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EXPONENTIAL STABILITY OF A CLASS OF POSITIVE NONLINEAR
SYSTEMS WITH MULTIPLE TIME-VARYING DELAYS

Le Thi Hong Dung
Faculty of Fundamental Sciences, Hanoi University of Industry

Abstract. This paper is concerned with the problem of exponential stability
of a class of positive nonlinear systems with heterogeneoustime-varying delays
which describe a model of Hopfield neural networks with nonlinear self-inhibition
rates. Based on a novel comparison technique via a differential and integral
inequalities, testable conditions are derived to ensure system state trajectories
converge exponentially to a unique positive equilibrium. The effectiveness of the
obtained results is illustrated by a numerical example.
Keywords: neural networks, positive equilibrium, exponential stability,
time-varying delay, M-matrix.

1. Introduction

In modeling of many applied models in economics, ecology andbiology or
communication systems, the relevant state variables are subject to positivity constraints
according to the nature of the phenomenon itself [1]. These models are typically
described by positive systems. Roughly speaking, positivesystems are dynamical systems
whose states are always nonnegative whenever the inputs andinitial conditions are
nonnegative [2]. As an essential issue in applications of positive systems, the problem of
stability analysis and control of positive systems and, in particular, positive systems with
delays, has received considerable attention from researchers in the past few decades [3-7].

During the past two decades, the problem of stability analysis of neural
networks including artificial neural networks and biological neural networks has
received considerable attention due to its widespread applications in signal processing,
pattern recognition, ecosystem evaluation and parallel computation [8-10]. When
a neural network model is designed for practical positive systems, for example, in
identification [11], control [12] or competitive-cooperation dynamical systems for
decision rules, pattern formation, and parallel memory storage, it is inherent that the
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states of the designed networks are nonnegative. In addition, the nonlinearity of activation
functions and the negativeness of self-feedback terms makethe study of positive neural
networks more complicated. Thus, it is of interest to study the problem of stability
analysis of positive nonlinear systems involving neural networks models. However, this
problem has just received growing research attention in recent years and only a few results
have been reported in the literature. For example, Hien (2017) [13] studied the exponential
stability of a unique positive equilibrium of positive Hopfield neural networks with linear
self-inhibition rates and a bounded time-varying delays based on the theory of M-matrix
and linear programming (LP) approach. The results of [13] were later extended to inertial
neural networks with multiple delays [14].

In this paper, we further investigate the problem of exponential stability of a
unique positive equilibrium point of positive nonlinear systems which describe Hopfield
neural networks with heterogeneous time-varying delays. Based on novel comparison
techniques, we derive unified conditions in terms of linear programming to ensure
simultaneously that the system is positive and, for each nonnegative input vector, there
exists a unique positive equilibrium point which is globally exponentially stable.

2. Preliminaries

Notation: We denoteRn then-dimensional space with the vector norm‖x‖∞ =
max1≤i≤n |xi| andRm×n the set ofm × n-matrices. For any two vectorsx = (xi) ∈ R

n

andy = (yi) ∈ R
n, x � y if xi ≤ yi for all i ∈ [n] , {1, 2, . . . , n} andx ≺ y if xi < yi

for all i ∈ [n]. Rn
+ = {x ∈ R

n : x � 0} and|x| = (|xi|) ∈ R
n
+ for anyx ∈ R

n. A matrix
A = (aij) ∈ R

m×n is nonnegative,A � 0, if aij ≥ 0 for all i, j andA is a Metzler matrix
if its off-diagonal entries are nonnegative.

Consider the following nonlinear system with heterogeneous delays

x′
i(t) = − diϕi(xi(t)) +

n
∑

j=1

aijfj(xj(t))

+

n
∑

j=1

bijgj(xj(t− τij(t))) + Ii, i ∈ [n], t ≥ 0.

(2.1)

System (2.1) describes a model of Hopfield neural networks, wheren is the number of
neurons in the network,x(t) = (xi(t)) ∈ R

n andI = (Ii) ∈ R
n are the state vector

and the external input vector, respectively;fj(xj(t)) andgj(xj(t)) are neuron activation
functions;ϕi(xi(t)), i ∈ [n], are nonlinear self-excitation rates anddi > 0, i ∈ [n],
are self-inhibition coefficients;A = (aij) ∈ R

n×n andB = (bij) ∈ R
n×n are neuron

connection weight matrices andτij(t), i, j ∈ [n], represent heterogeneous time-varying
delays satisfying0 ≤ τij(t) ≤ τ+ij for all t ≥ 0, whereτ+ij is a known scalar. The initial
condition of (2.1) is specified as

x(θ) = φ(θ), θ ∈ [−τ+, 0]
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whereτ+ = maxi,j τ
+
ij andφ ∈ C([−τ+, 0],Rn) is a given function.

