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ON L∞-INDUCED STABILIZATION OF POSITIVE LINEAR SYSTEMS
WITH DISTRIBUTED DELAYS

Mai Thi Hong
Faculty of Mathematics, National University of Civil Engineering

Abstract. The problem ofL∞-gain control is studied for positive linear systems
with distributed time delays. By a novel comparison technique involving the
monotonicity of the so-called upper scaled systems with peak values of exogenous
disturbances, a characterization ofL∞-induced norm is first reformulated. Then,
necessary and sufficient LP-based conditions subject toL∞-induced performance
with prescribed level are derived and utilized to address the design problem of
state-feedback controllers that make the closed-loop systems positive, stable and
have prescribedL∞-gain performance level. A numerical example is given to
illustrate the effectiveness of the proposed method.
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1. Introduction

Positive systems are widely used to model various applied phenomena whose
relevant states are always nonnegative [1, 2]. Applications of positive systems can be
found in a variety of disciplines from biology, ecology, andepidemiology, chemistry,
pharmacokinetics to communication systems, and many othermodels that are subject
to conservation laws. In addition, positive systems possess many elegant properties that
have yet no counterpart in general dynamical systems [3]. Due to practical and theoretical
applications, the systems and control theory of linear positive systems has been one of the
most active research topics in the past decade (see, e.g., [4-7]).

On the other hand, exogenous disturbances are often encountered in modeling
of practical systems due to the inaccuracy of data processing, linear approximations
or measurement errors. In practice, external disturbancessuch as wind shear on
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aircraft wings or continuous road excitation on vehicle suspension systems are generally
persistent and amplitude-bounded rather than specifications on the total energy of
disturbances are required [8]. In such models, the worst-case amplification from input
disturbance to the regulated output represents a more reasonable performance index,
which gives rise to the so-calledL∞-induced control problem. Roughly speaking,
L∞-induced optimal design is to minimize the maximum peak-to-peak gain of a
closed-loop system that is driven by bounded amplitude disturbances. Thus, theL∞-gain
minimization is a useful and effective approach to the problem of examining the responses
of dynamic systems corrupted by persistently bounded disturbances [9]. In some
existing works,L∞-gain analysis results have been established by using certain types
of co-positive Lyapunov functions [10], fundamental solution representation [11] or
by utilizing the positivity characteristic [9, 12], which give a characterization of the
exact value ofL∞-gain of the systems. However, the obtained characterization results
are typically not tractable for the design problem of desired controllers that make the
closed-loop systems positive, stable and have prescribedL∞-gain performance.

In this paper, we consider the stabilization problem underL∞-gain scheme for
positive linear systems with distributed time delays. Novelty and main contribution
of this paper are two points. First, characterization ofL∞-gain is reformulated using
novel comparison techniques involving steady states of upper scaled systems with peak
values of exogenous disturbances. Second, tractable LP-based conditions to the design
problem of a state-feedback controller that minimizes the worst-case amplification from
disturbances to regulated outputs subject toL∞-gain is presented.

2. Content

2.1. Preliminaries

Notation. R
n andR

m×n denote then-dimensional vector space and the set of
m × n-matrices, respectively.1n ∈ R

n denotes the vector with all entries equal one.
‖x‖∞ = max1≤i≤n |xi| and‖A‖∞ = max1≤i≤m

∑n

j=1 |aij| denote the max-norm of a
vectorx = (xi) ∈ R

n and a matrixA = (aij) ∈ R
m×n, respectively.L∞-norm of

a functionw : R+ → R
n is defined as‖w‖L∞

= esssupt≥0‖w(t)‖∞ andL∞(Rn) =

{w : R+ → R
n : ‖w‖L∞

<∞}. For two vectorsx = (xi) ∈ R
n andy = (yi) ∈ R

n, we
write x � y if xi ≤ yi andx ≺ y if xi < yi for i = 1, 2, . . . , n; Rn

+ = {x ∈ R
n : x � 0}

and|x| = (|xi|) ∈ R
n
+. A matrixA = (aij) ∈ R

m×n is nonnegative,A � 0, if aij ≥ 0 for
all i, j.

