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REGULARITY AND CONVERGENCE TO EQUILIBRIUM FOR A CLASS
OF NONLOCAL EVOLUTION EQUATIONS

Pham Thanh Tuan
Faculty of Mathematics, Hanoi Pedagogical University 2

Abstract. We study a class of semilinear nonlocal partial differdreguations,
which model different problems related to processes in nagewith memory.
Our aim is to derive sufficient conditions ensuring the glamdvability, regularity,
and convergence to equilibrium of solutions.
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1. Introduction

Let @ c R? be a bounded domain with smooth boundé&ty. Consider the
following problem

Ou — Au — O(m x Au) = f(u) inQ,t >0, (1.1)
Bu =0 onoS, t >0, (1.2)
u(-,0)=¢ inQ, (1.3)

whered, = 2, m € L}, (R") is a nonnegative function, and the notation ' stands for
the Laplace convolution with respect to the timee.,

(m*v)(t) = /0 m(t — s)v(s)ds.

In our model A denotes the Laplaciarf,is a nonlinear function angle L*(9) is given,
B is a boundary operator in one of the following forms

Bu =wuorBu=v-Vu+nu, n>0,

wherev is the outward normal vector ).
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Regularity and convergence to equilibrium for a class oflacal evolution equations

We first mention some special cases of (1.1)mlfs a nonnegative constant then
(1.1) is the classical reaction-diffusion equation witmieear sources. In the case
mot_a

_ > (), our equation reads
T(l—a) mo q

m(t) = mOQl—a(t) -

Ou — (1 +modf)Au = f(u),

which is the generalized Rayleigh-Stokes equation (sege, [&]), hered;* denotes the
fractional derivative of ordery in the sense of Riemann-Liouville. This equation is
employed to describe the behavior of non-Newtonian fluidsddition, ifm is a regular
function, e.gm € C'(R™"), then (1.1) is a diffusion equation with memory, namely

Oru— (1 4+m(0))Au — /0 m/(t — s)Au(s)ds = f(u),

which has been a topic of an extensive study, see e.g., [2-8].

In this paper, we consider the problem (1.1)-(1.3) in a ganrm, where the
kernel functionm is possibly singular. To our knowledge, no attempt has beatdento
investigate the solvability and regularity of this problesnd we aim at closing this gap.
In addition, based on the regularity result, we will prove tdonvergence to equilibrium
of solutions. Precisely, under the assumption thas Lipschitzian, the unique strong
solution of the elliptic problem

—Aw = f(w)inQ, w=00n9,

becomes an attractor for solution of (1.1)-(1.3) with agbi initial data.

Our work is organized as follows: In the next section, we lieitee theory of
completely positive functions and the theory of resolvepeérators, which leads to a
representation of solutions of (1.1)-(1.3). Section 3 igoded to the global solvability
and regularity results. Under appropriate conditions isgabonmn and f, we show that
the mild solution of (1.1)-(1.3) is classical. In Sectionadresult on the convergence of
solutions of our problem to equilibrium is presented.

2. Preliminaries
Consider the scalar equation
W (t) + Aw(t) + A(m* w)'(t) = 0fort > 0, w(0) =1, (2.1)
where)\ is a positive numbern € L;,.(R*) satisfies the following assumption

(M) The functionn € L} .(RT) is nonnegative such that the functioft) := 1 + m(¢)

loc

is completely positive.
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Recall that the complete positivity afmeans that the solution of the following integral
equations

s(t) + H/t a(t —7)s(r)dr =1, t >0, (2.2)

r(t) + H/t a(t —7)r(r)dr = a(t), t >0, (2.3)

are nonnegative for ea¢h> 0. It should be noted that, if the function is completely
monotone, i.e(—1)km® (t) > 0 for everyk € N, thenl + m is completely monotone
as well. As mentioned in [9, 10], this property ensures themete positivity of the
functiona.
We mention another case whenis smooth and positive off), co) such thatog m
/

, . _ : . m , . .
Is a convex function. This implies that is also convex, ther— andm' are increasing.
m

!/
It follows that the function% with v > 0, is also increasing. That mearsg(1 +
ym

ym) is convex and the functioh + ym is completely positive for any > 0, according
to [10]. It should be noted that i is completely monotone, théag m is convex.
We recall some properties efandr in the following proposition.

Proposition 2.1. Assume that the assumptidv)is satisfied. Let = s(-,0) andr =
(-, 0) be the solutions 0f2.2) and (2.3), respectively. Then

e The functions(-, §) is nonnegative and nonincreasing. Moreover,
s(t, 6) [1 + Q/Ot&(T)dT} <1, Vt>0. (2.4)
e The functionr(-, #) is nonnegative and the following relation holds
s(t,0) =1— Q/tr(T, g)dr, t > 0. (2.5)
0

e For eacht > 0, the functiory — s(t, ) is nonincreasing.