Let F be the set of continuous functionsϕ : R → R satisfyingϕ(0) = 0 and there
exist positive scalarsc−ϕ , c+ϕ such that

c−ϕ ≤
ϕ(u)− ϕ(v)

u− v
≤ c+ϕ (2.2)

for all u, v ∈ R, u 6= v. It is clear that the function classF includes all linear functions
ϕ(u) = γϕu whereγϕ is some positive scalar.

Assumptions

(A1) The decay rate functionsϕi, i ∈ [n], are assumed to belong the function classF .

(A2) The activation functionsfj(.) andgj(.) are continuous and satisfy the following
conditions

0 ≤
fj(u)− fj(v)

u− v
≤ lfj , 0 ≤

gj(u)− gj(v)

u− v
≤ lgj , ∀u 6= v, (2.3)

wherelfj andlgj , j ∈ [n], are positive constants.

Remark 2.1. It follows from Assumption(A2) that the functionsf(x) = (fi(xi)) and
g(x) = (gi(xi)), x = (xi) ∈ R

n, are globally Lipschitz continuous onRn. Thus, by
utilizing fundamental results in the theory of functional differential equations [15], it
can be verified that for any initial functionφ ∈ C([−τ+, 0],Rn), there exists a unique
solutionx(t) = x(t, φ) of (2.1)on the interval[0,∞), which is absolutely continuous in
t. In the sequel, each solution of(2.1) will be denoted simply asx(t) if it does not make
any confusion.

Definition 2.1. System (2.1) is said to be positive if for any nonnegative initial function
φ ∈ C([−τ+, 0],Rn

+) and nonnegative input vectorI ∈ R
n
+, the corresponding state

trajectory is nonnegative, that isx(t) ∈ R
n
+ for all t ≥ 0.

Definition 2.2. Given an input vectorI ∈ R
n
+. A vectorx∗ ∈ R

n
+ is said to be a positive

equilibrium of system (2.1) if it satisfies the following algebraic system

−DΦ(x∗) + Af(x∗) +Bg(x∗) + I = 0, (2.4)

where the functionΦ : Rn → R
n is defined asΦ(x) = (ϕi(xi))

Definition 2.3. A positive equilibriumx∗ of (2.1) is said to be globally exponentially
stable if there exist positive scalarsβ, η such that any solutionx(t) of (2.1) satisfies the
following inequality

‖x(t)− x∗‖∞ ≤ β‖φ− x∗‖Ce
−ηt, t ≥ 0. (2.5)
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We recall here some concepts in nonlinear analysis and the theory of monotone
dynamical systems which will be used in the derivation of ourresults. A vector field
F : Rn → R

n is said to beorder-preservingon R
n
+ if F (x) � F (y) for any x, y ∈

R
n
+ satisfyingx � y [1]. Let A ∈ R

n×n
+ , then by Assumption (A2), the vector field

F (x) = Af(x) is an order-preserving. A mappingΨ : Rn → R
n is proper if Ψ−1(K)

is compact for any compact subsetK ⊂ R
n. It is well-known that a continuous mapping

Ψ : Rn → R
n is proper if and only ifΨ has the property that for any sequence{pk} ⊂ R

n,
‖pk‖ → ∞ then‖Ψ(pk)‖ → ∞ ask → ∞.

Lemma 2.1 (see [16]). A locally invertible continuous mappingΨ : R
n → R

n is a
homeomorphism ofRn onto itself if and only if it is proper.

3. Main results

In this section, we will derive conditions to ensure that thenonlinear system (2.1)
is positive and has a unique positive equilibrium which is globally exponentially stable.
First, the positivity of the system (2.1) is presented in thefollowing proposition.

Proposition 3.1.Let Assumptions(A1)-(A2) hold and assume that the neuron connection
weight matricesA, B are nonnegative. Then, system(2.1) is positive for all
bounded delays.