Consider the following continuous-time system with distributed delays.
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

























ẋ(t) = Ax(t) +

∫ 0

−τ

Ad(s)x(t+ s)ds+Bu(t) +Bww(t),

z(t) = Cx(t) +

∫ 0

−κ

Cd(s)x(t + s)ds+Du(t) +Dww(t),

x(s) = φ(s), s ∈ [−d∗, 0],

(2.1)

wherex(t) ∈ R
n, u(t) ∈ R

m is the control input,z(t) ∈ R
p andw(t) ∈ R

q are the state,
regulated output and exogenous disturbance input vectors,respectively.τ , κ are positive
scalars representing distributed time-delays in the stateand output.A, B, Bw, C, D, Dw

are known real matrices,Ad(s), Cd(s) are continuous matrix-valued functions defined
on [−τ, 0] and [−κ, 0], respectively.d∗ = max{τ, κ} andφ ∈ C , C([−d∗, 0],R

n) is
the initial condition. The∞-norm ofφ ∈ C is defined as‖φ‖C = sup−d∗≤s≤0 ‖φ(s)‖∞.
To explicitly mention the initial condition, we will denoteasx(t, φ) the corresponding
solution of (1) with initial functionφ.

Definition 2.1 (see [1]). System(2.1) is said to be (internally) positive if for any initial
stateφ(s) � 0 (s ∈ [−d∗, 0]) and inputsu(t) � 0, w(t) � 0, t ≥ 0, the state trajectory
x(t) � 0 and outputz(t) � 0 for all t ≥ 0.

Similar to [9], we have the following positivity characterization.

Proposition 2.1. System(2.1) is positive if and only if the matrixA is Metzler,B, Bw,
C, D, Dw are nonnegative, andAd(s), Cd(s) are nonnegative fors ∈ [−τ, 0] and s ∈

[−κ, 0], respectively.

The following result is similar to that of [13, Theorem III.1]. First, we recall here
that, for a matrixA ∈ R

n×n, let σ(A) be the spectrum (the set of eigenvalues) ofA, we
denote byµ(A) = max{Reλ : λ ∈ σ(A)} the spectral abscissa or the growth constant of
A. It is well-known that the inequality

∥

∥eAt
∥

∥ ≤ eµ(A)t

for all t ≥ 0. Thus, for anyx ∈ R
n, eAtx → 0 as t → ∞ if and only if µ(A) < 0.

Equivalently,Reλj < 0 for anyλj ∈ σ(A) and the spectrumσ(A) of A lies within the
left-hand side of complex plane.

Theorem 2.1. Suppose that system(2.1) is positive. The following statements are
equivalent.

(i) The unforced system of(2.1) withw = 0 is globally exponentially stable (GES).

(ii) The Metzler matrixA = A +
∫ 0

−τ
Ad(s)ds is Hurwitz, that is, the spectral abscissa

µ(A) < 0.
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(iii) There exists a vectorη ∈ R
n, η ≻ 0, such that

(

A+

∫ 0

−τ

Ad(s)ds
)

η ≺ 0. (2.2)

(iv) The matrixA+
∫ 0

−τ
Ad(s)ds is invertible and

(

A +

∫ 0

−τ

Ad(s)ds
)−1

� 0.

Proof. The proof is similar to that of Theorem III.1 in [13] and thus it is omitted here.

