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ON L.-INDUCED STABILIZATION OF POSITIVE LINEAR SYSTEMS
WITH DISTRIBUTED DELAYS

Mai Thi Hong
Faculty of Mathematics, National University of Civil Engering

Abstract. The problem ofL,-gain control is studied for positive linear systems
with distributed time delays. By a novel comparison techgidnvolving the
monotonicity of the so-called upper scaled systems wittk palues of exogenous
disturbances, a characterizationof -induced norm is first reformulated. Then,
necessary and sufficient LP-based conditions subjeEtgénduced performance
with prescribed level are derived and utilized to addregsdésign problem of
state-feedback controllers that make the closed-looesyspositive, stable and
have prescribed ..-gain performance level. A numerical example is given to
illustrate the effectiveness of the proposed method.
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1. Introduction

Positive systems are widely used to model various appliesh@imena whose
relevant states are always nonnegative [1, 2]. Applicatiohpositive systems can be
found in a variety of disciplines from biology, ecology, aadidemiology, chemistry,
pharmacokinetics to communication systems, and many otloelels that are subject
to conservation laws. In addition, positive systems passeny elegant properties that
have yet no counterpart in general dynamical systems [3¢ tDpractical and theoretical
applications, the systems and control theory of lineartp@ssystems has been one of the
most active research topics in the past decade (see, eq), [4

On the other hand, exogenous disturbances are often ercednth modeling
of practical systems due to the inaccuracy of data procgsdimear approximations
or measurement errors. In practice, external disturbasces as wind shear on
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aircraft wings or continuous road excitation on vehiclepgusion systems are generally
persistent and amplitude-bounded rather than specifiatan the total energy of
disturbances are required [8]. In such models, the worst-eanplification from input
disturbance to the regulated output represents a moren&algoperformance index,
which gives rise to the so-called..-induced control problem. Roughly speaking,
L..-induced optimal design is to minimize the maximum peak¢ak gain of a
closed-loop system that is driven by bounded amplitudeibsinces. Thus, the, -gain
minimization is a useful and effective approach to the probbf examining the responses
of dynamic systems corrupted by persistently bounded iahces [9]. In some
existing works, L..-gain analysis results have been established by usingirceytzes
of co-positive Lyapunov functions [10], fundamental sadatrepresentation [11] or
by utilizing the positivity characteristic [9, 12], whichivg a characterization of the
exact value ofL..-gain of the systems. However, the obtained charactevizagsults
are typically not tractable for the design problem of dekicentrollers that make the
closed-loop systems positive, stable and have prescriQedain performance.

In this paper, we consider the stabilization problem unbgrgain scheme for
positive linear systems with distributed time delays. Ntwand main contribution
of this paper are two points. First, characterization/gf-gain is reformulated using
novel comparison techniques involving steady states oéuppaled systems with peak
values of exogenous disturbances. Second, tractable $&dbzonditions to the design
problem of a state-feedback controller that minimizes tlestvcase amplification from
disturbances to regulated outputs subjedtiogain is presented.

2. Content
2.1. Preliminaries

Notation. R™ and R™*" denote then-dimensional vector space and the set of
m X n-matrices, respectivelyl,, € R™ denotes the vector with all entries equal one.
[2]lc = maxi<icy 2] and[[Allc = maxi<i<m D5, |a;;| denote the max-norm of a
vectorz = (z;) € R" and a matrixA = (a;;) € R™*", respectively. L,.-norm of
a functionw : R, — R" is defined ag|w||.., = esssup,so||w(t)|l and Lo (R™) =
{fw:R, = R": ||w||,. < oco}. Fortwo vectors: = (z;) € R" andy = (y;) € R", we
writex < yif z; <y, ande < yifo; <y fori=1,2,... R} ={z € R": 2 = 0}
and|z| = (|z;]) € R}. Amatrix A = (a;;) € R™*" is nonnegativeA > 0, if a;; > 0 for
all i, j.

