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REGULARITY AND CONVERGENCE TO EQUILIBRIUM FOR A CLASS
OF NONLOCAL EVOLUTION EQUATIONS

Pham Thanh Tuan
Faculty of Mathematics, Hanoi Pedagogical University 2

Abstract. We study a class of semilinear nonlocal partial differential equations,
which model different problems related to processes in materials with memory.
Our aim is to derive sufficient conditions ensuring the global solvability, regularity,
and convergence to equilibrium of solutions.
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1. Introduction
Let Ω ⊂ Rd be a bounded domain with smooth boundary∂Ω. Consider the

following problem

∂tu−∆u− ∂t(m ∗∆u) = f(u) in Ω, t > 0, (1.1)

Bu = 0 on∂Ω, t ≥ 0, (1.2)

u(·, 0) = ξ in Ω, (1.3)

where∂t = ∂
∂t

, m ∈ L1
loc(R

+) is a nonnegative function, and the notation ‘*’ stands for
the Laplace convolution with respect to the timet, i.e.,

(m ∗ v)(t) =
∫ t

0

m(t− s)v(s)ds.

In our model,∆ denotes the Laplacian,f is a nonlinear function andξ ∈ L2(Ω) is given,
B is a boundary operator in one of the following forms

Bu = u orBu = ν · ∇u+ ηu, η > 0,

whereν is the outward normal vector to∂Ω.
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Regularity and convergence to equilibrium for a class of nonlocal evolution equations

We first mention some special cases of (1.1). Ifm is a nonnegative constant then
(1.1) is the classical reaction-diffusion equation with nonlinear sources. In the case

m(t) = m0g1−α(t) =
m0t

−α

Γ(1− α)
, m0 > 0, our equation reads

∂tu− (1 +m0∂
α
t )∆u = f(u),

which is the generalized Rayleigh-Stokes equation (see, e.g. [1]), here∂α
t denotes the

fractional derivative of orderα in the sense of Riemann-Liouville. This equation is
employed to describe the behavior of non-Newtonian fluids. In addition, ifm is a regular
function, e.g.m ∈ C1(R+), then (1.1) is a diffusion equation with memory, namely

∂tu− (1 +m(0))∆u−
∫ t

0

m′(t− s)∆u(s)ds = f(u),

which has been a topic of an extensive study, see e.g., [2-8].
In this paper, we consider the problem (1.1)-(1.3) in a general form, where the

kernel functionm is possibly singular. To our knowledge, no attempt has been made to
investigate the solvability and regularity of this problem, and we aim at closing this gap.
In addition, based on the regularity result, we will prove the convergence to equilibrium
of solutions. Precisely, under the assumption thatf is Lipschitzian, the unique strong
solution of the elliptic problem

−∆w = f(w) in Ω, w = 0 on∂Ω,

becomes an attractor for solution of (1.1)-(1.3) with arbitrary initial data.
Our work is organized as follows: In the next section, we recall the theory of

completely positive functions and the theory of resolvent operators, which leads to a
representation of solutions of (1.1)-(1.3). Section 3 is devoted to the global solvability
and regularity results. Under appropriate conditions imposed onm andf , we show that
the mild solution of (1.1)-(1.3) is classical. In Section 4,a result on the convergence of
solutions of our problem to equilibrium is presented.

2. Preliminaries
Consider the scalar equation

ω′(t) + λω(t) + λ(m ∗ ω)′(t) = 0 for t > 0, ω(0) = 1, (2.1)

whereλ is a positive number,m ∈ L1
loc(R

+) satisfies the following assumption

(M) The functionm ∈ L1
loc(R

+) is nonnegative such that the functiona(t) := 1 +m(t)
is completely positive.
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Recall that the complete positivity ofa means that the solution of the following integral
equations

s(t) + θ

∫ t

0

a(t− τ)s(τ)dτ = 1, t ≥ 0, (2.2)

r(t) + θ

∫ t

0

a(t− τ)r(τ)dτ = a(t), t > 0, (2.3)

are nonnegative for eachθ > 0. It should be noted that, if the functionm is completely
monotone, i.e.(−1)km(k)(t) ≥ 0 for everyk ∈ N, then1 + m is completely monotone
as well. As mentioned in [9, 10], this property ensures the complete positivity of the
functiona.

We mention another case whenm is smooth and positive on(0,∞) such thatlogm

is a convex function. This implies thatm is also convex, then
m′

m
andm′ are increasing.

It follows that the function
m′

1 + γm
with γ > 0, is also increasing. That means,log(1 +

γm) is convex and the function1 + γm is completely positive for anyγ > 0, according
to [10]. It should be noted that ifm is completely monotone, thenlogm is convex.

We recall some properties ofs andr in the following proposition.

Proposition 2.1. Assume that the assumption (M) is satisfied. Lets = s(·, θ) and r =
r(·, θ) be the solutions of(2.2)and (2.3), respectively. Then

• The functions(·, θ) is nonnegative and nonincreasing. Moreover,

s(t, θ)

[

1 + θ

∫ t

0

a(τ)dτ

]

≤ 1, ∀t ≥ 0. (2.4)

• The functionr(·, θ) is nonnegative and the following relation holds

s(t, θ) = 1− θ

∫ t

0

r(τ, θ)dτ, t ≥ 0. (2.5)

• For eacht > 0, the functionθ 7→ s(t, θ) is nonincreasing.

Proof. The justification for (2.4) and (2.5) can be found in [9]. The last statement was
proved in [11, Lemma 5.1].

We make use of Proposition 2.1 to get some useful properties of solution to (2.1).

Proposition 2.2. Letω = ω(·, λ) be the solution of(2.1). Then

1. ω is nonincreasing onR+ and

0 < ω(t, λ) ≤ 1

1 + λ
∫ t

0
(1 +m(τ))dτ

, ∀t ≥ 0, λ > 0.

Consequently,lim
t→∞

ω(t, λ) = 0.
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Regularity and convergence to equilibrium for a class of nonlocal evolution equations

2. The following estimate holds
∫ t

0

ω(τ, λ)dτ ≤ λ−1(1− ω(t, λ)), ∀t ≥ 0, λ > 0.