Sinceµ(A) = µ(A⊤), an equivalent condition of (2.2) is that there exists a positive
vector ν such thatν⊤A ≺ 0. Thus, it can be shown under equivalent conditions of
Theorem 2.1 that for anyw ∈ L∞(Rq), we havex ∈ L∞(Rn) and hencez ∈ L∞(Rp).
It is natural to assume that system (2.1) is stable (GES) to ensure theL∞-gain exists.
More specifically, we define the input-output operator

Σ : L∞(Rq) −→ L∞(Rp), w 7→ z

andL∞-gain of system (2.1) under zero initial condition is definedas

‖Σ‖(L∞,L∞) = sup
‖w‖L∞

6=0

‖z‖L∞

‖w‖L∞

. (2.3)

Definition 2.2. For a givenγ > 0, system(2.1) is said to haveL∞-induced performance
of levelγ if ‖Σ‖(L∞,L∞) < γ.

The main objective here is to address the stabilization problem underL∞-induced
performance index via state-feedback scheme for positive control systems described
by (2.1).

2.2. L
∞

-gain analysis

In this section, we consider positive system (2.1) with zeroinitial condition. Let
x(t, w), z(t, w) denote the state and output trajectories of system (2.1) with respect to
input w. Similar to [9, Lemma 5], it can be verified that for anyw1, w2 ∈ L∞(Rq), if
w1(t) � w2(t), t ≥ 0, thenx(t, w1) � x(t, w2) andz(t, w1) � z(t, w2) for all t ≥ 0.
Therefore,

−x(t, |w|) � x(t, w) � x(t, |w|), t ≥ 0,

which yields|x(t, w)| � x(t, |w|) for all t ≥ 0. Moreover, for aw ∈ L(Rq), we have

|w(t)| � w , ‖w‖L∞
1q.
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To further facilitate the analysis of system (2.1), we consider the following auxiliary
system











˙̄x(t) = Ax̄(t) +Bww,

z̄(t) = Cx̄(t) +Dww,

x̄(0) = 0.

(2.4)

whereA = A+
∫ 0

−τ
Ad(s)ds, C = C +

∫ 0

−κ
Cd(s)ds andw = ‖w‖L∞

1q.

Lemma 2.1 (see, [9, Lemma 7]). The state trajectorȳx(t) of (2.4) is monotonically
nondecreasing, that is,̄x(t1) � x̄(t2) for any0 ≤ t1 < t2.

Based on Lemma 2.1, the following lemma is obtained.

Lemma 2.2. For any state and output trajectoriesx(t), x̄(t), z(t), z̄(t) of systems(2.1)
and(2.4), it holds thatx(t) � x̄(t) andz(t) � z̄(t) for all t ≥ 0.

Proof. For state trajectoriesx(t), x̄(t) of (2.1) and (2.4), we definee(t) = x̄(t)− x(t) as
the error vector ofx(t) andx̄(t). It follows from (2.1) and (2.4) that

ė(t) = Ae(t) +

∫ 0

−τ

Ad(s)e(t+ s)ds+Bw(w − w(t))

+

∫ 0

−τ

Ad(s) [x̄(t)− x̄(t+ s)] ds. (2.5)

By Lemma 2.1,̄x(t) − x̄(t + s) � 0 for s ∈ [−τ, 0]. It follows thate(t) � 0 regarding
∫ 0

−τ
Ad(s) [x̄(t)− x̄(t+ s)] ds + Bw(w − w(t)) as nonnegative input of positive system

(2.5). The comparisonz(t) � z̄(t) can be shown by similar lines used in the derivation of
x(t) � x̄(t).

Remark 2.1. According to Lemma 2.2, the state and output trajectories ofsystem (2.1)
will be compared with those of the auxiliary system (2.4). Since the state trajectories of
the system (2.4) are monotonically nondecreasing, they areexpected to monotonically
converge to the equilibrium point of the system (2.4). More specifically, by the
assumption that system (2.1) is stable, the matrixA+

∫ 0

−τ
Ad(s)ds is Metzler and Hurwitz.

Therefore, system (2.4) has a unique equilibrium point, which is given as

x∗ = −A−1Bww.

The following important result shows that the state trajectory x(t) of (2.4) monotonically
converges tox∗.