Consider the following continuous-time system with distted delays.
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(

x(t) = Az(t) + /0 Aq(s)x(t+ s)ds + Bu(t) + B,w(t),

z(t) = Cx(t) + /_0 Ca(s)z(t + s)ds + Du(t) + Dyw(t), (2.1)

2(s) = 6ls), s € [~d.,0),

wherex(t) € R", u(t) € R™ is the control inputz(¢) € R? andw(t) € R? are the state,
regulated output and exogenous disturbance input vectsgectively.r, x are positive
scalars representing distributed time-delays in the stadeoutput.A, B, B, C, D, D,,
are known real matricesd,(s), Cy(s) are continuous matrix-valued functions defined
on [—7,0] and[—k, 0], respectively.d, = max{r,x} and¢ € C = C([—d,,0],R") is
the initial condition. Theco-norm of¢ € C is defined ag/¢||c = sup_; <.<o [|#(5)]]co-

To explicitly mention the initial condition, we will denotes x(¢, ¢) the _c:6rresponding
solution of (1) with initial functiong.

Definition 2.1 (see [1]) Systen(2.1)is said to be (internally) positive if for any initial
state¢(s) = 0 (s € [—d.,0]) and inputsu(t) = 0, w(t) > 0,t > 0, the state trajectory
x(t) »= 0 and outputz(¢t) > 0 forall t > 0.

Similar to [9], we have the following positivity characteakion.

Proposition 2.1. Systen(2.1) is positive if and only if the matrixl is Metzler,B, B,,,
C, D, D,, are nonnegative, and,(s), Cq4(s) are nonnegative fog € [—7,0] ands €
[—k, 0], respectively.

The following result is similar to that of [13, Theorem Il). IFirst, we recall here
that, for a matrixA € R™*", leto(A) be the spectrum (the set of eigenvaluesyipfve
denote byu(A) = max{Re) : A € o(A)} the spectral abscissa or the growth constant of
A. Itis well-known that the inequality

e < e

forall t > 0. Thus, for anyz € R, e’z — 0 ast — oo if and only if u(A) < 0.
Equivalently,Re\; < 0 for any\; € o(A) and the spectrura(A) of A lies within the
left-hand side of complex plane.

Theorem 2.1. Suppose that systef2.1) is positive. The following statements are
equivalent.

(i) The unforced system (#.1) withw = 0 is globally exponentially stable (GES).

(i) The Metzler matrix4 = A + fi A,(s)ds is Hurwitz, that is, the spectral abscissa
p(A) <O.
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(i) There exists a vectoy € R™, n > 0, such that

(A + /0 Ad(s)ds>77 <0. 2.2)

-7

(iv) The matrixA + [°_ A4(s)ds is invertible and

(a+ [ adas) " =0

Proof. The proof is similar to that of Theorem I11.1 in [13] and thagsiomitted here. [

Sinceu(A) = u(A"), an equivalent condition of (2.2) is that there exists atpasi
vector v such thatv" A < 0. Thus, it can be shown under equivalent conditions of
Theorem 2.1 that for any € L. (R?), we haver € L. (R") and hence € L, (RP).

It is natural to assume that system (2.1) is stable (GES) sorenthel..-gain exists.
More specifically, we define the input-output operator

Y Loo(RY) — Loo(RP), w2

and L..,-gain of system (2.1) under zero initial condition is defiraesd

ISl = sup Al 2.3)

lolpaz0 1Wlze

Definition 2.2. For a giveny > 0, systern(2.1)is said to have...-induced performance
of levely if [|X||(z..r.0) <7-

The main objective here is to address the stabilizationlprolunderZ .-induced
performance index via state-feedback scheme for positreral systems described
by (2.1).

2.2. L_-gain analysis

In this section, we consider positive system (2.1) with zeral condition. Let
z(t,w), z(t,w) denote the state and output trajectories of system (2.1) negpect to
inputw. Similar to [9, Lemma 5], it can be verified that for any, wy, € L., (RY), if
wi(t) 2 we(t), t > 0, thenz(t,wy) = x(t,we) andz(t,wy) < z(t,wy) forall ¢ > 0.
Therefore,

—z(t, |w]) 2 x(t,w) 2 x(t, |w|), t >0,

which yields|z(t, w)| < z(¢, |w]) for all t > 0. Moreover, for av € L(R?), we have

[w(t)] 2w = [lwlz. 1,
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To further facilitate the analysis of system (2.1), we cdasithe following auxiliary
system

B
D, (2.4)

whereAd = A+ [° Ay(s)ds,C = C + [° Cy(s)ds and@ = ||w||1..1,.

Lemma 2.1 (see, [9, Lemma 7])The state trajectoryc(t) of (2.4) is monotonically
nondecreasing, that ig;(t;) < z(t,) forany0 < ¢; < t,.

Based on Lemma 2.1, the following lemma is obtained.