3. For eacht > 0, the functionλ 7→ ω(t, λ) is nonincreasing.

Proof. Taking integration of (2.1), we get

ω(t) + λ

∫ t

0

(1 +m(t− τ))ω(τ)dτ = 1. (2.6)

This implies thatω is the solution of (2.2) withθ = λ. So the statement (1) and (3) follows
from Proposition 2.1. Sinceω(·, λ) is nonincreasing, it is deduced from (2.6) that

ω(t) + λω(t, λ)

∫ t

0

(1 +m(t− τ))dτ ≤ 1,

which implies the statement (2).

Consider the inhomogeneous equation

z′(t) + λz(t) + λ(m ∗ z)′(t) = g(t), t > 0, z(0) = z0, (2.7)

whereλ > 0 andg ∈ C(R+). The following proposition gives a representation for the
solution of (2.7).

Proposition 2.3. The function

z(t) = ω(t, λ)z0 +

∫ t

0

ω(t− τ, λ)g(τ)dτ, (2.8)

is the unique solution of(2.7).

Proof. DenoteL[y] = y′+λy+λ(m ∗ y)′, y ∈ C1(R+). Then by formulation,L[ω] = 0.
In addition, we have

L[z] = L[ω]z0 + L[ω ∗ g] = L[ω ∗ g].
We will show thatL[ω ∗ g] = g. Indeed, one sees that

(ω ∗ g)′ + λω ∗ g + λ(m ∗ ω ∗ g)′ = g + ω′ ∗ g + λω ∗ g + λ(m ∗ ω)′ ∗ g
= g + [ω′ + λω + λ(m ∗ ω)′] ∗ g
= g + L[ω] ∗ g = g.

Conversely, ifz is a solution of (2.7), we get

qẑ(q) + λẑ(q) + λqm̂(q)ẑ(q) = z0 + ĝ(q),
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whereẑ is the Laplace transform ofz. Then

ẑ(q) = (q + λ+ λqm̂(q))−1z0 + (q + λ+ λqm̂(q))−1ĝ(q)

= ω̂(q)z0 + ω̂(q)ĝ(q).

Taking the inverse Laplace transform yieldsz = ωz0 + ω ∗ g, which is (2.8). The proof is
complete.

Let {ϕn}∞n=1 be an orthonormal basis ofL2(Ω) consisting of eigenfunctions of−∆
subject to the homogeneous boundary condition, i.e.,

−∆ϕn = λnϕn in Ω, Bϕn = 0 on∂Ω,

where one can assume that0 < λ1 ≤ λ2 ≤ ..., λn → ∞ asn → ∞. We find a
representation for solution of the linear problem

∂tu−∆u− ∂t(m ∗∆u) = F in Ω, t ∈ (0, T ], (2.9)

Bu = 0 on∂Ω, t ∈ [0, T ], (2.10)

u(·, 0) = ξ in Ω, (2.11)

whereF ∈ C([0, T ];L2(Ω)).
Assume that

u(·, t) =
∞
∑

n=1

un(t)ϕn, F (·, t) =
∞
∑

n=1

Fn(t)ϕn.

Substituting into (2.9), we get

u′
n(t) + λnun(t) + λn(m ∗ un)

′(t) = Fn(t),

un(0) = ξn := (ξ, ϕn).

Employing Proposition 2.3, we obtain

un(t) = ω(t, λn)ξn +

∫ t

0

ω(t− τ, λn)Fn(τ)dτ.

This implies

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)F (·, τ)dτ, (2.12)

whereS(t) is the resolvent operatordefined by

S(t)ξ =
∞
∑

n=1

ω(t, λn)ξnϕn, ξ ∈ L2(Ω). (2.13)

Obviously,S(t) is a bounded linear operator onL2(Ω) for all t ≥ 0. Moreover, we have
the following result.
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Lemma 2.1. Let {S(t)}t≥0 be the resolvent operator defined by(2.13), v ∈ L2(Ω) and
T > 0. Then

1. S(·)v ∈ C([0, T ];L2(Ω)) and‖S(t)‖ ≤ ω(t, λ1) for all t ≥ 0.

2. ∆S(·)v ∈ C((0, T ];L2(Ω)) and‖∆S(t)‖ ≤ (t+ 1 ∗m(t))−1 for all t > 0.

3. If m is nonincreasing, thenS(·)v ∈ C1((0, T ];L2(Ω)) and it holds that

‖S ′(t)‖ ≤ t−1 for all t > 0.

Proof. (1) It follows from (2.13) that

‖S(t)ξ‖2 =
∞
∑

n=1

ω(t, λn)
2ξ2n

≤ ω(t, λ1)
2

∞
∑

n=1

ξ2n = ω(t, λ1)
2‖ξ‖2,

thanks to Proposition 2.2(3), which implies the uniform convergence of series (2.13) on
[0, T ] and the estimate‖S(t)‖ ≤ ω(t, λ1) for all t ≥ 0.
(2) We observe that

(−∆)S(t)ξ =
∞
∑

n=1

λnω(t, λn)ξnϕn, (2.14)

λnω(t, λn) ≤
λn

1 + λn(t + 1 ∗m(t))
≤ (t+ 1 ∗m(t))−1, ∀t > 0,

where we utilized Proposition 2.2(1). Thus series (2.14) isuniformly convergent on[ǫ, T ]
for anyǫ ∈ (0, T ). Moreover, we have

‖∆S(t)ξ‖ ≤ (t+ 1 ∗m(t))−1‖ξ‖, ∀t > 0, ξ ∈ L2(Ω).

(3) Let r(·, λ) be the solution of (2.3) withθ = λ anda(t) = 1 +m(t). Then, due to the
assumption thatm is nonincreasing, we have

r(t, λ) + λ(1 +m(t))

∫ t

0

r(τ, λ)dτ ≤ 1 +m(t).