Proof. The justification for (2.4) and (2.5) can be found in [9]. Tlastlstatement was
proved in [11, Lemma 5.1]. O

We make use of Proposition 2.1 to get some useful propertigslation to (2.1).
Proposition 2.2. Letw = w(+, \) be the solution 0f2.1). Then

1. wis nonincreasing ofR* and
1
L+ f3(1+m(r))dr

Consequentl)glim w(t, \) = 0.
— 00

0<w(t,\)< , Vt>0, A > 0.
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Regularity and convergence to equilibrium for a class oflacal evolution equations
2. The following estimate holds

¢
/ w(T, N)dr < A1 —w(t, ), ¥t >0, > 0.
0

3. For eacht > 0, the functiom\ — w(¢, A) is nonincreasing.

Proof. Taking integration of (2.1), we get
t
w(t) + )\/ (14 m(t — 7))w(r)dr = 1. (2.6)
0

This implies thatv is the solution of (2.2) witld = \. So the statement (1) and (3) follows
from Proposition 2.1. Sincg(-, A) is nonincreasing, it is deduced from (2.6) that

W(t) + Aw(t, \) /t(1 +mt—7))dr < 1,

which implies the statement (2). O
Consider the inhomogeneous equation
2(t) + Az(t) + AM(m* 2)'(t) = g(t), t > 0,2(0) = 2, (2.7)

whereX > 0 andg € C(R"). The following proposition gives a representation for the
solution of (2.7).

Proposition 2.3. The function

2(t) = w(t, \)zo + /0 w(t —7,\)g(r)dr, (2.8)

Is the unique solution of2.7).

Proof. DenoteL[y] = y' + Ay + A(my)’, y € C*(R"). Then by formulation/[w] = 0.
In addition, we have
L]z] = L{w]z + L[w * g] = L{w * g].

We will show thatL|w * g] = ¢g. Indeed, one sees that
(wWxg) +dwxg+Amrw*xg) =g+ xg+Iwxg+Amxw) xg
=g+ W+ I+ Am*w)]*xg
=g+ Lwlxg=y.

Conversely, ifz is a solution of (2.7), we get

A

q2(q) + A2(q) + Agi(q)2(q) = 20 + G(q),
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wherez is the Laplace transform af Then
2(q) = (g + X+ Agin(q)) " 20 + (¢ + A+ Agrn(q)) "1 g(q)
= @(q)20 +w(q)d(q)-

Taking the inverse Laplace transform yields- wz, + w * g, which is (2.8). The proof is
complete. O

Let {¢, }°, be an orthonormal basis @f () consisting of eigenfunctions ef A

n=

subject to the homogeneous boundary condition, i.e.,
—Ap, = A\, inQ, By, =00n0S),

where one can assume that< \; < Xy < .., A\, = oo asn — oo. We find a
representation for solution of the linear problem

Ou — Au— O(m* Au) = F inQ,t € (0,71, (2.9)
Bu=0 ondQ, t € [0,T], (2.10)
u(-,0) =€ inQ, (2.11)

whereF € C([0,T]; L*(Q2)).
Assume that

u('at) = Zun(t)@m F("t) = ZFn(t)Qpn'

Substituting into (2.9), we get

ul (8) + A (t) + Ap(mo* wy,)' () = Fu(¢),
un(0) = &, == (&, ¢n)-

Employing Proposition 2.3, we obtain

un(t) = w(t, \n)&n + /0 w(t — 7, ) En(7)dT.

This implies
u(,t) = St)E+ /Ot S(t—T1)F(-,7)dT, (2.12)
whereS(t) is the resolvent operatadefined by
S8 = 32wt M) € € IO, @13
n=1

Obviously,S(t) is a bounded linear operator @i (2) for all ¢ > 0. Moreover, we have
the following result.
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Lemma 2.1. Let {S(t) }+>0 be the resolvent operator defined (&/13) v € L*(Q2) and
T > 0. Then

1. S(-)v e C([0,T]; L2(Q)) and || S(#)]| < w(t, \y) forall ¢ > 0.
2. AS()v e C((0,T]; L*(©2)) and||AS(#)|| < (t+ 1« m(t))~ forall ¢t > 0.
3. If mis nonincreasing, thef(-)v € C*((0,T7]; L*(Q2)) and it holds that

1S (t)|| <t ! forall t > 0.

Proof. (1) It follows from (2.13) that

[e.e]

IS@EN* = wit, )€

n=1

w(t, A1) Z w(t, \)?(€]1%,

thanks to Proposition 2.2(3), which implies the uniformwengence of series (2.13) on
[0, 7] and the estimat@S (¢)|| < w(t, A\;) forall ¢ > 0.
(2) We observe that

(=A)S(HE =D Aw(t, \)énton, (2.14)

)\n
T 14+ A (t+ 1xm(t))

Aw(t, N\y) < < (t+1*m(t))"!, vVt >0,

where we utilized Proposition 2.2(1). Thus series (2.14nisormly convergent offe, 7’|
for anye € (0,7). Moreover, we have

IAS()E]l < (¢ + 1w m(t)) €]l vt >0, € € L*(Q).