Lemma 2.2. For any state and output trajectoriest), z(t), z(t), z(t) of systemg2.1)
and(2.4), it holds thatz(t) < z(t) andz(t) < z(t) forall ¢t > 0.

Proof. For state trajectories(t), z(¢) of (2.1) and (2.4), we defingt) = z(t) — z(t) as
the error vector of(¢) andz(t). It follows from (2.1) and (2.4) that
0

é(t) = Ae(t) + 3 Aq(s)e(t+ s)ds + By, (w — w(t))

0

+ [ Au(s)[z(t) — z(t + s)] ds. (2.5)
By Lemma 2.1z(t) — z(t + s) = 0for s € [—7,0]. It follows thate(t) = 0 regarding
ffT Aq(s) [z(t) — z(t + s)] ds + B,(w — w(t)) as nonnegative input of positive system
(2.5). The comparison(t) < z(t) can be shown by similar lines used in the derivation of
x(t) = z(t). O
Remark 2.1. According to Lemma 2.2, the state and output trajectoriesysfem (2.1)
will be compared with those of the auxiliary system (2.4)nc®i the state trajectories of
the system (2.4) are monotonically nondecreasing, theyxpected to monotonically
converge to the equilibrium point of the system (2.4). Mopedfically, by the
assumption that system (2.1) is stable, the maﬂixfi A,(s)ds is Metzler and Hurwitz.
Therefore, system (2.4) has a unique equilibrium pointciis given as

r, = —A'B,w.
The following important result shows that the state trajact(t) of (2.4) monotonically
converges ta..

Lemma 2.3. Assume that the Metzler matrix = A + ffT Aq(s)ds is Hurwitz. Then,
there exist scalar$ > 0 ande > 0 such that the state trajectory(t) of systen(2.4)
satisfies

max(0,1 — Be Nz, 2 Z(t) < z,, t > 0.

In particular, it holds thaflim; .., z(t) = —A~! B, w.
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Proof. Clearly,e(t) = =, — z(t) is a solution of the system
é(t) = Ae(t), e(0) =z, = 0. (2.6)

Since system (2.6) is positive, it follows th&t) > 0 and hence:(t) < z, for ¢ > 0.

On the other hand, the Metzler mattikis Hurwitz, there exists a positive vector
v € R™ such that'" A < 0. Thus, for a sufficiently smal > 0, we havev T A < —ev 7.
Consider the co-positive Lyapunov functioft) = v "e(t). We have

0(t) = v Ae(t) < —ev'e(t)
which givesv(t) < v'ege. By this, we readily obtain
T, — T(t) 2 Copmee ", t >0,
whereC, = (max;<;<, v;)/(min;<;<, ;). This completes the proof. O

Remark 2.2. SinceC,z.e “ is a decreasing function, it follows from Lemma 2.3 that
the state trajectory(t) of (2.4) is increasingly approaching the equilibrium pointas
t — oo.

We now establish the following result.

Theorem 2.2. Assume that syste(@.1)is positive and stable. The value bf, -induced
norm of systen(2.1) can be represented as

2l (2o L) = [[ D = CAT Bl (2.7)
whereC = C + f Cy(s)dsand A = A + f Aq(s)ds.
Proof. Letw = ||w||1.. 1, foraw € L, (R?). By Lemmas 2.2 and 2.3, we have

|2(t, w)| 2 2(t [w]) = 2(t), £ =0,
wherez(t) is determined by (2.4). Sincgt) =< x., it follows from (2.4) that

Z(t) 2 Cxy + Dyyw
= (Dw —CA™'B,) 1,]|w||....

Therefore,

2(t,w)lloo < |[(Dw = CA™ Bu)1y||  llwllL..
= [[Dw = CAT'Bu|  wllr.
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by which we readily obtain
13l 200) < [ Do = CA™ Bu| -

On the other hand, fot = —A~'B,1, and withw(t) = w = 1, lety(t) = & — z(1).
It follows from (2.1), (2.4) and Lemma 2.3 that

B (t) = a(t) < 4, (2.8)

wherey(t) is solution of the system

0

z(t) = Az(t) + B Aa(s)x(t + s)ds (2.9)

x(s) =2z, s € [-7,0].