In addition,

∫ t

0

r(τ, λ)dτ = λ−1(1− ω(t, λ)) ≥ t + 1 ∗m(t)

1 + λ(t + 1 ∗m(t))
,
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thanks to Proposition 2.2(1). Hence

r(t, λ) ≤ [1 +m(t)]

[

1− λ(t+ 1 ∗m(t))

1 + λ(t+ 1 ∗m(t))

]

=
1 +m(t)

1 + λ(t+ 1 ∗m(t))
. (2.15)

Considering the series

∞
∑

n=1

ω′(t, λn)ξnϕn, t > 0, ξn = (ξ, ϕn), ξ ∈ L2(Ω), (2.16)

we see that

|ω′(t, λn)| = λnr(t, λn)

≤ λn(1 +m(t))

1 + λn(t + 1 ∗m(t))
≤ 1 +m(t)

t+ 1 ∗m(t)
≤ 1 +m(t)

t + tm(t)
= t−1.

According to (2.15) and the fact that1∗m(t) ≥ tm(t) for t > 0. This ensures the uniform
convergence of series (2.16) on[ǫ, T ] and it holds that

S ′(t)ξ =
∞
∑

n=1

ω′(t, λn)ξnϕn, ‖S ′(t)ξ‖ ≤ t−1‖ξ‖, ∀t > 0.

The proof is complete.

In order to get more regularity ofS(·), we will impose some additional assumptions
on the functionm. In regard to these assumptions, we first recall several notions and facts
given in [12].

It should be noted that,S(t) defined by (2.13), is the resolvent operator of the
problem

∂tu−∆u− ∂t(m ∗∆u) = 0 in Ω, t > 0, (2.17)

Bu = 0 on∂Ω, t ≥ 0, (2.18)

u(·, 0) = ξ, (2.19)

that is,u(·, t) = S(t)ξ. This problem is equivalent to the Volterra equation

u(·, t)−
∫ t

0

a(t− s)Au(·, s)ds = ξ, (2.20)

with a(t) = 1 +m(t) andA = ∆. This can be seen by taking integration of (2.17) with
respect tot.

Definition 2.1. Let l ∈ L1
loc(R

+) be a function of subexponential growth, i.e.
∫ ∞

0

|l(t)|e−ǫtdt < ∞ for everyǫ > 0.
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Regularity and convergence to equilibrium for a class of nonlocal evolution equations

• Suppose that̂l(λ) 6= 0 for all Reλ > 0. For θ > 0, l is said to beθ-sectorial if
|argl̂(λ)| ≤ θ for all Reλ > 0.

• For givenk ∈ N, l is calledk-regular if there exists a constantc > 0 such that

|λnl̂(n)(λ)| ≤ c|l̂(λ)| for all Reλ > 0, 1 ≤ n ≤ k.

Definition 2.2. Equation(2.20)is called parabolic if the following conditions hold:

1. â(λ) 6= 0, 1/â(λ) ∈ ρ(A) for all Reλ ≥ 0.

2. There is a constantM ≥ 1 such thatU(λ) = λ−1(I − â(λ)A)−1 satisfies

‖U(λ)‖ ≤ M

|λ| for all Reλ > 0.

Denote byΣ(̟, θ) the open sector with vertex̟ ∈ R and angle2θ in the complex
plane, i.e.

Σ(̟, θ) = {λ ∈ C : |arg(λ−̟)| < θ}.
We have the following sufficient condition for equation (2.20) to be parabolic.

Proposition 2.4. [12, Proposition 3.1] Assume thata ∈ L1
loc(R

+) is of subexponential
growth andθ-sectorial for someθ < π. If A is closed linear densely defined, such that
ρ(A) ⊃ Σ(0, θ), and

‖(λI − A)−1‖ ≤ M

|λ| for all λ ∈ Σ(0, θ), (2.21)

then equation(2.20)is parabolic.

Remark 2.1. Let us mention that,A = ∆ generates an analytic semigroup inL2(Ω),
which is given by

etAv =

∞
∑

n=1

e−tλn(v, ϕn)ϕn, t ≥ 0, v ∈ L2(Ω).

Then(2.21)holds forM = 1 and for anyθ < π (see, e.g. [13]).

The following result on the regularity of resolvent operator for equation (2.20) will
be used in the sequel.

Proposition 2.5. [12, Theorem 3.1] Assume that(2.20) is parabolic and the kernel
function a is k-regular for somek ≥ 1. Then there is a resolvent familyS(·) ∈
C(k−1)((0,∞);L(L2(Ω))) for (2.20), and a constantM ≥ 1 such that

‖tnS(n)(t)‖ ≤ M, for all t > 0, n ≤ k − 1,

hereL(L2(Ω)) denotes the space of bounded linear operators onL2(Ω).
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In the next section, we need the following result.

Corollary 2.1. Let (M) hold. Assume thata(t) = 1 +m(t) is 3-regular andθ-sectorial
for someθ < π. Then the resolvent familyS(·) is continuously differentiable up to second
order and there existsM ≥ 1 such that

‖S ′(t)‖ ≤ Mt−1, ‖S ′′(t)‖ ≤ Mt−2, ∀t > 0.

Proof. The conclusion follows from Proposition 2.4, Remark 2.1 andProposition 2.5.

3. Solvability and regularity
Dealing with the problem (1.1)-(1.3), we assume that

(F) f : L2(Ω) → L2(Ω) is a locally Lipschitz function, i.e.

‖f(v1)− f(v2)‖ ≤ κ(r)‖v1 − v2‖, ∀v1, v2 ∈ Br,

whereBr is the closed ball inL2(Ω) with radiusr and center at origin,κ(·) is a
nonnegative function.

Based on representation (2.12), we give the following definition of mild solution for
(1.1)-(1.3).

Definition 3.1. A functionu ∈ C([0, T ];L2(Ω)) is said to be a mild solution to the
problem(1.1)-(1.3)on [0, T ] iff

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ for anyt ∈ [0, T ].

We now prove a global solvability result for (1.1)-(1.3).

Theorem 3.1. Let (M) hold. Assume that (F) is satisfied withf(0) = 0 and
lim sup

r→0
κ(r) = ℓ ∈ [0, λ1). Then there existsδ > 0 such that the problem(1.1)-(1.3)

has a unique mild solution on[0, T ], provided‖ξ‖ ≤ δ.