Lemma 2.3. Assume that the Metzler matrixA = A +
∫ 0

−τ
Ad(s)ds is Hurwitz. Then,

there exist scalarsβ > 0 and ǫ > 0 such that the state trajectorȳx(t) of system(2.4)
satisfies

max(0, 1− βe−ǫt)x∗ � x̄(t) � x∗, t ≥ 0.

In particular, it holds thatlimt→∞ x̄(t) = −A−1Bww.
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Proof. Clearly,e(t) = x∗ − x̄(t) is a solution of the system

ė(t) = Ae(t), e(0) = x∗ � 0. (2.6)

Since system (2.6) is positive, it follows thate(t) � 0 and hencēx(t) � x∗ for t ≥ 0.

On the other hand, the Metzler matrixA is Hurwitz, there exists a positive vector
ν ∈ R

n such thatν⊤A ≺ 0. Thus, for a sufficiently smallǫ > 0, we haveν⊤A � −ǫν⊤.
Consider the co-positive Lyapunov functionv(t) = ν⊤e(t). We have

v̇(t) = ν⊤Ae(t) ≤ −ǫν⊤e(t)

which givesv(t) ≤ ν⊤e0e
−ǫt. By this, we readily obtain

x∗ − x̄(t) � Cνx∗e
−ǫt, t ≥ 0,

whereCν = (max1≤i≤n νi)/(min1≤i≤nνi). This completes the proof.

Remark 2.2. SinceCνx∗e
−ǫt is a decreasing function, it follows from Lemma 2.3 that

the state trajectorȳx(t) of (2.4) is increasingly approaching the equilibrium pointx∗ as
t→ ∞.

We now establish the following result.

Theorem 2.2. Assume that system(2.1) is positive and stable. The value ofL∞-induced
norm of system(2.1)can be represented as

‖Σ‖(L∞,L∞) =
∥

∥Dw − CA−1Bw

∥

∥

∞
, (2.7)

whereC = C +
∫ 0

−κ
Cd(s)ds andA = A +

∫ 0

−τ
Ad(s)ds.

Proof. Letw = ‖w‖L∞
1q for aw ∈ L∞(Rq). By Lemmas 2.2 and 2.3, we have

|z(t, w)| � z(t, |w|) � z̄(t), t ≥ 0,

wherez̄(t) is determined by (2.4). Sincēx(t) � x∗, it follows from (2.4) that

z̄(t) � Cx∗ +Dww

=
(

Dw − CA−1Bw

)

1q‖w‖L∞
.

Therefore,

‖z(t, w)‖∞ ≤
∥

∥(Dw − CA−1Bw)1q

∥

∥

∞
‖w‖L∞

=
∥

∥Dw − CA−1Bw

∥

∥

∞
‖w‖L∞
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by which we readily obtain

‖Σ‖(L∞,L∞) ≤
∥

∥Dw − CA−1Bw

∥

∥

∞
.

On the other hand, for̂x = −A−1Bw1q and withw(t) = w = 1q, let ψ(t) = x̂ − x(t).
It follows from (2.1), (2.4) and Lemma 2.3 that

x̂− ψ(t) = x(t) � x̂, (2.8)

whereψ(t) is solution of the system











ẋ(t) = Ax(t) +

∫ 0

−τ

Ad(s)x(t + s)ds

x(s) = x̂, s ∈ [−τ, 0].

(2.9)

Since the matrixA +
∫ 0

−τ
Ad(s)ds is Hurwitz, by Theorem 2.1,limt→∞ ψ(t) = 0 and

hencelimt→∞ x(t) = x̂. It follows from (2.1) and (2.8) that

z(t) =
(

Dw − CA−1Bw

)

1q −

(

Cψ(t) +

∫ 0

−κ

Cd(s)ψ(t+ s)ds

)

.

