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EXPONENTIAL STABILITY OF A CLASS OF POSITIVE NONLINEAR
SYSTEMS WITH MULTIPLE TIME-VARYING DELAYS

Le Thi Hong Dung
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Abstract. This paper is concerned with the problem of exponentialil#iab
of a class of positive nonlinear systems with heterogendious-varying delays
which describe a model of Hopfield neural networks with nugdir self-inhibition
rates. Based on a novel comparison technique via a difiatead integral
inequalities, testable conditions are derived to ensustesy state trajectories
converge exponentially to a unique positive equilibriunneeffectiveness of the
obtained results is illustrated by a numerical example.
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1. Introduction

In modeling of many applied models in economics, ecology ardogy or
communication systems, the relevant state variables djeduo positivity constraints
according to the nature of the phenomenon itself [1]. Theselais are typically
described by positive systems. Roughly speaking, postisgeems are dynamical systems
whose states are always nonnegative whenever the inputsnédia conditions are
nonnegative [2]. As an essential issue in applications sitpe systems, the problem of
stability analysis and control of positive systems and drtipular, positive systems with
delays, has received considerable attention from rese@ ahthe past few decades [3-7].

During the past two decades, the problem of stability amalyd neural
networks including artificial neural networks and biolagicneural networks has
received considerable attention due to its widespreadagtigins in signal processing,
pattern recognition, ecosystem evaluation and parallehpedgation [8-10]. When
a neural network model is designed for practical positivetays, for example, in
identification [11], control [12] or competitive-coopei@t dynamical systems for
decision rules, pattern formation, and parallel memoryagfe, it is inherent that the
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states of the designed networks are nonnegative. In additie nonlinearity of activation
functions and the negativeness of self-feedback terms nekstudy of positive neural
networks more complicated. Thus, it is of interest to study problem of stability
analysis of positive nonlinear systems involving neuralvoeks models. However, this
problem has just received growing research attention enggears and only a few results
have been reported in the literature. For example, Hien{R(AB] studied the exponential
stability of a unique positive equilibrium of positive Hogifil neural networks with linear
self-inhibition rates and a bounded time-varying delayseldeon the theory of M-matrix
and linear programming (LP) approach. The results of [13pv@ter extended to inertial
neural networks with multiple delays [14].

In this paper, we further investigate the problem of exptiakrstability of a
unique positive equilibrium point of positive nonlinearsgyms which describe Hopfield
neural networks with heterogeneous time-varying delayasel on novel comparison
techniques, we derive unified conditions in terms of lineewgpamming to ensure
simultaneously that the system is positive and, for eacinegative input vector, there
exists a unique positive equilibrium point which is glolgakponentially stable.

2. Preliminaries

Notation: We denoteR™ the n-dimensional space with the vector notim||., =
maxi<;<n [z;| andR™ ™ the set ofim x n-matrices. For any two vectors= (z;) € R
andy = (y;) € R", 2 < yif o; <y foralli € [n] = {1,2,...,n} andz < yif z; < y;
foralli € [n]. R? = {z € R": 2 = 0} and|z| = (|z;]) € R} foranyz € R". A matrix
A = (a;;) € R™*™is nonnegatived > 0, if a;; > 0 for all 7, j and A is a Metzler matrix
if its off-diagonal entries are nonnegative.

Consider the following nonlinear system with heterogesetelays

w(t) = —dipi(wi() + Y aiifi(a;(1))
" j:1 2.1)
+ ) bigi(ai(t — ;) + L i € [n], ¢ > 0.

System (2.1) describes a model of Hopfield neural networkeren is the number of
neurons in the network;(t) = (x;(t)) € R" and/ = (/;) € R™ are the state vector
and the external input vector, respectivefy(x;(t)) andg;(z;(t)) are neuron activation
functions; ¢;(z;(t)), i € [n], are nonlinear self-excitation rates a#d > 0, i € [n],
are self-inhibition coefficientsA = (a;;) € R™™ andB = (b;;) € R are neuron
connection weight matrices ang (t), i,j € [n], represent heterogeneous time-varying
delays satisfying < 7,;(¢) < Tj; forall ¢ > 0, Whererjj? is a known scalar. The initial
condition of (2.1) is specified as

2(0) = ¢(0), 0 € [+, 0]
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wherer™ = max; ; 7,; and¢ € C([—7",0],R") is a given function.
Let F be the set of continuous functiops: R — R satisfyingy(0) = 0 and there
exist positive scalars,, c;; such that

e =) _

L U —v -

C C

€+

(2.2)

forall u,v € R, u # v. Itis clear that the function clasg includes all linear functions
o(u) = v,u wherevy,, is some positive scalar.

