy the 
same state [1].  For a system of Bose gas, a number of the atoms will be condensed when 
the temperature is decreased to a critical temperature TC. Theoretically, once the 
temperature tends to absolute zero temperature, all of the atoms are condensed into the 
ground state [2, 3]. However, there are always non-condensed atoms even at zero 
temperature, and the density of non-condensed particles is called the depletion density. 
The depletion density consists of the quantum depletion associated with the quantum 
fluctuations [4] and thermal one corresponding to thermal fluctuations [5, 6].  

Apart from the temperature, the finite size effect has a remarkable influence on the 
depletion the density, and thus condensate density of the Bose gas [7]. In the region of low 
temperature, i.e. 0 < T < TC, the depletion is caused by the thermal fluctuations. The main 
aim of this paper is to investigate the condensate density caused by the thermal fluctuations 
in the homogeneous Bose gas and the Bose gas confined between two parallel plates. 

2.   Content  

2.1. Chemical potential of weakly interacting Bose gas at finite temperature 

To begin with, we consider a weakly interacting Bose gas at finite temperature T. 
In the grand canonical ensemble, every property of the interacting Bose gas can be 
subtracted from the partition function [3], 
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  Z  =  Tre
-b Ĥ-µN̂( ), (1) 

in which   Ĥ  is  the Hamiltonian of trapped many-body boson system in the second 
quantization formalism, which can be expressed in terms of the field operator   Ŷ(r ,t )   

 (2)  

Here and m are denoted for the reduced Planck constant and atomic mass, respectively. 
The strength of repulsive interaction between atoms is determined by the coupling 
constant   > 0, with  a being  s -wave scattering length of a particular atomic 
species (determined from experiments). The effect from an external field is characterized 

by the external potential 
  
V

ext
(r). The equation of motion for the particle field operator 

follows directly from the Heisenberg equation and reads 

 (3) 

and Hamiltonian (2) one has 

 (4) 

which is known as Gross-Pitaevskii time-dependent equation for identical boson systems. 
We now split the field operator into two parts [9, 10], 

   Ŷ(r ,t)=y (r ,t)+d(r,t).  

Here, 
   
y (r ,t)= Ŷ(r ,t)  is the condensate wave-function,    d(r,t)= Ŷ(r ,t)-y (r,t) is 

non-condensate wave-function, which describes the thermal excitations. These 
assumptions together with Eq. (4) lead to 

 (5) 
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. (6) 

In order to calculate the second terms of the above equations, we use the self-consistent 
mean-field approximation as follow [11, 12]: 
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d *dd =2 d *d d + dd d .  

Therefore 

   
Ŷ+(r ,t)Ŷ(r ,t)Ŷ(r ,t)= y

2
y +2 Ŷ+Ŷ d + ŶŶ d * +2yd *d +y *dd . (7) 

Note that the average of the thermal fluctuations is equal to zero, i.e 
 
d = d * =0 , one has 

   

Ŷ+(r ,t)Ŷ(r ,t)Ŷ(r ,t) = y
2
y +2y d *d +y * dd

= Ŷ+Ŷ + d *d



y + dd y * .

 (8) 

Inserting of (8) into (5) leads to 

 (9) 

neglecting anomalous average dd , we obtained  

 (10) 

At the zero-temperature limit, thermal excitation vanishes, thus (9) and (10) become 
the time-dependent Gross-Pitaevskii, which provides solutions to ground state wave-
function and quantum fluctuations within Bogoliubov transformation [1]. 
Subtracting (8) from (7) one gets 

 (11) 

here , which included perturbation 

terms. 
Substituting (11) into (6) under Hartree-Fock approximation, in which the 

perturbation terms are neglected, we find 

 (12) 

In the thermodynamic limit, the total density of atoms is fixed, the field operator can 
be written in the form 
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 (13) 

here = -2i 1 , and 

   
n
0
= Ŷ+Ŷ = n

c
(r) +n

d
(r) (14) 

is the total atomic density included the condensate density 
   
n

c
(r) and the thermal 

excitation density 
   
n

d
(r), which respectively determined by the condensate wave-function 

 (15) 

and the non-condensate wave-function 

 (16) 

with 
  
m = m(n

0
,T)is chemical potential, 

 
e

j
is energy corresponds to the single-particle 

wave-function 
   
j

j
(r ,t ). 

At equilibrium state, 
   
n

c
(r)and 

   
n

d
(r)are functions of 

  
T , n

0
and  m ,thus them 

respectively replaced by 
 nc  and 

 nd
 from now on. 

Using (10), (12) within attention to (14), (15) and (16) one has 

  
µ = g(n

0
+n

d
) = g(n

c
+2n

d
), (17) 

and 

  
e

j
p( ) = p2

2m
+V

eff
,  (18) 

where effective potential 
  
V

eff
=V

ext
+2gn

0
,  

  
V

ext
 is external potential. 