Proof. Let Φ : C([0, T ];L2(Ω)) → C([0, T ];L2(Ω)) be the mapping defined by

Φ(u)(t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ for t ∈ [0, T ].

We first look for ρ > 0 such thatΦ(Bρ) ⊂ Bρ, whereBρ is the closed ball in
C([0, T ];L2(Ω)) centered at origin with radiusρ. Taking ǫ ∈ (0, λ1 − ℓ), we can find
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ρ > 0 such thatκ(r) ≤ ℓ + ǫ for any r ≤ ρ. ConsideringΦ : Bρ → C([0, T ];L2(Ω)),
we have

‖Φ(u)(·, t)‖ ≤ ‖S(t)ξ‖+
∫ t

0

‖S(t− τ)‖‖f(u(·, τ))‖dτ

≤ ω(t, λ1)‖ξ‖+
∫ t

0

ω(t− τ, λ1)κ(ρ)‖u(·, τ)‖dτ

≤ ω(t, λ1)‖ξ‖+ (ℓ+ ǫ)ρ

∫ t

0

ω(t− τ, λ1)dτ

≤ ω(t, λ1)‖ξ‖+ (ℓ+ ǫ)ρλ−1
1 (1− ω(t, λ1))

= ω(t, λ1)[‖ξ‖ − (ℓ+ ǫ)ρλ−1
1 ] + (ℓ+ ǫ)ρλ−1

1 , ∀u ∈ Bρ, t ∈ [0, T ],

here we used Lemma 2.1(1) and Proposition 2.2(2). Choosing‖ξ‖ ≤ δ := ℓρλ−1
1 , we

see that
‖Φ(u)(·, t)‖ ≤ (ℓ+ ǫ)ρλ−1

1 ≤ ρ, ∀u ∈ Bρ, t ∈ [0, T ],

which impliesΦ(Bρ) ⊂ Bρ. We now prove thatΦ is a contraction mapping onBρ. For
u1, u2 ∈ Bρ, one gets

‖Φ(u1)(·, t)− Φ(u2)(·, t)‖ ≤
∫ t

0

ω(t− τ, λ1)‖f(u1(·, τ))− f(u2(·, τ))‖dτ

≤ κ(ρ)

∫ t

0

ω(t− τ, λ1)‖u1(·, τ)− u2(·, τ)‖dτ

≤ (ℓ+ ǫ)‖u1 − u2‖∞
∫ t

0

ω(t− τ, λ1)dτ

≤ (ℓ+ ǫ)λ−1
1 (1− ω(t, λ1))‖u1 − u2‖∞, ∀t ∈ [0, T ],

which ensures that

‖Φ(u1)− Φ(u2)‖∞ ≤ (ℓ+ ǫ)λ−1
1 ‖u1 − u2‖∞.

HenceΦ is a contraction mapping and it admits a fixed point inBρ, which is a mild
solution to (1.1)-(1.3). In order to testify the uniqueness, we observe that, ifu, v ∈
C([0, T ];L2(Ω)) are solution of (1.1)-(1.3), then one can assume thatu, v ∈ BR for some
R > 0. So

‖u(·, t)− v(·, t)‖ ≤
∫ t

0

ω(t− τ, λ1)κ(R)‖u(·, τ)− v(·, τ)‖dτ

≤ κ(R)

∫ t

0

‖u(·, τ)− v(·, τ)‖dτ, ∀t ∈ [0, T ],

according to the fact thatω(t, λ1) ≤ 1 for all t ≥ 0. By using the Gronwall inequality,
we get‖u(·, t) − v(·, t)‖ = 0 for all t ∈ [0, T ], which impliesu = v. The proof is
complete.
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Remark 3.1. 1. If we assume thatf satisfies (F) without any additional condition,
then the problem(1.1)-(1.3)has a unique local mild solution, i.e., there existst∗ ∈
(0, T ] such that the problem is uniquely solvable on[0, t∗]. This can be proved by
standard arguments using the Banach fixed point theorem.

2. If the nonlinearity functionf is global Lipschitzian, i.e.κ(r) = ℓ is a constant,
the assumptionf(0) = 0 and ℓ ∈ [0, λ1) can be relaxed. In this case, one can
prove thatΦ is a contraction mapping onC([0, T ];L2(Ω)) endowed with the norm
‖u‖β = sup

t∈[0,T ]

e−βt‖u(·, t)‖, whereβ > 0 is chosen to be large enough.

The following theorem shows the Hölder regularity of the solution to (1.1)-(1.3).

Theorem 3.2. Let (M) and (F) hold. Assume, in addition, that the functionm obeys one
of the following conditions:

1. m is nonincreasing;

2. a = 1 +m is 2-regular andθ-sectorial for someθ < π.

Then the mild solution of(1.1)-(1.3) is Hölder continuous on(0, T ].

Proof. In both cases, the resolvent familyS(·) is differentiable on(0,∞) and there exists
M ≥ 1 such that

‖S ′(t)‖ ≤ Mt−1, for all t > 0,

thanks to Lemma 2.1 and Proposition 2.5.
Let u be the mild solution of (1.1)-(1.3) on[0, T ]. Then fort ∈ (0, T ] andh ∈

(0, T − t), we have

‖u(·, t+ h)− u(·, t)‖ ≤ ‖[S(t+ h)− S(t)]ξ‖

+

∫ t+h

t

‖S(t+ h− τ)f(u(·, τ))‖dτ

+

∫ t

0

‖[S(t+ h− τ)− S(t− τ)]f(u(·, τ))‖dτ

= E1(t) + E2(t) + E3(t).

Using the mean value formula, we have

[S(t+ h)− S(t)]ξ = h

∫ 1

0

S ′(t + ζh)ξdζ.

Then

E1(t) = ‖[S(t+ h)− S(t)]ξ‖ ≤ Mh‖ξ‖
∫ 1

0

dζ

t+ ζh

= M‖ξ‖ ln
(

1 +
h

t

)

≤ M‖ξ‖β−1

(

h

t

)β

, for anyβ ∈ (0, 1),
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where we used the inequalityln(1 + r) ≤ rβ

β
for all r > 0, β ∈ (0, 1).