(3) Letr(-, A) be the solution of (2.3) with = A anda(t) = 1 + m(¢). Then, due to the
assumption that: is nonincreasing, we have

r(t,3) + A1+ m(t) /t r(r, A)dr < 1+ m(?).

In addition,

t+1xm(t)
T 14+ At +1xm(t))’

/Otr(T, Ndr = X1 —w(t,\) >

19



Pham Thanh Tuan

thanks to Proposition 2.2(1). Hence

At+1xm(t) | 1+ m(t)
r(t,A) < [L4+m(t)] {1 TG Lem@)] T IFaG emy 2
Considering the series
D Wt A)apn, t> 0,6 = (£,0n), £ € L7(Q), (2.16)

we see that

W' (t, M) = A (t, An)
An(1+m(t)) < 1+ m(t) < L+m(t) 1

Tl N(EHTEm() Tt 1xm(t) T t+tm(t)
According to (2.15) and the fact thakm(t) > tm(t) for ¢ > 0. This ensures the uniform
convergence of series (2.16) gn7’] and it holds that

S = 3wt A)upns 1SN < 47 IE]l, Ve > 0,

n=1

The proof is complete. O

In order to get more regularity ¢f(-), we willimpose some additional assumptions
on the functionmn. In regard to these assumptions, we first recall severabneand facts
givenin [12].

It should be noted that$(¢) defined by (2.13), is the resolvent operator of the
problem

Ou— Au— Oy(m+ Au) =0 inQ, ¢t >0, (2.17)
Bu =0 onof,t >0, (2.18)

thatis,u(-,t) = S(t)¢. This problem is equivalent to the Volterra equation

u(-,t) — /0 a(t — s)Au(-, s)ds = &, (2.20)

with a(t) = 1 + m(t) andA = A. This can be seen by taking integration of (2.17) with
respect ta.

Definition 2.1. Let [ € L} (R") be a function of subexponential growth, i.e.

loc

/ 1(t)]e~"dt < oo for everye > 0.
0
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Regularity and convergence to equilibrium for a class oflacal evolution equations

e Suppose thal(\) # 0 for all Re\ > 0. For# > 0, [ is said to bef-sectorial if
largl(\)| < @ for all Re\ > 0.

e Forgivenk € N, [ is calledk-regular if there exists a constant> 0 such that

AP (N < ¢]i(A)] forall Rex > 0,1 <n < k.

Definition 2.2. Equation(2.20)is called parabolic if the following conditions hold:
1. a(X) #0,1/a(X) € p(A) for all Rex > 0.
2. Thereis a constan/ > 1 such that/(\) = A~'(1 — a(\)A) ! satisfies

M
UM < o for all ReX\ > 0.

Denote by>(w, #) the open sector with vertex € R and angled in the complex
plane, i.e.
Y(w,0) ={1 e C: |arg(A — w)| < 0}.

We have the following sufficient condition for equation (@) 20 be parabolic.

Proposition 2.4. [12, Proposition 3.1] Assume that € L} (R™) is of subexponential

loc

growth andf-sectorial for somé& < 7. If A is closed linear densely defined, such that
p(A) D ¥(0,0), and

IO = A < ‘% for all \ € 3(0, ), (2.21)

then equatiorf2.20)is parabolic.

Remark 2.1. Let us mention thatd = A generates an analytic semigroup i ((2),
which is given by

ety = Ze’t’\"(v,cpn)cpn, t>0,ve L*).

n=1

Then(2.21)holds forM = 1 and for anyd < = (see, e.g. [13]).

The following result on the regularity of resolvent operdtw equation (2.20) will
be used in the sequel.

Proposition 2.5. [12, Theorem 3.1] Assume th#2.20) is parabolic and the kernel
function a is k-regular for somek > 1. Then there is a resolvent family(-) <
C*=D((0,00); L(L?*(Q2))) for (2.20) and a constand/ > 1 such that

[t"S™(t)|| < M, forallt>0,n<k—1,
here£(L*(€2)) denotes the space of bounded linear operator£.8(2).
21
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In the next section, we need the following result.

Corollary 2.1. Let (M) hold. Assume that(t) = 1 + m(t) is 3-regular andd-sectorial
for some&) < 7. Then the resolvent family(-) is continuously differentiable up to second
order and there existd8/ > 1 such that

1S/ ()| < Mt ||S"(#)]| < Mt2, Vt > 0.

Proof. The conclusion follows from Proposition 2.4, Remark 2.1 Braposition 2.5. [

3. Solvability and regularity
Dealing with the problem (1.1)-(1.3), we assume that

(F) f:L*(Q) — L*(2) is alocally Lipschitz function, i.e.
1 (v1) = f(u2)|| < k(r)[lvr = o2l Vi, vz € B,

where B, is the closed ball in.2(Q2) with radiusr and center at origins(-) is a
nonnegative function.

Based on representation (2.12), we give the following d&fimiof mild solution for
(1.1)-(1.3).