Thus,limt→∞ z(t) = (Dw − CA−1Bw)1q. By this, we can conclude that

sup
‖w‖L∞

=1

‖z‖L∞
≥

∥

∥Dw − CA−1Bw

∥

∥

∞
.

The proof is completed.

The result of Theorem 2.2 is an important and efficient tool that can be utilized to
address the stabilization problem involvingL∞-gain performance. However, the formula
(2.7) cannot be directly used for the controller design problem. Thus, the following
performance result is necessary.

Theorem 2.3. For a givenγ > 0, positive system(2.1) is stable and hasL∞-induced
performance of levelγ if and only if there exists a vectorη ∈ R

n, η ≻ 0, that satisfies the
following LP-based conditions:

(

A +

∫ 0

−τ

Ad(s)ds

)

η +Bw1q ≺ 0, (2.10a)

(

C +

∫ 0

−κ

Cd(s)ds

)

η +Dw1q − γ1p ≺ 0. (2.10b)
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Proof. (Necessity) Let v ≻ 0 be a vector such that
(

A+
∫ 0

−τ
Ad(s)ds

)

v ≺ 0. For a given

ǫ > 0, we defineη = ǫv −A−1Bw1q ≻ 0, then

Aη +Bw1q = ǫAv ≺ 0. (2.11)

In addition to this, by Theorem 2.2,‖Σ‖(L∞,L∞) < γ if and only if

χ1 =
(

Dw − CA−1Bw

)

1q ≺ γ1p.

Therefore,χ2 = γ1p − χ1 ≻ 0 and we have

Cη +Dw1q − γ1p = ǫCv − χ2 ≺ 0

for sufficiently smallǫ which, together (2.11), yields (2.10).

(Sufficiency) It can be deduced from condition (2.10a) that the matrixA is Hurwitz
and, by Theorem 2.1, system (2.1) is GES. Letη̃ = Aη + Bw1nw

≺ 0, we haveη =

A−1 (η̃ − Bw1nw
) and it follows from (2.10b) that

γ1p ≻ Cη +Dw1q = CA−1η̃ + χ1. (2.12)

For anyw ∈ L∞(Rq) with ‖w‖L∞
= 1, sinceA−1η̃ ≻ 0, from (2.12), we obtain‖z‖L∞

≤

‖χ1‖∞ < γ. The proof is completed.

2.3. State-feedbackL
∞

-induced performance stabilization

In this section, we address theL∞-induced stabilization problem for system (2.1).
A state-feedback controller in the form

u(t) = Kx(t) (2.13)

will be designed to make the closed-loop system positive, stable and has prescribed
L∞-induced performance. By integrating controller (2.13), the closed-loop system of
(2.1) is presented as















ẋ(t) = Acx(t) +

∫ 0

−τ

Ad(s)x(t+ s)ds+Bww(t),

z(t) = Ccx(t) +

∫ 0

−κ

Cd(s)x(t + s)ds+Dww(t),

(2.14)

whereAc = A + BK andCc = C + DK. For a givenγ > 0, by Proposition 2.1 and
Theorem 2.3, system (2.14) is positive, stable and hasL∞-induced performance of level
γ if and only if

Ac = A+BK is Metzler, (2.15a)

Cc = C +DK � 0, (2.15b)

∃η ≻ 0 :

[

A Bw

C Dw

] [

η

1q

]

+

[

B

D

]

Kη ≺ γ

[

0

1p

]

. (2.15c)
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For a vectorη ∈ R
n, η ≻ 0, we haveη = diag(ηi)1n, whereη = (ηi) and

diag(ηi) is the diagonal matrix formulated by stacking componentsηi. We define the
transformation

Kdiag(ηi) = Z ∈ R
m×n (2.16)

then condition (2.15c) is reduced to the following one
[

A Bw

C Dw

] [

η

1q

]

+

[

B

D

]

Z1n ≺ γ

[

0

1p

]

. (2.17)

On the other hand, it follows from (2.16) thatK = Zdiag(η−1
i ). Thus, condition (2.15b)

holds if and only if
Cdiag(ηi) +DZ � 0. (2.18)

We now tackle with condition (2.15a). For this, we decompose

B =







b⊤1
...
b⊤n






, bi ∈ R

m, Z =
[

z1 z2 . . . zn
]

, zj ∈ R
m.