Dealing withE2(t), we putR = ‖u‖∞ and make use of the inequality

‖f(u(·, t))‖ ≤ κ(R)‖u(·, t)‖+ ‖f(0)‖ ≤ κ(R)R + ‖f(0)‖.

So

E2(t) ≤
∫ t+h

t

‖f(u(·, τ))‖dτ ≤ [κ(R)R + ‖f(0)‖]h

≤ [κ(R)R + ‖f(0)‖]T 1−βhβ.

RegardingE3(t), we note that

[S(t+ h− τ)− S(t− τ)]f(u(·, τ)) = h

∫ 1

0

S ′(t− τ + ζh)f(u(·, τ))dζ.

Then by the same argument used to estimateE1(t), we obtain

‖[S(t+ h− τ)− S(t− τ)]f(u(·, τ))‖ ≤ M [κ(R)R + ‖f(0)‖]β−1

(

h

t− τ

)β

.

Therefore,

E3(t) ≤ M [κ(R)R + ‖f(0)‖]β−1hβ

∫ t

0

dτ

(t− τ)β

= M [κ(R)R + ‖f(0)‖]β−1(1− β)−1T 1−βhβ.

Summing up, we get

E1(t) + E2(t) + E3(t) ≤ (C1t
−β + C2)h

β,

where

C1 = M‖ξ‖β−1,

C2 = [κ(R)R + ‖f(0)‖]T 1−β(1 +Mβ−1(1− β)−1).

The proof is complete.

In the next theorem, we prove the differentiability of the mild solution to (1.1)-(1.3).

Theorem 3.3. Let (M) and (F) hold. Assume, in addition, thata = 1 + m is 3-regular
and θ-sectorial for someθ < π. Then the mild solution of(1.1)-(1.3) belongs to
C1((0, T ];L2(Ω)).
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Proof. By assumption, the resolvent familyS(·) is twice continuously differentiable on
(0,∞) and we get the estimate

‖S ′(t)‖ ≤ Mt−1, ‖S ′′(t)‖ ≤ Mt−2, ∀t > 0,

with M ≥ 1, thanks to Corollary 2.1.
Let u be the mild solution of (1.1)-(1.3) andR = ‖u‖∞. Then

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ

= u1(·, t) + u2(·, t).

Clearly,u1 = S(·)ξ ∈ C1((0, T ];L2(Ω)). Regardingu2, we get

∂tu2(·, t) = f(u(·, t)) +
∫ t

0

S ′(t− τ)f(u(·, τ))dτ,

where the last term is well-defined by the reasoning as follows. We first observe that
∫ t

0

S ′(t− τ)f(u(·, τ))dτ =

∫ t

0

S ′(t− τ)[f(u(·, τ))− f(u(·, t))]dτ

+

∫ t

0

S ′(t− τ)f(u(·, t))dτ

=

∫ t

0

S ′(t− τ)[f(u(·, τ))− f(u(·, t))]dτ

+ [I − S(t)]f(u(·, t)).

In addition, we have
∫ t

0

‖S ′(t− τ)[f(u(·, τ))− f(u(·, t))]‖dτ ≤ M

∫ t

0

(t− τ)−1κ(R)‖u(·, t)− u(·, τ)‖dτ

≤ Mκ(R)

∫ t

0

(t− τ)−1(C1τ
−β + C2)(t− τ)βdτ

= Mκ(R)

∫ t

0

(t− τ)β−1(C1τ
−β + C2)dτ < ∞,

here we utilized the Hölder continuity ofu proved in Theorem 3.2. This implies that
∫ t

0

‖S ′(t− τ)f(u(·, τ))‖dτ < ∞,

and∂tu2 makes sense. It remains to show that∂tu2 is continuous with respect tot ∈
(0, T ]. Equivalently, we show that the map

F (t) =

∫ t

0

S ′(t− τ)f(u(·, τ))dτ
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is continuous on(0, T ]. For t ∈ (0, T ) andh ∈ (0, T − t), we have

F (t+ h)− F (t) =

∫ t+h

t

S ′(t + h− τ)[f(u(·, τ))− f(u(·, t+ h))]dτ

+

∫ t+h

t

S ′(t+ h− τ)f(u(·, t+ h))dτ

+

∫ t

0

[S ′(t+ h− τ)− S ′(t− τ)][f(u(·, τ))− f(u(·, t))]dτ

+

∫ t

0

[S ′(t+ h− τ)− S ′(t− τ)]f(u(·, t))dτ

= F1(t) + F2(t) + F3(t) + F4(t).

It is easily seen that

F2(t) = [S(h)− I]f(u(·, t+ h)) → 0 ash → 0,

F4(t) = [S(t+ h)− S(h)− S(t) + I]f(u(·, t)) → 0 ash → 0.

EstimatingF1(t), we see that

‖F1(t)‖ ≤
∫ t+h

t

‖S ′(t+ h− τ)[f(u(·, τ))− f(u(·, t+ h))]‖dτ

≤ M

∫ t+h

t

(t+ h− τ)−1κ(R)‖u(·, t+ h)− u(·, τ)‖dτ

≤ Mκ(R)

∫ t+h

t

(t+ h− τ)−1(C1τ
−β + C2)(t+ h− τ)βdτ

≤ Mκ(R)(C1t
−β + C2)

∫ t+h

t

(t+ h− τ)β−1dτ

→ 0 ash → 0.

RegardingF3(t), using the mean value formula again, we get

‖F3(t)‖ ≤
∫ t

0

dτ

∫ 1

0

h‖S ′′(t+ ζh− τ)[f(u(·, τ))− f(u(·, t))]‖dζ

≤ M

∫ t

0

dτ

∫ 1

0

h(t+ ζh− τ)−2κ(R)‖u(·, t)− u(·, τ)‖dζ

≤ Mκ(R)

∫ t

0

[(t− τ)−1 − (t+ h− τ)−1](C1τ
−β + C2)(t− τ)βdτ

= Mκ(R)

∫ t

0

Qh(τ)dτ.
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One observes thatQh(τ) → 0 ash → 0 for eachτ ∈ (0, t). Moreover,

Qh(τ) ≤ [(t− τ)−1 + (t+ h− τ)−1](C1τ
−β + C2)(t− τ)β

≤ 2(t− τ)−1(C1τ
−β + C2)(t− τ)β

= 2(t− τ)β−1(C1τ
−β + C2).