Proof. Let x(t) be a solution of system (2.1) with initial functionφ ∈ C([−τ+, 0],Rn
+)

and input vectorI ∈ R
n
+. For a givenǫ > 0, letxǫ(t) denote the solution (2.1) with initial

conditionφǫ(.) = φ(.) + ǫ1n, where1n denotes the vector inRn with all entries equal
one. Note thatxǫ(t) → x(t) asǫ → 0. Thus, it suffices to show thatxǫ(t) > 0 for all
t ≥ 0. Suppose in contrary that there exists an indexi ∈ [n] and at∗ > 0 such that

xiǫ(t∗) = 0, xiǫ(t) > 0 for all t ∈ [0, t∗)

andxjǫ(t) ≥ 0 for all j ∈ [n]. Then,

qi(t) =

n
∑

j=1

aijfj(xjǫ(t)) +

n
∑

j=1

bijgj(xjǫj(t− τij(t))) + Ii ≥ 0 (3.1)

for all t ∈ [0, t∗].
On the other hand, by condition (2.2), we have

c−ϕi
≤

ϕi(xiǫ(t))

xiǫ(t)
≤ c+ϕi

, t ∈ [0, t∗).

Thus, from (2.1), we have

x′
iǫ(t) ≥ −c+ϕi

xiǫ(t) + qi(t), t ∈ [0, t∗). (3.2)
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By integrating both sides of inequality (3.2) we then obtain

xiǫ(t) ≥ e−c+ϕi
t

(

x0 + ǫ+

∫ t

0

ec
+
ϕi

sqi(s)ds

)

≥ e−c+ϕi
t(x0 + ǫ), t ∈ [0, t∗). (3.3)

Let t ↑ t∗, inequality (3.3) gives

0 < (x0 + ǫ)e−c+ϕi
t∗ ≤ xiǫ(t∗) = 0

which clearly raises a contradiction. This shows thatxǫ(t) ≻ 0 for t ∈ [0,∞). The proof
is completed.

Revealed by (2.4), for a given input vectorI ∈ R
n, an equilibrium of system (2.1)

exists if and only if the equationΨ(x) = 0 has a solutionx∗ ∈ R
n, where the mapping

Ψ : Rn → R
n is defined asΨ(x) = −DΦ(x) + Af(x) + Bg(x) + I. Clearly,Ψ is

continuous onRn. Based on Lemma 2.1, we have the following result.

Proposition 3.2. Let Assumptions(A1)-(A2) hold andA,B are nonnegative matrices.
Assume that there exists a vectorν ∈ R

n, ν ≻ 0, such that

n
∑

i=1

(aijl
f
j + bijl

g
j )νi < djc

−
ϕj
νj, j ∈ [n]. (3.4)

Then, for a given input vectorI ∈ R
n, system(2.1)has a unique equilibriumx∗ ∈ R

n.

Proof. LetΨ(x) = −DΦ(x)+Af(x)+Bg(x)+ I. Then, for any two vectorsx, y ∈ R
n,

we have
Ψ(x)−Ψ(y) = −D(Φ(x)− Φ(y)) + A[f(x)− f(y)]

+B[g(x)− g(y)].
(3.5)

We denote a sign matrixS(x− y) = diag{sgn(xi − yi)}. It follows from (A2) that

sgn(xj − yj)(fj(xj)− fj(yj)) ≤ lfj |xj − yj|.

By multiplying both sides of (3.5) withS(x− y), we obtain

S(x− y) (Ψ(x)−Ψ(y)) �
(

−DC−
ϕ + ALf +BLg

)

|x− y|, (3.6)

where Lf = diag{lf1 , l
f
2 , . . . , l

f
n}, Lgdiag{l

g
1, l

g
2, . . . , l

g
n} and C−

ϕ =
diag{c−ϕ1

, c−ϕ2
, . . . , c−ϕn

}. Due to (3.6), we have

|Ψ(x)−Ψ(y)| �
(

DC−
ϕ −ALf − BLg

)

|x− y|

and therefore,

ν⊤|Ψ(x)−Ψ(y)| � ν⊤
(

DC−
ϕ − ALf − BLg

)

|x− y| (3.7)
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for anyν ∈ R
n, ν ≻ 0. If Ψ(x) = Ψ(y) then, by condition (3.4),

ν⊤
(

DC−
ϕ −ALf − BLg

)

|x− y| = 0

which clearly givesx = y. This shows thatΨ is an injective mapping inRn. On the other
hand, inequality (3.7) also gives

‖Ψ(x)‖∞ ≥
1

‖ν‖∞
ν⊤

(

DC−
ϕ −ALf − BLg

)

|x| − ‖Ψ(0)‖∞.