Definition 3.1. A functionu € C([0,T]; L*(Q)) is said to be a mild solution to the
problem(1.1)(1.3)on [0, T'] iff

u(-,1) = SH)E + /Ot S(t — 7)f(u(-,7))dr for anyt € [0, T].

We now prove a global solvability result for (1.1)-(1.3).

Theorem 3.1. Let (M) hold. Assume thatH) is satisfied withf(0) = 0 and
limsup k(r) = ¢ € [0, ;). Then there exist§ > 0 such that the problen(l.1)(1.3)

r—0
has a unique mild solution 00, 7'], provided||{|| < J.

Proof. Let® : C([0, T]; L*(Q)) — C([0,T]; L*(2)) be the mapping defined by

O(u)(t) = S(t)§+/0 S(t — ) f(u(-,7))dr for t € [0,T].

We first look for p > 0 such that®(B,) C B,, whereB, is the closed ball in
C([0,T]; L*(2)) centered at origin with radius. Takinge € (0,\; — ¢), we can find
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p > 0 such thats(r) < ¢+ € for anyr < p. Consideringd : B, — C([0,T7]; L*(Q2)),
we have

l0 ) (-, )]l < 1Sl + / 1S(t = 7)1 (ul- 7)) dr
< w(t M)lE] + / wlt — 7, M )w(p) (-, 7)lldr

< wit, A€l +(€+6)p/0 Wt — 7\ )dr

< w(t, A)EN+ (0 +€)pAT (1 — w(t, Ar))
= w(t, \)El = €+ e)pA ']+ (E+e)pAt, Yu e By, t € (0,77,

here we used Lemma 2.1(1) and Proposition 2.2(2). Chodifig< § := (pA[*, we
see that
[2(u)(-, )| < (€ +€e)pAr" < p, Yu € B, t € [0,T],

which implies®(B,) € B,. We now prove tha® is a contraction mapping oB,. For
ui, us € B,, one gets

@) (- 1) — Bun) (-, 1)]| < / Wit — 7, M) Flws (7)) — flua(, 7))l
< k(p) / Wit — 7.2 s (- 7) — sl 7) 7

< (0+ 6)||Jur — ual|oo /tw(t — 7, \)dT
< (L+ AT (1 —w(t, ;1))||ul — Uslloo, VE € 10,77,
which ensures that
[@(u1) — D(uz) oo < (€ + €)A; [|ur — uz]|cc-

Hence® is a contraction mapping and it admits a fixed pointBin which is a mild
solution to (1.1)-(1.3). In order to testify the uniquenes® observe that, if,,v €
C([0,T]; L*(2)) are solution of (1.1)-(1.3), then one can assumethate By for some
R >0.So

t
Ju(-, ) —=v(-, )] < /0 w(t =7, A)k(R)|lu(-, 7) — (-, 7)|ldr
t
< /@(R)/ lu(e,7) = v(-, 7 ldr, Ve € [0,T),
0
according to the fact that(¢, \;) < 1 for all ¢ > 0. By using the Gronwall inequality,

we get|ju(-,t) — v(-,t)|| = 0 for all t € [0,7], which impliesu = v. The proof is
complete. O
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Remark 3.1. 1. If we assume thaf satisfies F) without any additional condition,
then the problenfl.1)(1.3) has a unique local mild solution, i.e., there exists
(0,T] such that the problem is uniquely solvable[on¢*]. This can be proved by
standard arguments using the Banach fixed point theorem.

2. If the nonlinearity functiory is global Lipschitzian, i.e.x(r) = ¢ is a constant,
the assumptiorf(0) = 0 and? € [0, \;) can be relaxed. In this case, one can
prove thatd is a contraction mapping o6'([0, 7); L*(2)) endowed with the norm
|ullg = sup e P||u(-, )|, where3 > 0 is chosen to be large enough.

t€[0,T]
The following theorem shows the Holder regularity of théuson to (1.1)-(1.3).

Theorem 3.2.Let (M) and (F) hold. Assume, in addition, that the functionobeys one
of the following conditions:

1. m is nonincreasing;
2. a =1+ mis 2-regular andd-sectorial for somé < .

Then the mild solution of1.1)(1.3)is Holder continuous ort0, 7).

Proof. In both cases, the resolvent family-) is differentiable or{0, co) and there exists
M > 1 such that
15 (#)|| < Mt!, forallt >0,

thanks to Lemma 2.1 and Proposition 2.5.
Let u be the mild solution of (1.1)-(1.3) oft, 7). Then fort € (0,7] andh €
(0,7 —t), we have

[u(-,t+h) —u(- )| < [I[S(E+h) = S@)E]
t+h
+ [ IS+ h=mpat, )l
+ [ NS+ h =) = (= D stat.lar
= Eq(t) + Ex(t) + Es(t).
Using the mean value formula, we have
[S(t+h) —SH)E=h /O S'(t + Ch)édC.

Then

Ei(t) = ||[S(t + h) — ()]5!\<MhH€H/ L+ Ch

h (R’
_ M| In (1+;) < Me|8 (;) . forany$ € (0,1),
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8
where we used the inequality(1 + r) < % forallr > 0,8 € (0,1).