Since the matrixd + [° A,(s)ds is Hurwitz, by Theorem 2.1lim; ., ¥(t) = 0 and
hencelim, .., z(t) = z. It follows from (2.1) and (2.8) that

0

2(t) = (Dw — CA™'B,) 1, — <C’1/)(t) + Ca(s)(t + s)ds) :

—K

Thus,lim; ., 2(t) = (D, — CA™'B,)1,. By this, we can conclude that

sup_|l2]lz., 2 |Dw —CA™'B, || . -

lwllLoo=

The proof is completed. O

The result of Theorem 2.2 is an important and efficient toat ttan be utilized to
address the stabilization problem involvihg,-gain performance. However, the formula
(2.7) cannot be directly used for the controller design b Thus, the following
performance result is necessary.

Theorem 2.3. For a giveny > 0, positive systenf?2.1) is stable and had...-induced
performance of leve} if and only if there exists a vectgre R”, n > 0, that satisfies the
following LP-based conditions:

0
(A +/ Ad(s)ds) n+ B,1, <0, (2.10a)

-7

0
(C’ + / C’d(s)ds) n+ Dy1, — 1, < 0. (2.10b)

—K
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Proof. (NecessityLetv > 0 be a vector such the(tA + fi Ad(s)ds)v < 0. For a given
e > 0, we definep = ev — A™'B,1, = 0, then

An+ Byl, = eAv < 0. (2.11)
In addition to this, by Theorem 2.2¥|(....z..) < v if and only if
X1 = (Dw — CAlew) 1, <71,.
Therefore,xy, =71, — x1 > 0 and we have
Cn+Dyl,—71,=€eCv—x2 <0

for sufficiently smalle which, together (2.11), yields (2.10).

(Sufficiencylt can be deduced from condition (2.10a) that the matris Hurwitz
and, by Theorem 2.1, system (2.1) is GES. et An + B,1,, < 0, we haven =
A1 (7 — B,1,,) and it follows from (2.10b) that

71, = Cn+ Dyly = CA™') + x1. (2.12)
Foranyw € L. (R?) with [|w]|,.. = 1, sinceA~'7} > 0, from (2.12), we obtaitjz|| . <
X1l < 7. The proofis completed. 0

2.3. State-feedbackl . -induced performance stabilization

In this section, we address tlie -induced stabilization problem for system (2.1).
A state-feedback controller in the form

u(t) = Kx(t) (2.13)

will be designed to make the closed-loop system positivahlstand has prescribed
L..-induced performance. By integrating controller (2.13) tlosed-loop system of
(2.1) is presented as

(t) = Acx(t) + / Aq(s)z(t + s)ds + Byw(t),
— (2.14)
z(t) = Cox(t) + / Ca(s)x(t + s)ds + Dyw(t),

whereA. = A+ BK andC. = C' + DK. For a giverny > 0, by Proposition 2.1 and
Theorem 2.3, system (2.14) is positive, stable and/hasnduced performance of level
~ if and only if

A.= A+ BK is Metzler, (2.15a)
C.=C+ DK =0, (2.15b)

~ |A Byl |n B 0
dn>0: [C DJ [Lj + {D] Kn<v[1p] (2.15¢)

10
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For a vectorp € R, n = 0, we haven = diag(n;)1,, wheren = (n;) and
diag(n;) is the diagonal matrix formulated by stacking componeptsWe define the
transformation

Kdiag(n;) = Z € R™" (2.16)
then condition (2.15c) is reduced to the following one
A Byl |n B 0
o nll) oo l) @17

On the other hand, it follows from (2.16) that = Zdiag(n; ). Thus, condition (2.15b)
holds if and only if

Cdiag(n;) + DZ = 0. (2.18)
We now tackle with condition (2.15a). For this, we decompose
b
B=|:|,bpeR" Z= [21 Z9 ... zn}, z; € R™.
bT

n

Then,BZ = (b; z;). In addition, for any matrixd/ = (m,;) € R™" andM, = (m};) =
Mdiag(n;), we have

n
no_
mij — E mik(skjnja
k=1

whered,; is the Kronecker delta notation. Thusfj > 0 if and only if m;; > 0. In other
words, the matrix)M/ is Metzler if and only if Mdiag(n;) is Metzler for any positive
vectorn. By this, and assume that = (a;;), condition (2.15a) is satisfied if and only if

aijn; + bz > 0, Vi # j. (2.19)
In summary, we have the following result.