Obviously,Q(τ) := 2(t− τ)β−1(C1τ
−β + C2) belongs toL1(0, t). Hence

∫ t

0

Qh(τ)dτ → 0 ash → 0,

thanks to the Lebesgue dominated convergence theorem. SoF3(t) → 0 ash → 0. The
proof is complete.

The next theorem represents the regularity of the solution with respect to spatial
variables.

Theorem 3.4. Let (M) and (F) hold. Assume, in addition, that1/(1 ∗ m) ∈ L1(0, T ).
Then the mild solution of(1.1)-(1.3)satisfies∆u ∈ C((0, T ];L2(Ω)).

Proof. Writing u = u1+u2 as in the proof of Theorem 3.3, we see that∆u1 = ∆S(·)ξ ∈
C((0, T ];L2(Ω)) due to Lemme 2.1. Considering∆u2, we have

∆u2(·, t) = −
∞
∑

n=1

λn

∫ t

0

ω(t− τ, λn)Fn(τ)dτϕn, (3.1)

where Fn(t) = (f(u(·, t)), ϕn). It suffices to show that series (3.1) is uniformly
convergent on[0, T ]. Let

δn(t) = λn

∫ t

0

ω(t− τ, λn)Fn(τ)dτ,

then using Proposition 2.2(1), we getλnω(t, λn) ≤ (1 ∗m(t))−1 and

|δn(t)|2 ≤
(
∫ t

0

|Fn(τ)|dτ
1 ∗m(t− τ)

)2

≤
∫ t

0

dτ

1 ∗m(t− τ)

∫ t

0

|Fn(τ)|2dτ
1 ∗m(t− τ)

,

thanks to the Hölder inequality. Sincef(u) ∈ C([0, T ];L2(Ω)), the series
∑∞

n=1 Fn(t)ϕn

is uniformly convergent on[0, T ]. Then for everyǫ > 0, there existsNǫ ∈ N such that

N+p
∑

n=N

|Fn(t)|2 < ǫ, ∀t ∈ [0, T ], N ≥ Nǫ, p ∈ N.
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So we deduce that

N+p
∑

n=N

|δn(t)|2 ≤
∫ t

0

dτ

1 ∗m(t− τ)

∫ t

0

N+p
∑

n=N

|Fn(τ)|2dτ

1 ∗m(t− τ)

<

(
∫ T

0

dτ

1 ∗m(τ)

)2

ǫ, ∀t ∈ [0, T ].

Thus series (3.1) converges uniformly to
∫ t

0
∆S(t− τ)f(u(·, τ))dτ , which completes the

proof.

Theorem 3.5. Under the assumptions of Theorem 3.3 and 3.4, the mild solution of
(1.1)-(1.3) satisfiesm ∗ ∆u ∈ C1((0, T ];L2(Ω)), and consequently, it is a classical
solution.

Proof. It is easily seen that

−m ∗∆u(·, t) =
∞
∑

n=1

λnm ∗ un(t)ϕn,

where

un(t) = ω(t, λn)ξn +

∫ t

0

ω(t− τ, λn)Fn(τ)dτ, t ∈ [0, T ],

ξn = (ξ, ϕn), Fn(t) = (f(u(·, t)), ϕn).

Our goal is to prove that the series
∞
∑

n=1

λn(m∗un)
′(t)ϕn is uniformly convergent on[ǫ, T ]

for anyǫ ∈ (0, T ). One observes that

λn(m ∗ un)
′(t) = λn(m ∗ ω)′(t)ξn + λn(m ∗ ω ∗ Fn)

′(t)

= λn(m ∗ ω)′(t)ξn + λn(m ∗ ω)′ ∗ Fn(t)

= −(ω′(t, λn) + λnω(t, λn))ξn − (ω′ + λnω) ∗ Fn(t),

due to (2.1). Now we have

• Under the assumption of Theorem 3.2,S(·)ξ ∈ C1((0, T ];L2(Ω)). Then the series
∞
∑

n=1

ω′(t, λn)ξnϕn converges uniformly toS ′(t)ξ on [ǫ, T ].

• By Lemma 2.1(2),∆S(·)ξ ∈ C((0, T ];L2(Ω)). So the series
∞
∑

n=1

λnω(t, λn)ξnϕn

converges uniformly to−∆S(t)ξ on [ǫ, T ].
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• In the proof of Theorem 3.4, we have proved that the series
∞
∑

n=1

λn(ω ∗ Fn)(t)ϕn

converges uniformly to−
∫ t

0
∆S(t− τ)f(u(·, τ))dτ on [0, T ].

• According to the proof of Theorem 3.3, the function

F (t) =

∫ t

0

S ′(t− τ)f(u(·, τ))dτ

is well-defined and continuous on(0, T ]. It follows that

F (t) =

∞
∑

n=1

(ω′ ∗ Fn)(t)ϕn,

and then the last series is uniform convergent on[ǫ, T ].

In summary, we have

−∂t(m ∗∆u)(·, t) = −S ′(t)ξ −
∫ t

0

S ′(t− τ)f(u(·, τ))dτ

+∆S(t)ξ +

∫ t

0

∆S(t− τ)f(u(·, τ))dτ.

Noting that

∂tu(·, t) = S ′(t)ξ + f(u(·, t)) +
∫ t

0

S ′(t− τ)f(u(·, τ))dτ,

as pointed out in the proof of Theorem 3.4, we get

−∂t(m ∗∆u)(·, t) = −∂tu(·, t) + f(u(·, t)) + ∆u(·, t),

which means thatu obeys (1.1) in the classical sense. The proof is complete.

We end this section by testing our assumptions in a specific circumstance. Let

m(t) = g1−α(t) + µg1−β(t), 0 < α < β < 1, µ ≥ 0

f(v)(x) = F

(
∫

Ω

|v(x)|2dx
)

g(x, v(x)),

whereF andg satisfy the following conditions:

(N1) The functionF ∈ C1(R+) is such that|F (r)| ≤ a+ brp for somea, b > 0, p ≥ 0.