Dealing with E5(t), we putR = ||u||,, and make use of the inequality

1f (u(, O < w(R)[lul-, O + [ FO)[| < k(R)R + || f(0)]]-
So

t+h
Eu(t) < / 1 (u(- 7)) ldr < [S(R)R + | F(O)]]h
< K(R)R + || F(O) T4 1P
RegardingFs(t), we note that

[St+h—7)=St—7)]f(u(-,7))=h | S'(t—74Ch)f(u(-,7))dC.

0

Then by the same argument used to estiniaie), we obtain

h B
115Gt +h—7) = S(t = P f(ul- )| < Ms(R)R + [ £(0) )5~ (r) |

Therefore,
bood
Bu(t) < MK(R)R+ |F O3 [ 75
= M[s(R)R+[|f(O)167(1 — B)~'T""°.
Summing up, we get

Ei(t) + Ey(t) + Fs(t) < (C1t™P + Co)h?,

where
Cr = M|igllB~,
Co = [s(R)R+ | FO)TP(L + MB~ (1~ B)7).
The proof is complete. O

In the next theorem, we prove the differentiability of thédsolution to (1.1)-(1.3).

Theorem 3.3.Let (M) and ) hold. Assume, in addition, that= 1 + m is 3-regular
and #-sectorial for som&d < w. Then the mild solution o{1.1)(1.3) belongs to
CH((0,T]; L2(2).
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Proof. By assumption, the resolvent famiBy-) is twice continuously differentiable on
(0, 00) and we get the estimate

IS" @) < Mt (18" ()| < M2, vt >0,

with M > 1, thanks to Corollary 2.1.
Let » be the mild solution of (1.1)-(1.3) anll = ||u||.. Then

§+/ S(t—r1) ,T))dT
= ul( t) + UQ t)
Clearly,u; = S(-)¢ € C'((0,T]; L*(Q)). Regardingu,, we get
o) = S(ul-) + [ (= m)p(ut )

where the last term is well-defined by the reasoning as falde first observe that

Aﬁaﬂwwmmmzﬁsw—ﬂmmﬂwwwwmm

+/0 S'"(t —7)f(u(-,t))dr

:/”g@-ﬂuqu»—fwmwnm

0

+ = S@O1f (ul-,1)).

In addition, we have
[ 16 = DGt = st 00 <M [ 6= ) Rt ) = i
< Mx(R) /0 (=) (Cor P + Co)(t — 7)Pdr
= Mk(R) /Ot(t — 1) O TP 4 Cy)dr < oo,
here we utilized the Holder continuity afproved in Theorem 3.2. This implies that

/0 15°(t — 7) f(u(-, 7)) |ldT < o0,

and 0,u, makes sense. It remains to show thai, is continuous with respect to €
(0, T). Equivalently, we show that the map

:/0 St — 1) f(u(-,7))dr
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is continuous orf0, 7). Fort € (0,7') andh € (0,7 — t), we have

F(t+h) — / St +h— P)fulr)) — Flult+ h))dr
+ t+hS'(t+h—T)f(u(-,t—i-h))d7'

+ [I8 k=)= S = D) = )i
+ /0 [S"(t+h—7)—=S"(t —7)]f(u(-t))dr
= F1(t) + Fy5(t) + F3(t) + Fu(t).
It is easily seen that

Fg(t)

[S(h) —1I]f(u(-,t+h)) = 0ash — 0,
F4(t) t

[S(t+ h) — S(h) — S(t) + I)f (u(-, ) — 0 ash — 0.

EstimatingF;(¢), we see that
I @) S/ 157t + h = T)[f (ul-, 7)) = flul t+ h))]lldr
Yo
< M/t (t+h— ) (B |[ul- £+ h) — (-, 7| dr
< Mk(R) /t+h(t+h—7)_1(017_5 +Cy)(t+h—71)°dr

t+h
< Mi(R)(Cit™F + Cy) / (t+h—7)"tdr
t
— 0ash — 0.

RegardingFs(t), using the mean value formula again, we get

IR < [ dr [ BIS (e +ch = n{Fut.m) = Flat. )]G
<ot [ar [ cn =m0 - el

< Mk(R) /0 [(t—7)"" = (t+h—7)(Cm" + Coy)(t — 7)°dr

B [ Quirlar
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One observes th&}, (1) — 0 ash — 0 for eachr € (0,t¢). Moreover,

Qn(T) <[(t—7)"+(t+h—1)YC 7P+ Co)(t —1)°
<2t =) O+ o)t — 1)

Obviously,Q(7) := 2(t — 7)?~}(C,7=# + () belongs tal! (0, t). Hence

t
/ Qn(7)dT — 0ash — 0,
0

thanks to the Lebesgue dominated convergence theoreni;($o— 0 ash — 0. The
proof is complete. O

The next theorem represents the regularity of the solutih Kespect to spatial
variables.