Theorem 2.4. For a giveny > 0, there exists a state-feedback controller in the form
of (2.13)that makes the closed-loop systéil4) positive, stable and has,.-induced
performance of leve} if and only if there exist a vectof = (n;) € R", n = 0, and a
matrix Z = [z; . .. z,), 2; € R™, that satisfy the following LP-based conditions

0
(A + / Ad(s)ds) n+BZ1,+ B,1, <0, (2.20a)

. -7
(C + / C’d(s)ds) n+DZ1, + D,1, <71, (2.20b)
Cdiag(n;) + DZ = 0, (2.20c)

11



Mai Thi Hong
whereA = (a;;) andBT = [b; by ... b,]. The controller gain is obtained as
K = Zdiag(n; ). (2.21)

2.4. Anillustrative example

Consider system (2.1) with = 2, p = ¢ = 1 and the system matrices

-15 1] 1 0.1
A_[0.5 -1’ B_M’ Bw_[m]’

Then, we have

0 0
A:A—i-/ Ay(s)ds = [(;; (1]5}, CzC—i—/ Cy(s)ds=[1 0.5].
s 5 —=0. 72

It is clear that the matrix4 is not Hurwitz. Thus, with the given system parameters,
the open-loop system is unstable. We now apply Theorem 3/40Ring the LP-based
conditions (2.20a)-(2.20d) via the npr og toolbox in Matlab, itis found that the derived
conditions in (2.20) are feasible for> ~, = 0.41. With v = 0.41, an optimal feasible
solution is obtained as

~ [o.2078
~ [0.2046

] , Z=[-0.1032 0.0008].

According to (2.21), the controller gaiid is given by
K = [-0.4967 0.0038] .

By Theorem 2.4, the closed-loop system (2.14) is posititehle and had...-induced
performance of levey..

3. Conclusions

In this paper, the problem of..-gain control has been studied for positive
linear systems with distributed delays in the state and wuyctors. Based on
a novel comparison technique involving the monotonicitytesttrajectories of scaled
systems with peak values of exogenous disturbances, megessl sufficient LP-based
conditions subject tolL..-induced performance have been derived. The obtained
analysis result has been then utilized to address the dpsijplem of a state-feedback
controller that makes the closed-loop system positivélstand has prescribed, -gain

12
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performance level. A numerical example has been providdtistrate the effectiveness
of the proposed method.

Acknowledgement. This research is funded by National University of Civil Emgering
(NUCE) under Grant 24-2021/KHXD-TD.

REFERENCES

[1] L. Farina and S. Rinaldi, 200@ositive linear systems: Theory and applications
John Wiley & Sons.

[2] W.M.Haddad, V.S. Chellaboina and H. Hui, 20MNbnnegative and compartmental
dynamical system#®rinceton University Press.

[3] C. Briat, 2018. Stability and performance analysis akhr positive systems with
delays using input—output methodist. J. Control 91, pp. 1669-1692.

[4] M.E. Valcher and |. Zorzan, 2018. State—feedback stzdiibn of multi-input
compartmental systemSyst. Control Letf.119, pp. 81-91.

[5] L.V.Hienand H. Trinh, 2018. Observers design for 2-Dipgs time-delay Roesser
systemslEEE Trans. Circuit Syst.-1l: Expr Brief65, pp. 476-480.

[6] V.T. Huynh, C.M. Nguyen and H. Trinh, 2019. Static outgeedback control of
positive linear systems with output time delald. J. Syst. Sci50, pp. 2815-2823.

[7] C. Briat, 2021. Hybrid L., x /. -performance analysis and control of linear
time-varying impulsive and switched positive syster®nlinear Anal. Hybrid
Syst, 39, 100980.

[8] Z.Q. Sunet al, 2017. Disturbance rejection MPC for tracking of wheeleobite
robot.IEEE/ASME Trans Mech22, pp. 2576-2587.

[9] J. Shen and J. Lam, 2014..-gain analysis for positive systems with distributed
delays. Automatica50, pp. 175-179.

[10] C. Briat, 2013. Robust stability and stabilization ofoertain linear positive systems
via integral linear constraintd.;-gain andL..-gain characterizatiorint. J. Robust
Nonlinear Control 23, pp. 1932-1954.

[11] X. Chenetal., 2019. Static output-feedback controller synthesis &mifve systems
under/,, performancelnt. J. Control Autom. Systl7, pp. 2871-2880.

[12] C.H. Wang, L.H. Wu and J. Shen, 2020. Stability &nd performance analysis of
positive systems with bounded time-varying delays on tinsdes .Nonlinear Anal.
Hybrid Syst, 36, 100868.

[13] P.H.A. Ngoc, 2013. Stability of positive differentisystems with delayEEE Trans.
Autom. Contrgl58, pp. 203-209.

13