(N2) The functiong : Ω × R → R is a Carathéodory function such thatg(·, 0) = 0 and
the following Lipschitz condition holds

|g(x, q1)− g(x, q2)| ≤ h(x)|q1 − q2|, ∀q1, q2 ∈ R,

with h ∈ L∞(Ω) being a nonnegative function.
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We will testify thatf is locally Lipschitzian. Letv1, v2 ∈ L2(Ω), ‖v1‖, ‖v2‖ ≤ r, then

‖f(v1)− f(v2)‖2 =
∫

Ω

[F (‖v1‖2)g(x, v1(x))− F (‖v2‖2)g(x, v2(x))]2dx

≤ 2|F (‖v1‖2)|2
∫

Ω

|h(x)|2|v1(x)− v2(x)|2dx

+ 2|F (‖v1‖2)− F (‖v2‖2)|2
∫

Ω

|g(x, v2(x))|2dx.

Let ‖h‖∞ = esssupx∈Ω|h(x)|. Then

‖f(v1)− f(v2)‖2 ≤ 2(a+ br2p)2‖h‖2∞‖v1 − v2‖2

+ 2‖h‖2∞‖v2‖2(‖v1‖2 − ‖v2‖2)2
(
∫ 1

0

F ′(‖v1‖2 + t(‖v2‖2 − ‖v1‖2))dt
)2

≤ 2(a+ br2p)2‖h‖2∞‖v1 − v2‖2 + 8‖h‖2∞r4‖v1 − v2‖2( sup
0≤ρ≤2r2

|F ′(ρ)|)2

≤ κ(r)2‖v1 − v2‖2,
where

κ(r) =
√
2(a+ br2p)‖h‖∞ + 2

√
2‖h‖∞r2 sup

0≤ρ≤2r2
|F ′(ρ)|.

Observing that

1 ∗m(t) =
t1−α

Γ(2− α)
+

µt1−β

Γ(2− β)
,

we get1/(1 ∗m) ∈ L1(0, T ). Let a(t) = 1 +m(t), t > 0. Thena is completely positive,
sincem is completely monotone. In addition, we see that

â(z) = z−1 + m̂(z) = z−1 + zα−1 + µzβ−1.

So for Rez > 0, |arg â(z)| < π
2
, i.e. a is π

2
-sectorial. One can check thata is k-regular

for anyk ∈ N by using the fact that, for anyp1, p2, p3 > 0, there existsc > 0 such that

|p1z−1 + p2z
α−1 + p3µz

β−1| ≤ c|z−1 + zα−1 + µzβ−1|, ∀ Rez > 0,

which implies|zkâ(k)(z)| ≤ c|â(z)| for all Rez > 0.

4. Convergence to equilibrium
This section is devoted to considering the long-time behavior of the solution to

(1.1)-(1.3). We first have the following theorem.

Theorem 4.1.Let (M) and (F) hold andu be a global mild solution of(1.1)-(1.3). Assume
that ∂Ω ∈ C2 and B = I. If there exists the limitlim

t→∞
u(·, t) = u∗ in L2(Ω), and

lim
z→0

zm̂(z) = 0 in C, thenu∗ is a strong solution of the elliptic problem

−∆w = f(w) in Ω,

w = 0 on∂Ω.
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Proof. By formulation, we have

u(·, t) = S(t)ξ +

∫ t

0

S(t− τ)f(u(·, τ))dτ

= S(t)ξ +

∫ t

0

S(t− τ)[f(u(·, τ))− f(u∗)]dτ +

∫ t

0

S(t− τ)f(u∗)dτ

= S(t)ξ +G1(t) +G2(t).

Obviously,‖S(t)ξ‖ ≤ ω(t, λ)‖ξ‖ → 0 ast → ∞. We will show thatlim
t→∞

G1(t) = 0. By

assumption, forǫ > 0, there existsT1 > 0 such that‖f(u(·, t))− f(u∗)‖ < ǫ for every
t ≥ T1. So fort > T1, we have

‖G1(t)‖ ≤
∫ T1

0

‖S(t− τ)[f(u(·, τ))− f(u∗)]‖dτ

+

∫ t

T1

‖S(t− τ)[f(u(·, τ))− f(u∗)]‖dτ

≤
∫ T1

0

ω(t− τ, λ1)κ(R)‖u(·, τ)− u∗‖dτ + ǫ

∫ t

T1

ω(t− τ, λ1)dτ

≤ 2Rκ(R)

∫ T1

0

ω(t− τ, λ1)dτ + ǫ

∫ t

0

ω(τ, λ1)dτ

≤ 2Rκ(R)

∫ t

t−T1

ω(τ, λ1)dτ + ǫλ−1
1 ,

thanks to Proposition 2.2(2), whereR = ‖u∗‖ + ‖u‖∞. Sinceω ∈ L1(R+), there exists
T2 > 0 such that

∫ t

T2

ω(τ, λ1)dτ ≤ ǫ, for all t ≥ T2.

Owing to the last estimate, we obtain

‖G1(t)‖ ≤ [2Rκ(R) + λ−1
1 ]ǫ, for all t ≥ T1 + T2,

which ensuresG1(t) → 0 ast → ∞. Therefore,

u∗ = lim
t→∞

u(·, t) = lim
t→∞

G2(t) =

∫ ∞

0

S(τ)f(u∗)dτ = Ŝ(0)f(u∗).

On the other hand, concerning the Laplace transform ofS(·), it follows from (2.20) that

Ŝ(z) = z−1(I − â(z)∆)−1 = z−1â(z)−1
( 1

â(z)
−∆

)−1

= (1 + zm̂(z))
( z

1 + zm̂(z)
−∆

)−1

.
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Hence,u∗ =
∫∞

0
S(τ)f(u∗)dτ = Ŝ(0)f(u∗) = (−∆)−1f(u∗). Since∂Ω ∈ C2, the

regularity result in [14, Sect. 6.3.2] guarantees thatu∗ ∈ H2(Ω) and therefore,−∆u∗ =
f(u∗) a.e. inΩ. The proof is complete.

In the rest of this section, we use a stronger assumption imposed onm.