Theorem 3.4.Let (M) and ) hold. Assume, in addition, thay (1 = m) € L'(0,T).
Then the mild solution of1.1)(1.3) satisfiesAu € C((0, T]; L*(2)).

Proof. Writing u = uy + us as in the proof of Theorem 3.3, we see that; = AS(-)¢ €
C((0,T); L*(2)) due to Lemme 2.1. Considerin§u,, we have

Aus(-,t) = — Z )\n/o w(t — 7, \p) En(7)dTon, (3.1)

where F,,(t) = (f(u(-,t)),¢,). It suffices to show that series (3.1) is uniformly
convergent or0, 7). Let

In(t) =\, /tw(t — 7, A\p) Fp(T)dT,
0
then using Proposition 2.2(1), we gefw(t, A,) < (1 *m(¢))~! and
(D) \® [t dr CEL(7)|2dr
50 < (/0 m) S/0 1*m(t—7‘)/0 Lxm(t —71)

thanks to the Holder inequality. Singéu) € C([0,T7]; L*(2)), the serieS "~ | F,(t)e,
is uniformly convergent offf), 7']. Then for every > 0, there existsV, € N such that

N+p

Y IRt <€ Vt€[0,T],N > N, peN.
n=N
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So we deduce that

N+p
N+p ¢ 2 |Fu(T)|?dr
n=N

RZN|5H<t>Pg/Ot1*m‘Z_T)/O = Ml

< (/OTl*diﬂz(T))Qe, vVt € [0, 7.

Thus series (3.1) converges uniformlyﬁﬁ)AS(t — 1) f(u(-, 7))dr, which completes the
proof. O

Theorem 3.5. Under the assumptions of Theorem 3.3 and 3.4, the mild soluwf
(1.1)(1.3) satisfiesm = Au € C'((0,T]; L*(Q?)), and consequently, it is a classical
solution.

Proof. It is easily seen that

—m *x Au(-,t) = Z An M * U () n,
n=1
where

un(t) = w(t, \n)&n + /tw(t — 7, \)FEu(T)dT,t € [0,T],
En = (679071)7 Fn(t) = (f(u(>t))’ Qpn)'

Our goal is to prove that the seriés A, (m *u,)’(t)y, is uniformly convergent of, T'|

n=1
for anye € (0,7"). One observes that

An(moxu,) (1) = N(m* w) (0)E, + An(m xw = E,) ()
= Ap(m*w) ()&, + Aa(m xw)" * F,(t)
= —(W'(t, \n) + Mw(t, A\n))En — (W' + Aw) * Fu(8),

due to (2.1). Now we have

e Under the assumption of Theorem 392;)¢ € C'((0,T]; L*(Q2)). Then the series

i W'(t, \n)€npn converges uniformly t&’(¢)€ on [e, T7).

n=1

e By Lemma 2.1(2)AS(-)¢ € C((0,T]; L*(2)). So the serieS_ A\ w(t, A\y)énen

00
=1

n

converges uniformly te-AS(¢)¢ on e, T'.
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e In the proof of Theorem 3.4, we have proved that the seyies,, (w * F,,)(t)¢n
n=1
converges uniformly te- fot AS(t —7)f(u(-,7))dr on|0,T].

e According to the proof of Theorem 3.3, the function

F(t) = /0 S'(t—71)f(u(-,7))dr

is well-defined and continuous @A, 7']. It follows that

o0

F(t) = 3 * B) (0.

n=1

and then the last series is uniform convergenteof].

In summary, we have
—0y(m * Au)(-,t) = =S ()¢ — /0 S'(t —7)f(u(-,7))dr

+ AS(t)E+ /0 AS(t—7)f(u(-,7))dr.

Noting that

Owu(-,t) =S ()€ + f(u / S'(t—7) ,T))dT,
as pointed out in the proof of Theorem 3.4, we get
—0i(m x Au)(-, t) = —0wu(-,t) + f(u(-, 1)) + Au(-, 1),
which means that obeys (1.1) in the classical sense. The proof is complete. [
We end this section by testing our assumptions in a specitamistance. Let

m(t) = gi-a(l) + pgi-p(t), 0 <a < B <1, u>0

</|v %zx) (2, v(z)),

whereF andg satisfy the following conditions:
(N1) The functionF' € C'(R") is such thatF(r)| < a + br? for somea, b > 0,p > 0.

(N2) The functiong : 2 x R — R is a Carathéodory function such thgt, 0) = 0 and
the following Lipschitz condition holds

|g(‘r7q1> - g($7q2)| S h(‘r)‘ql - QQ‘; VQMqQ € R?

with h € L>°(£2) being a nonnegative function.
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We will testify that f is locally Lipschitzian. Lety, vy € L*(Q), ||vi|, [|v2|| < r, then
1f (v1) = flu2)* = /Q[F(||v1||2)g(x,v1(:v)) — F([lval*)g(x, va(x))]*d
<2AF(Ju*)? [ o)Plos (@) = vale) P

Q

+2|F (o) - F(HvzHQ)\Q/Q\g(w,vz(x))Ide.
Let ||h]|o = eSssup.q|h(z)|. Then
1f (1) = f(2)I* < 2(a+ br*)?[[A] 5 vy — vol|*

1 2
+ 2[R ol P (fJor* = [loa]*)? </0 F'(Jluull* + ¢(llval* = HUlHZ))dt)

< 2(a+ br[|A[I% vy — val* + 8l RIS v — vall*( sup [F'(p)])?