The above estimate implies that‖Ψ(xk)‖∞ → ∞ for any sequence{xk} ⊂ R
n satisfying

‖xk‖∞ → ∞. By Lemma 2.1,Ψ(.) is a homeomorphism ontoRn, and thus, the equation
Ψ(x) = 0 has a unique solutionx∗ ∈ R

n which is an equilibrium of system (2.1). The
proof is completed.

Remark 3.1. Clearly,M = −DC−
ϕ + ALf + BLg is a Metzler matrix and so isM⊤.

In addition, condition(3.4) holds if and only ifM⊤ν ≺ 0. This condition is feasible if
and only ifM⊤, and thusM, is a Metzler-Hurwitz matrix [17]. In the following, we
will show that the derived conditions in Propositions 3.1 and 3.2 ensure that system(2.1)
is positive and the unique equilibrium pointx∗ is positive for each positive input vector
I ∈ R

n
+ which is globally exponentially stable.

Theorem 3.1. Let Assumptions(A1)-(A2) hold andA � 0, B � 0. Assume that there
exists a vectorχ ∈ R

n, χ ≻ 0, such that

Mχ =
(

−DC−
ϕ + ALf +BLg

)

χ ≺ 0. (3.8)

Then, for any positive input vectorI ∈ R
n
+, system(2.1)has a unique positive equilibrium

x∗ ∈ R
n
+ which is globally exponentially stable for any delaysτij(t) ∈ [0, τ+ij ].

Proof. By Proposition 3.2, there exists a unique equilibriumx∗ ∈ R
n of system (2.1).

We first prove thatx∗ is globally exponentially stable. Indeed, letx(t) be a solution of
(2.1). It follows from systems (2.1) and (2.4) that

(xi(t)− x∗i)
′ = − di (ϕi(xi(t))− ϕi(x∗i)) +

n
∑

j=1

aij [fj(xj(t))− fj(x∗j)]

+

n
∑

j=1

bij [gj(xi(t− τij(t)))− gj(x∗j)]. (3.9)
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We definez(t) = |x(t)− x∗| then, from (3.9), we have

D−zi(t) = sign(xi(t)− x∗i)(xi(t)− x∗i)
′

≤ −dic
−
ϕi
|xi(t)− x∗i|+

n
∑

j=1

aijl
f
j |xj(t)− x∗j |

+
n

∑

j=1

bijl
g
j |xj(t− τij(t))− x∗j |

≤ −dic
−
ϕi
zi(t) +

n
∑

j=1

aijl
f
j zj(t) +

n
∑

j=1

bijl
g
j zj(t− τij(t)). (3.10)

whereD−zi(t) denotes the upper left Dini derivative ofzi(t).
Now, we utilize the derived condition (3.8) to establish an exponential estimate for

z(t). From (3.8), we have

−dic
−
ϕi
χi +

n
∑

j=1

(aijl
f
j + bijl

g
j )χj < 0, ∀i ∈ [n]. (3.11)

Consider the following function

Hi(η) = (η − dic
−
ϕi
)χi +

n
∑

j=1

aijl
f
j χj + (

n
∑

j=1

bijl
g
jχj)e

ητ+ , η ≥ 0.

Clearly,Hi(η) is continuous on[0,∞), Hi(0) < 0 andHi(η) → ∞ asη → ∞. Thus,
there exists a unique positive scalarηi such thatHi(ηi) = 0. Let η0 = min1≤i≤nηi and
define the following functions

ρi(t) =
χi

χ+

‖φ− x∗‖Ce
−η0t, t ≥ 0

andρi(t) = ρi(0), t ∈ [−τ+, 0], whereχ+ = min1≤i≤nχi. Note that, for anyt ≥ 0,
we have

ρi(t− τij(t)) = eη0τij(t)ρi(t) ≤ eητ
+

ρi(t).