2.2. Depletion density of weakly interacting Bose gas in infinite space 

Occupation numbers of  j -th state defined by Bose-Einstein statistics [2, 3], 

  
n

j
p( ) = 1

e
b e j-m( ) -1

, (19) 

in which 

  
b =

1
k

B
T

. Thus, the thermal atomic density is determined in momentum-space 

as follow [3, 9]: 
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( )
( )

( )3
3

0

1
.

2
d jn p d n p





=  p


 (20) 

Inserting (19) into (21) and using transition , one has 

 (21) 

Note that here we set external potential (Vext) equal to zero. 

Substitution (18) into (22), and note that
  

dd x =
2 d/2

G(d /2)
xd-1 dx

0



  can rewrite Eq. (21) in form 

 (22) 

Perform above integration one finds 

 (23) 

For ideal Bose gas,   g=0  and 
  
Li

3/2
[1]=z[3/2] one arrives 

 (24) 

At the critical temperature, 
  
n

d
(T)= n

0
,
 
using (24) one finds the critical temperature of the 

ideal Bose gas is 

 (25) 

this coincides with the well-known result in Refs. [2, 3]. 

2.3. Depletion density of Bose ideal gas confined by two parallel plates 

Applying (21) for the ideal Bose gas below the critical temperature we have 

 (26) 

Our system is confined between two parallel plates perpendicular to the z-axis and 
separated at a distance  . Because of the confinement along the z-axis, the wave vector 
is quantized as follows: 
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  + = =   = 
 

3 2 2 2 21
, , , 0, 1, 2,..., ,

2j j
i

i
d k d k k k k k i  (27) 

in which, the wave vector component 
 k

 is perpendicular to z-axis and 
 
k

j
 is parallel with 

z-axis. Note that here the periodic boundary condition is imposed. Using the Taylor series 

1

1
.

1
jx

x
j

e
e


-

=

=
-    

 
Eq. (26) becomes 

 (28) 

 
Perform integration in (28) one finds 

 (29) 

Using Euler-Maclaurin formula to define  i -summation we find 

 (30) 

Substituting (30) into (29) yields 

 (31) 

in which,  is de Broglie wavelength. When   then 0,   

the second term in (31) annihilated, and (31) becomes (24), which define depletion 
condensate density of Bose ideal gas in infinite space. 

Finite part of the second term of (31) defined by using a characteristic quantity of 
system 1   as follows: 
Power series at   =0one has 

  

1
j
= e- j e j

jj=1




j=1



 »
e- j

jj=1



 1+ j +
j2 2

2
+

j3 3

6
+ ....

æ

èç
ö

ø÷
.  (32) 

Perform summation and power series at   =0  once again one finds 
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1
jj=1



 »2 - ln[ ].  (33) 

Using (33), Eq. (31) can be read  

( ) ( )
( )

  ( ) ( )
3/2 3/2

3/2 5/2 33
3 / 2 2 ln[ ] .

4 22
B B

d

mk T mk T
n T


z  


= + -


 (34) 

The condensate density defined by 0( ) ( )c dn T n n T= - , together with (34) we have 

( ) ( )
( )

  ( ) ( )
3/2 3/2

0 3/2 5/2 33
3 / 2 2 ln[ ] .

4 22
B B

c

mk T mk T
n T n


z  


= - - -


 (35) 

From Eq. (35), we plot the condensate density as functions of the temperature in Figure 1. 

 
Figure 1.  The evolution of condensate density versus temperature 

 for α = 0 and α = 0.025 
Figure 1 shows the temperature dependence of the condensate density at   =0  and 
0.025 = , which associate with the homogeneous and inhomogeneous systems, 

respectively. It is easy to see that at zero temperature all of the particles are condensed, 
whereas at the critical temperature the condensate density vanishes. Below the critical 
temperature, at a given value of the temperature, the finite size effect makes the 
condensate density increases.  

3.   Conclusions 

The depletion of the weakly interacting Bose gas has been investigated within the 
framework of the second quantization formalism. Our main results are the following:  

- In the homogeneous Bose gas, the depletion density depends on both the coupling 
constant and the temperature in the form of a polylogarithm function. Based on this result, 
the critical temperature for the ideal gas is reproduced in Eq. (25). 
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- The influence of the compactification of the Oz-direction on the depletion density 
is investigated. In this case, the depletion density depends on the distance between two 
parallel plates and temperature, which is included in the parameter   .      

These calculations can be extended to consider the temperature dependence of 
several thermodynamic potentials, in particular, pressure, Helmholtz free energy density, 
Casimir force in the Bose gas at finite temperature. 
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