0<p<2r?
< K(r)?|loy — valf?,

where
k(r) = V2(a +br?)||h]loc + 2v2||h]lor® sup [F'(p)].
0<p<2r?
Observing that ) s
[ uts—

Lemll) = so = T te—p)
we getl/(1xm) € L'(0,T). Leta(t) = 1+ m(t),¢ > 0. Thena is completely positive,
sincem is completely monotone. In addition, we see that

a(z) =27V F(z) = 27 22 o

So for Rez > 0, |arga(z)| < 7, i.e. a is §-sectorial. One can check thais k-regular
for anyk € N by using the fact that, for any, po, ps > 0, there existg > 0 such that

1zt po2®t 4 pap T < ez 227 4 Y, VY Rez >0,

which implies|z*a*)(2)| < cla(z)| for all Rez > 0.

4. Convergence to equilibrium

This section is devoted to considering the long-time bejragf the solution to
(2.1)-(1.3). We first have the following theorem.

Theorem 4.1.Let (M) and (F) hold andu be a global mild solution of1.1)(1.3). Assume
that 90 € C? and B = [. If there exists the Iimigim u(-,t) = w* in L?(Q), and

lir% zm(z) = 0in C, thenu* is a strong solution of the elliptic problem
zZ—>

—Aw = f(w) inQ,
w =0 onos.
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Proof. By formulation, we have

t

u(-,t) = S(t)¢ —i—/o St —r1)f(u(-,7))dr

— S(t)e+ / S(t — ) (u(r7)) — Fd)]dr + / S(t —7)f(u)dr
= S()E + G1(t) + Go(t).

Obviously,||S(t)¢]| < w(t, N)||€]] — 0 ast — oo. We will show thattlim G1(t) =0. By

o0

assumption, foe > 0, there existd} > 0 such thatl| f(u(-,¢)) — f(u*)|| < e for every
t > T,. So fort > T}, we have

1G]] S/O IS = P Fu ) — F)] e

+ [ ST =) (ul, 7)) = f)]lldr

T

7 ¢
S/ w(t—T,)\l)H(R)Hu(-,T)—u*||d7+€/ w(t — 7, \)dr
0

T

Ty t
< 21«%(1%)/ ot -, Al)d7+6/ (7, M )dr
0 0
t
< 2Rk(R) / w(T, A\)dT + eAt,
t—T1

thanks to Proposition 2.2(2), whefe = ||u*|| + ||u/|«. Sincew € L'(R*), there exists
T, > 0 such that

t
/ w(r,\)dr <e¢, forallt >T,.
T>
Owing to the last estimate, we obtain

IGL(O)|| < 2RE(R) + X\ 'e, forallt > Ty + Ty,

which ensuress, (t) — 0 ast — co. Therefore,

u* = lim u(-,t) = tlggo Go(t) = /000 S(7)f(u*)dr = S(0)f(u").

t—o00

On the other hand, concerning the Laplace transforsi(of, it follows from (2.20) that

S(:) = =M - a(x)A) " = 2 () (s - A)

a(z)
(4 zm(z))<1+%m(z) _ A)l.
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Hence,u* = [ S(7)f(u*)dr = S(0)f(u*) = (—A)~'f(u*). Sinced € C?, the
regularity result in [14, Sect. 6.3.2] guarantees thfat H?*(2) and therefore- Au* =
f(u*) a.e. inQ2. The proof is complete. O

In the rest of this section, we use a stronger assumptionsegonm.

(M*) The functionm € L], (R*) is smooth and positive dff), o) such that

loc
1) logm is a convex function off), o) andtlim m(t) = 0;
— 00
2) a =1+ ms 3-regular and-sectorial for somé < T;
3) 1/(1xm) € L] (RT).

loc

A typical example is
p
m(t) =3 pigioa,(t),
=1

wherea; € (0,1), u; > 0, for which equation (1.1) reads
p
Ou — Au — Z,u,»@taiAu = f(u).
=1
The last equation is in the form of Rayleigh-Stokes [1] withultihterm fractional
derivative.