Assumptions

(Al) The decay rate functions;, i € [n], are assumed to belong the function cl&ss

(A2) The activation functiong;(.) andg;(.) are continuous and satisfy the following
conditions

0<M<lf 0<M§l§,w7ﬁv, (2.3)

- uU—v -7 = uU—v

wherelf andl{, j € [n], are positive constants.

Remark 2.1. It follows from AssumptiofA2) that the functionsf(z) = (f;(x;)) and
g(x) = (gi(x;)), x = (z;) € R", are globally Lipschitz continuous dR™. Thus, by
utilizing fundamental results in the theory of functiondffetential equations [15], it
can be verified that for any initial function € C([—77,0],R"), there exists a unique
solutionz(t) = z(t, ¢) of (2.1) on the intervall0, co), which is absolutely continuous in
t. In the sequel, each solution (#.1) will be denoted simply as(t) if it does not make
any confusion.

Definition 2.1. System (2.1) is said to be positive if for any nonnegativeirfunction
¢ € C([-7*,0],R?}) and nonnegative input vectdr € R, the corresponding state
trajectory is nonnegative, that i) € R forall ¢t > 0.

Definition 2.2. Given an input vectof € R’}. A vectorz, € R’ is said to be a positive
equilibrium of system (2.1) if it satisfies the followingelgaic system

—D®(z,) + Af(z) + Bg(zs) + I =0, (2.4)
where the functio® : R" — R" is defined a®(z) = (yi(x;))

Definition 2.3. A positive equilibriumz, of (2.1) is said to be globally exponentially
stable if there exist positive scalafsn such that any solutiom(t) of (2.1) satisfies the
following inequality

l2(t) = 2l < Bll¢ — zsllce™, £ > 0. (2.5)
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We recall here some concepts in nonlinear analysis and #wyttof monotone
dynamical systems which will be used in the derivation of msults. A vector field
F : R" — R" is said to beorder-preservingon R if F(xz) < F(y) foranyz, y €
R" satisfyingz < y [1]. Let A € R, then by Assumption (A2), the vector field
F(x) = Af(x) is an order-preserving. A mapping : R* — R™ is properif ¥ !(K)

Is compact for any compact subgétc R". It is well-known that a continuous mapping
¥ : R® — R™is proper if and only ift has the property that for any sequefpg} C R™,
|px|| — oo then|| ¥ (pg)|| — oo ask — oo.

Lemma 2.1 (see [16]) A locally invertible continuous mappingg : R* — R" is a
homeomorphism d&™ onto itself if and only if it is proper.

3. Main results

In this section, we will derive conditions to ensure that tiealinear system (2.1)
is positive and has a unique positive equilibrium which isbgllly exponentially stable.
First, the positivity of the system (2.1) is presented inftiwing proposition.

Proposition 3.1. Let Assumption@A1)-(A2) hold and assume that the neuron connection
weight matricesA, B are nonnegative. Then, syste(@.1) is positive for all
bounded delays.

Proof. Let z(t) be a solution of system (2.1) with initial functiehe C([—7",0],R")
and input vector € R’}. For a givere > 0, letz(t) denote the solution (2.1) with initial
condition¢.(.) = ¢(.) + €1,, wherel,, denotes the vector iR" with all entries equal
one. Note that:.(t) — z(t) ase — 0. Thus, it suffices to show that () > 0 for all

t > 0. Suppose in contrary that there exists an indexn| and at, > 0 such that

Tie(ty) =0, x;(t) > 0forallt € [0, )

andz,(t) > 0forall j € [n]. Then,

n

gi(t) = aifi(zse(t)) + Z bij9;(xjej(t — 735(t))) + 1 = 0 (3.1)

j=1

forall t € [0,¢.].
On the other hand, by condition (2.2), we have

- < Spi(xie(t)) <

+
#F Ty S 1l
Thus, from (2.1), we have
vie(t) = —cgaic(t) + ai(t), t € [0,¢,). (3.2)
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By integrating both sides of inequality (3.2) we then obtain