Therefore,

−dic
−
ϕi
ρi(t) +

n
∑

j=1

aijl
f
j ρj(t) +

n
∑

j=1

bijl
g
jρj(t− τij(t))

≤
[

− dic
−ϕiχi +

n
∑

j=1

aijl
f
j χj + (

n
∑

j=1

bijl
g
jχj)e

η0τ
+
] 1

χ+

‖φ− x∗‖Ce
−η0t

≤
Hi(η0)− η0χi

χ+
‖φ− x∗‖Ce

−η0t. (3.12)
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SinceHi(η) is increasing inη, Hi(η0) ≤ 0 for all i ∈ [n]. Thus, (3.12) gives

ρ′i(t) ≥ −dic
−
ϕi
ρi(t) +

n
∑

j=1

aijl
f
j ρj(t) +

n
∑

j=1

bijl
g
jρj(t− τij(t)) (3.13)

for all t ≥ 0 andi ∈ [n]. Combining (3.10) and (3.13) we obtain

D−ζi(t) ≤ −dic
−
ϕi
ζi(t) +

n
∑

j=1

aijl
f
j ζj(t) +

n
∑

j=1

bijl
g
j ζj(t− τij(t)) (3.14)

whereζi(t) = zi(t)− ρi(t). It follows from (3.14) that

ζi(t) ≤ e−dic
−

ϕi
tζi(0) +

n
∑

j=1

aijl
f
j

∫ t

0

edic
−

ϕi
(s−t)ζj(s)ds

+

n
∑

j=1

bijl
g
j

∫ t

0

edic
−

ϕi
(s−t)ζj(s− τij(s))ds, t ≥ 0. (3.15)

It is obvious thatζ(0) � 0. For anytf > 0, if ζ(t) � 0 for all t ∈ [0, tf) then from (3.15),
ζ(tf) � 0. This shows thatζ(t) � 0 for all t ≥ 0. Consequently,

‖x(t)− x∗‖∞ ≤ (max
1≤i≤n

χi/χ+)‖φ− x∗‖Ce
−η0t

by which we can conclude the exponential stability of the equilibrium x∗.
Finally, for a nonnegative initial functionφ, by Proposition 3.1, the corresponding

trajectoryx(t) � 0 for all t ≥ 0. Thus,x∗ = limt→∞ x(t) � 0. This shows thatx∗ is a
unique positive equilibrium of system (2.1). The proof is completed.

4. An illustrative example

Consider a class of cooperative neural networks in the form (2.1) with Bolzmann
sigmoid activation functions

fj(xj) = gj(xj) =
1− e

−
xj
θj

1 + e
−

xj
θj

, θj > 0 (j = 1, 2, 3) (4.1)

and a common nonlinear decay rate

ϕ(xi) = 2xi + sin2(0.25xi).

It is easy to verify that Assumptions (A1) and (A2) are satisfied, wherec−ϕ = 1.75, c+ϕ =

2.25 andlfj = lgj =
1
2θj

. Let

A =





0.35 0.64 0.25
0.81 0.15 0.25
0.42 0.46 0.55



 , B =





0.12 0.53 0.29
0.23 0.18 0.36
0.56 0.27 0.39



 ,

D = diag{0.8, 0.75, 1.1}
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anddiag{θj} = {2.0, 1.8, 2.5} then

M , −c−ϕD + ALf +BLg =





−1.2825 0.325 0.108
0.26 −1.2208 0.122
0.245 0.2028 −1.737



 .

Therefore,M13 ≺ 0. By Theorem 3.1, for any input vectorI ∈ R
3
+, system (2.1) has a

unique positive equilibriumx∗ ∈ R
3
+ which is globally exponentially stable. A simulation

result of 20 sample state trajectories with random initial states, inputI = (1.5, 1.8, 2.0)⊤

and a common delayτ(t) = 5| sin(0.1t)| is presented in Figure 1. It can be seen that all
the conducted state trajectories converge to the positive equilibriumx∗. This validates the
obtained theoretical results.
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x
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(t) x

2
(t)

x
3
(t)

Figure 1. Convergence of state trajectories to positive equilibrium x∗

5. Conclusions

The problem of existence, uniqueness and global exponential stability of a positive
equilibrium has been investigated for a class of positive nonlinear systems which describe
Hopfield neural networks with heterogeneous time-varying delays. Testable stability
conditions in terms of linear programming have been derivedusing novel comparison
techniques via differential and integral inequalities.
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