Then,BZ = (b⊤i zj). In addition, for any matrixM = (mij) ∈ R
n×n andMη = (mη

ij) =

Mdiag(ηi), we have

mη
ij =

n
∑

k=1

mikδkjηj,

whereδkj is the Kronecker delta notation. Thus,mη
ij ≥ 0 if and only ifmij ≥ 0. In other

words, the matrixM is Metzler if and only ifMdiag(ηi) is Metzler for any positive
vectorη. By this, and assume thatA = (aij), condition (2.15a) is satisfied if and only if

aijηj + b⊤i zj ≥ 0, ∀i 6= j. (2.19)

In summary, we have the following result.

Theorem 2.4. For a givenγ > 0, there exists a state-feedback controller in the form
of (2.13) that makes the closed-loop system(2.14)positive, stable and hasL∞-induced
performance of levelγ if and only if there exist a vectorη = (ηi) ∈ R

n, η ≻ 0, and a
matrixZ = [z1 . . . zn], zj ∈ R

m, that satisfy the following LP-based conditions
(

A +

∫ 0

−τ

Ad(s)ds

)

η +BZ1n +Bw1q ≺ 0, (2.20a)

(

C +

∫ 0

−κ

Cd(s)ds

)

η +DZ1n +Dw1q ≺ γ1p, (2.20b)

Cdiag(ηi) +DZ � 0, (2.20c)

aijηj + b⊤i zj ≥ 0, i 6= j, (2.20d)
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whereA = (aij) andB⊤ =
[

b1 b2 . . . bn
]

. The controller gain is obtained as

K = Zdiag(η−1
i ). (2.21)

2.4. An illustrative example

Consider system (2.1) withn = 2, p = q = 1 and the system matrices

A =

[

−1.5 1

0.5 −1

]

, B =

[

1

1

]

, Bw =

[

0.1

0.1

]

,

C =
[

1 0
]

, D = 1, Dw = 0.2,

Ad(s) =
1

4

[

−s 0

0 −s

]

, Cd(s) =
1

4

[

0 −s
]

, s ∈ [−2, 0].

Then, we have

A = A +

∫ 0

−2

Ad(s)ds =

[

−1 1

0.5 −0.5

]

, C = C +

∫ 0

−2

Cd(s)ds =
[

1 0.5
]

.

It is clear that the matrixA is not Hurwitz. Thus, with the given system parameters,
the open-loop system is unstable. We now apply Theorem 2.4. By solving the LP-based
conditions (2.20a)-(2.20d) via thelinprog toolbox in Matlab, it is found that the derived
conditions in (2.20) are feasible forγ ≥ γ∗ = 0.41. With γ = 0.41, an optimal feasible
solution is obtained as

η =

[

0.2078

0.2046

]

, Z =
[

−0.1032 0.0008
]

.

According to (2.21), the controller gainK is given by

K =
[

−0.4967 0.0038
]

.

By Theorem 2.4, the closed-loop system (2.14) is positive, stable and hasL∞-induced
performance of levelγ∗.

3. Conclusions

In this paper, the problem ofL∞-gain control has been studied for positive
linear systems with distributed delays in the state and output vectors. Based on
a novel comparison technique involving the monotonicity state trajectories of scaled
systems with peak values of exogenous disturbances, necessary and sufficient LP-based
conditions subject toL∞-induced performance have been derived. The obtained
analysis result has been then utilized to address the designproblem of a state-feedback
controller that makes the closed-loop system positive, stable and has prescribedL∞-gain
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performance level. A numerical example has been provided toillustrate the effectiveness
of the proposed method.
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