As mentioned in the second section, owing kb*}, the functiona = 1 + ym is
completely positive for any > 0. Letw(-, A, y) be the solution of the equation

t
wlt) + )\/ (1+ym(t — Pw(r)dr = 1,£ > 0; Ay > 0.
0

Thenw(-, A, y) possesses all properties stated in Proposition 2.2 withn place ofm.
In addition, the solution of the equation
2(t) + Az(t) + My(m* 2)'(t) = g(t), t > 0, (4.1)
IS given by
2(t) = w(t, A, 7)z(0) + /tw(t —7,\,7)g(7T)dr. 4.2)
The following Gronwall type inequality wiIIObe used in thegsee!.
Proposition 4.1. Let z be a nonnegative function obeying the inequality

2(t) < w(t, A\, v)20 +/0 w(t — 71, \,7)[az(T) + b(7)]dr, t > 0, (4.3)

wherea € [0, ),y > 0,b € L}, (R"). Then

loc

2(t) < w(t, A —a, )\)\Va)z() + /tw<t —T,\—a, )\A,ya)b(T)dT.
_ . _
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Proof. Lety(t) be the right hand side of (4.3). Theft) < y(t) andy solves the equation
y'(t)+ Ay + My(m*y) =az(t) +b(t), t > 0,y(0) = 2.

It follows that

YO+ (A —a)y + (A —a)-

T (mxy) = alz(t) = y(0)] + b(E), ¢ > 0,y(0) = .

and theny admits the representation

y(t) = w(t, A—a, )\)iy&)zo

+ /Otw<t —71,\—a, )\)iy() <a[z(7’) —y(m)] + b(T))dT

< w(t, A —a, )\)\fya)zo + /tw<t —7,\—a, )\)\fya)b(T)dT,
_ ) _

thanks to the positivity ofo and the fact that(7) — y(7) < 0 for 7 > 0. So we get the
conclusion as desired. O

The following theorem represents the main result of thisisec

Theorem 4.2. Let (M*) hold and f satisfy the global Lipschitz condition with constant
ko € [0, A1). Assume tha) € C? andB = I. Then the solution ofl1.1)(1.3)converges
to the unique strong solution of the elliptic problem

—Aw = f(w) inQ, (4.4)
w =0 ond. (4.5)

Proof. We first show that iff is Lipschitzian with constant, < X, the problem
(4.4)-(4.5) has a unique strong solution. Indeed, due tpTh&orem 7.4.1], the problem
(4.4)-(4.5) has a unique weak solutiah € H; () if the Lipschitz constank, satisfies
Ko < Cy %, whereCj is the constant of embeddinfd; () ¢ L?(Q2). By the smoothness
of 012, we have

IVul?

00_2: —)\1.

werd(@\{0} [Jul]?

Observe thaff (u*) € L*(2). Then using the regularity result in [14, Sect. 6.3.2] again
we obtainu* € H?*(2) and hence* is a unique strong solution of (4.4)-(4.5).

By Theorem 3.5, the solution of (1.1)-(1.3) is classicalefltombining (1.1) with
(4.4), one gets

Ou — A(u — u*) — dy(m * Au) = f(u(-,t)) — f(u*),
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or equivalently,
O —u*) — Alu —u") = Oy(m Alu—u)) = f(u(-,1)) = F(u*) +m(t)Au”,
which leads to the representation
t
ulst) =t = SOE— ) + [ St =Dl (ul,r) = f) +m(r) s

0

So we have the following estimate
[u(,t) = ]| < w(t, Ay, D[E = u
t
* / w(t — 7, A, Dlkollu(-, 7) = w™[| + m(7)[| Aw™[|]d7.
0

Applying Proposition 4.1 yields

A
) =l S w(t M = w0, 5=l - |

t
A
+/0 w(t =77 = ko, . :HO>m(7)|]Au*HdT
= Uy (t) + Us(t).

It is evident thatl/; (t) = w(t, A1 — Ko, ﬁ)l!f —u*|| — 0 ast — oo. Due to the

assumption thatn(t) — 0 ast — oo, for anye > 0, there exists’ > 0 such that
m(t) < eforallt > T. So for anyt > 2T, we have

¢ T Al .
Us(t) = (/T+/o )W<t—7'a)\1—ff0, )\1—/€0)m(7)”Au ldr

t )\1
SEHAU*H/ w(t—T,)\l—ﬁo, >d7’
T

)\1—1'{0

N /T m(7)||Au*||dT
o 14+ (M — ko) Ot*T[l + 2 m(s)|ds’

A1—Ko

thanks to Proposition 2.2(1). Then utilizing PropositioB(2), we get

t
Ua(t) < el [ wo(t = mds = o, 2 )ar
0

)\1 — Ko
A * _ —1 T
T G ), / m(r)dr
Jo 1+ 22=m(s)]ds Jo

A1—Ko
Ausll(\y — -1 T
EATCET R
t—T+ 2 m(s)ds Jo

Al—ko JO
Aull(\ — -1 T
| Au*][(A fo) / m(r)dr
t—=T+ 52— [0 m(r)dr Jo

A1—ko

< el|Aut(|(\ — ko) T+

< e||Aut||(A — ko)t +

S QEHAU*”()\l — K)Q)il,
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for ¢ large enough such that

fOT m(7)dr _
T €.
t=T + >\1>\—1/10 fO m(T)dT
We have proved thdt,(¢) — 0 ast — oo, which impliestlim |lu(-,t) —u*|| = 0. The
— 00
proof is complete. O
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