Tie(t) > et (:ro +e+ /t ec*tisqi(s)ds)
0
> el (zg+e), teL,). (3.3)
Lett 1 t,, inequality (3.3) gives
0 < (xo+ e)e_cgit* < @ie(ts) =0

which clearly raises a contradiction. This shows that) > 0 for ¢ € [0, c0). The proof
is completed. O

Revealed by (2.4), for a given input vectbe R", an equilibrium of system (2.1)
exists if and only if the equatiod(x) = 0 has a solutionr, € R™, where the mapping
U : R" — R"is defined asl(z) = —D®(z) + Af(x) + Bg(x) + I. Clearly, ¥ is
continuous orR™. Based on Lemma 2.1, we have the following result.

Proposition 3.2. Let AssumptiongAl)-(A2) hold and A, B are nonnegative matrices.
Assume that there exists a vectoe R", v > 0, such that

n

Z(awlf + bwl§7>V2 < de;jVj, j c [n] (34)

=1

Then, for a given input vectdr € R", systen{2.1) has a unique equilibrium, € R".
Proof. Let ¥ (z) = —D®(z)+ Af(x)+ Bg(x)+ L. Then, for any two vectors, y € R",

we have
U(z) = ¥(y) = — D(®(z) — 2(y)) + Alf(z) — f()]
+ Blg(z) — g(y)].
We denote a sign matri&(z — y) = diag{sgn(x; — y;)}. It follows from (A2) that
sgn(a; — ;) (fi(x5) — fi(y;)) < Ulay — .

By multiplying both sides of (3.5) witls (x — y), we obtain

(3.5)

S —y) (¥(z) = U(y)) = (=DC, + ALs + BL,) [x - yl, (3.6)
where L; = diag{l{,l,.... 1}, Lydiag{l{,15,....,1} and C, =
diag{c;,,c,,---, ¢, }- Due to (3.6), we have

U (z) — U(y)| = (DC, — AL; — BL,) |z — |
and therefore,

v |U(z) —U(y)| = v’ (DC, — ALy — BLy) |z —y| (3.7)
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foranyrv € R™, v > 0. If U(x) = ¥(y) then, by condition (3.4),
v (DC, — ALy — BLy) |z —y| =0

which clearly gives: = y. This shows tha¥ is an injective mapping ifR"™. On the other
hand, inequality (3.7) also gives

[ (2)[loo =

> v’ (DC; = ALy = BLy)|a] = [ ¥(0)] .
The above estimate implies tha¥ (z)|| . — oo for any sequencéz,} C R” satisfying
|zk||oo — o0. By Lemma 2.1)(.) is a homeomorphism onf®”, and thus, the equation
U(z) = 0 has a unique solution, € R™ which is an equilibrium of system (2.1). The
proof is completed. O

Remark 3.1. Clearly, M = —DC + ALy + BL, is a Metzler matrix and so ig1".

In addition, condition(3.4) holds if and only ifM T < 0. This condition is feasible if

and only if M T, and thusM, is a Metzler-Hurwitz matrix [17]. In the following, we
will show that the derived conditions in Propositions 3.1&2 ensure that systef.1)

is positive and the unique equilibrium point is positive for each positive input vector
I € R% which is globally exponentially stable.

Theorem 3.1. Let Assumption§Al1)-(A2) hold andA > 0, B > 0. Assume that there
exists a vectog € R", x > 0, such that

Myx = (=DC, + ALy + BL,) x < 0. (3.8)

Then, for any positive input vectdre R", systen{2.1) has a unique positive equilibrium
z, € R which is globally exponentially stable for any delayst) < [0, 7;*].

7'”

Proof. By Proposition 3.2, there exists a unique equilibriumme R™ of system (2.1).
We first prove that:, is globally exponentially stable. Indeed, l&ft) be a solution of
(2.1). It follows from systems (2.1) and (2.4) that

(zi(t) — 2) = —di (wilzi(t)) — i) + Z aii[fi(x(t)) = fi(2s5)]

D bilg el = 75(1)) = g5(.9)] (3.9)
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We definez(t) = |x(t) — x.| then, from (3.9), we have
D™ 2(t) = sign(w;(t) — ) (2i(t) — 2.)'

< —dic |7i(t) — 2| + Z agll|z;(t) — 2.1

< —dicg z(t) + ) ayllz(t) + Zb,j 92i(t — (1)) (3.10)

whereD~ z;(t) denotes the upper left Dini derivative aft).

Now, we utilize the derived condition (3.8) to establish apenential estimate for
z(t). From (3.8), we have

—dic, xi+ Y _(ail] +bl9)x; < 0,¥i € [n]. (3.11)

j=1

Consider the following function

Hi(n) = (n —dic; )xi + Y _ ailix; + wa ) n > 0.

J=1

Clearly, H;(n) is continuous ono, o), H;(0) < 0 and H;(n) — oo asn — oo. Thus,
there exists a unique positive scalgrsuch thatH;(n;) = 0. Letrn, = min;<;<,7; and
define the following functions

pit) = 21|l — 2 [|lce ™, £ >0
X+

andp;(t) = p;(0), t € [-77,0], wherex, = min;<;<,x;. Note that, for any > 0,
we have

pilt = 7is(8) = e D pi(t) < & pi(1).

Therefore,
7j=1

_ 411 _

< {— dic” pixi +Zaijzjfx] wa 9;)em *] 6 — )| ce™™!

=1 X+
H;(no) — noX _

< w,m R (3.12)

Jr
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SinceH;(n) is increasing im, H;(ny) < 0forall i € [n]. Thus, (3.12) gives
M@Z—m%m@+§é%ﬁm +§j%] —75(t)) (3.13)
forall t > 0 andi € [n]. Combining (3.10) and (3.13) we obtain
D™G(t) < —dsc, Gt +Za”z]gj +wa —75(t)) (3.14)
where(;(t) = z;(t) — p;(t). It follows from (3.14) that

Gi(t) < e %ty (0 +Za” / edicei =D (5)ds

-Q}w/1WMMwm@m»m. 3.15)

It is obvious that;(0) < 0. Foranyt,; > 0, if {(¢) < 0forall ¢ € [0,¢f) then from (3.15),
¢(t;) = 0. This shows thag(t) < 0 for all t > 0. Consequently,

l2(8) = zlloo < (max xi/x+)ll¢ = 2floe™

by which we can conclude the exponential stability of theildoium z.,.

Finally, for a nonnegative initial function, by Proposition 3.1, the corresponding
trajectoryz(t) = 0 for allt > 0. Thus,z, = lim;_,., x(t) = 0. This shows that, is a
unique positive equilibrium of system (2.1). The proof isngmeted. O

4. Anillustrative example

Consider a class of cooperative neural networks in the f@im) fvith Bolzmann
sigmoid activation functions

1 . - .
S 9,>0(j=1,2,3) (4.1)

1+e %
and a common nonlinear decay rate

fi(z;) = g;(x;) =

CD‘H c0|i-3
(Y Sy S,

o(x;) = 2x; + sin*(0.252;).
Itis easy to verify that Assumptions (A1) and (A2) are sai$fiwherec; = 1.75, ¢f =
2.25andlf =19 = 1. Let

0.35 0.64 0.25 0.12 0.53 0.29
A= (081 0.15 025, B =023 0.18 0.36],
0.42 0.46 0.55 0.56 0.27 0.39

D = diag{0.8,0.75,1.1}
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anddiag{6;} = {2.0,1.8,2.5} then

~1.2825  0.325  0.108
ME —c,D+ ALy +BL,=| 026  —1.2208 0.122
0.245  0.2028 —1.737

Therefore,M1; < 0. By Theorem 3.1, for any input vectdre R?, system (2.1) has a
unique positive equilibriune, € R? which is globally exponentially stable. A simulation
result of 20 sample state trajectories with random initiatess, input’ = (1.5,1.8,2.0)"
and a common delay(t) = 5|sin(0.1t)| is presented in Figure 1. It can be seen that all
the conducted state trajectories converge to the postudilerium ... This validates the
obtained theoretical results.

Response x(t)

0 EI> lIO t 2IO 2I5 30
Figure 1. Convergence of state trajectoriesto positive equilibrium z,

5. Conclusions

The problem of existence, uniqueness and global expomststzlity of a positive
equilibrium has been investigated for a class of positivdinear systems which describe
Hopfield neural networks with heterogeneous time-varyietays. Testable stability
conditions in terms of linear programming have been derivgidg novel comparison
techniques via differential and integral inequalities.
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