(M*) The functionm ∈ L1
loc(R

+) is smooth and positive on(0,∞) such that

1) logm is a convex function on(0,∞) and lim
t→∞

m(t) = 0;

2) a = 1 +m is 3-regular andθ-sectorial for someθ < π;

3) 1/(1 ∗m) ∈ L1
loc(R

+).

A typical example is

m(t) =

p
∑

i=1

µig1−αi
(t),

whereαi ∈ (0, 1), µi > 0, for which equation (1.1) reads

∂tu−∆u−
p

∑

i=1

µi∂
αi

t ∆u = f(u).

The last equation is in the form of Rayleigh-Stokes [1] with multi-term fractional
derivative.

As mentioned in the second section, owing to (M*), the functiona = 1 + γm is
completely positive for anyγ > 0. Letω(·, λ, γ) be the solution of the equation

ω(t) + λ

∫ t

0

(1 + γm(t− τ))ω(τ)dτ = 1, t ≥ 0; λ, γ > 0.

Thenω(·, λ, γ) possesses all properties stated in Proposition 2.2 withγm in place ofm.
In addition, the solution of the equation

z′(t) + λz(t) + λγ(m ∗ z)′(t) = g(t), t > 0, (4.1)

is given by

z(t) = ω(t, λ, γ)z(0) +

∫ t

0

ω(t− τ, λ, γ)g(τ)dτ. (4.2)

The following Gronwall type inequality will be used in the sequel.

Proposition 4.1. Let z be a nonnegative function obeying the inequality

z(t) ≤ ω(t, λ, γ)z0 +

∫ t

0

ω(t− τ, λ, γ)[az(τ) + b(τ)]dτ, t ≥ 0, (4.3)

wherea ∈ [0, λ), γ > 0, b ∈ L1
loc(R

+). Then

z(t) ≤ ω
(

t, λ− a,
λγ

λ− a

)

z0 +

∫ t

0

ω
(

t− τ, λ− a,
λγ

λ− a

)

b(τ)dτ.
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Proof. Let y(t) be the right hand side of (4.3). Thenz(t) ≤ y(t) andy solves the equation

y′(t) + λy + λγ(m ∗ y)′ = az(t) + b(t), t > 0, y(0) = z0.

It follows that

y′(t) + (λ− a)y + (λ− a)
λγ

λ− a
(m ∗ y)′ = a[z(t)− y(t)] + b(t), t > 0, y(0) = z0,

and theny admits the representation

y(t) = ω
(

t, λ− a,
λγ

λ− a

)

z0

+

∫ t

0

ω
(

t− τ, λ− a,
λγ

λ− a

)(

a[z(τ)− y(τ)] + b(τ)
)

dτ

≤ ω
(

t, λ− a,
λγ

λ− a

)

z0 +

∫ t

0

ω
(

t− τ, λ− a,
λγ

λ− a

)

b(τ)dτ,

thanks to the positivity ofω and the fact thatz(τ) − y(τ) ≤ 0 for τ ≥ 0. So we get the
conclusion as desired.

The following theorem represents the main result of this section.

Theorem 4.2. Let (M*) hold andf satisfy the global Lipschitz condition with constant
κ0 ∈ [0, λ1). Assume that∂Ω ∈ C2 andB = I. Then the solution of(1.1)-(1.3)converges
to the unique strong solution of the elliptic problem

−∆w = f(w) in Ω, (4.4)

w = 0 on∂Ω. (4.5)

Proof. We first show that iff is Lipschitzian with constantκ0 < λ1, the problem
(4.4)-(4.5) has a unique strong solution. Indeed, due to [15, Theorem 7.4.1], the problem
(4.4)-(4.5) has a unique weak solutionu∗ ∈ H1

0 (Ω) if the Lipschitz constantκ0 satisfies
κ0 < C−2

0 , whereC0 is the constant of embeddingH1
0 (Ω) ⊂ L2(Ω). By the smoothness

of ∂Ω, we have

C−2
0 = inf

u∈H1

0
(Ω)\{0}

‖∇u‖2
‖u‖2 = λ1.

Observe thatf(u∗) ∈ L2(Ω). Then using the regularity result in [14, Sect. 6.3.2] again,
we obtainu∗ ∈ H2(Ω) and henceu∗ is a unique strong solution of (4.4)-(4.5).

By Theorem 3.5, the solution of (1.1)-(1.3) is classical. Then combining (1.1) with
(4.4), one gets

∂tu−∆(u− u∗)− ∂t(m ∗∆u) = f(u(·, t))− f(u∗),
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or equivalently,

∂t(u− u∗)−∆(u− u∗)− ∂t(m ∗∆(u− u∗)) = f(u(·, t))− f(u∗) +m(t)∆u∗,

which leads to the representation

u(·, t)− u∗ = S(t)(ξ − u∗) +

∫ t

0

S(t− τ)[f(u(·, τ))− f(u∗) +m(τ)∆u∗]dτ.

So we have the following estimate

‖u(·, t)− u∗‖ ≤ ω(t, λ1, 1)‖ξ − u∗‖

+

∫ t

0

ω(t− τ, λ1, 1)[κ0‖u(·, τ)− u∗‖+m(τ)‖∆u∗‖]dτ.

Applying Proposition 4.1 yields

‖u(·, t)− u∗‖ ≤ ω
(

t, λ1 − κ0,
λ1

λ1 − κ0

)

‖ξ − u∗‖

+

∫ t

0

ω
(

t− τ, λ1 − κ0,
λ1

λ1 − κ0

)

m(τ)‖∆u∗‖dτ

= U1(t) + U2(t).

It is evident thatU1(t) = ω
(

t, λ1 − κ0,
λ1

λ1−κ0

)

‖ξ − u∗‖ → 0 as t → ∞. Due to the

assumption thatm(t) → 0 as t → ∞, for any ǫ > 0, there existsT > 0 such that
m(t) < ǫ for all t ≥ T . So for anyt > 2T , we have

U2(t) =

(
∫ t

T

+

∫ T

0

)

ω
(

t− τ, λ1 − κ0,
λ1

λ1 − κ0

)

m(τ)‖∆u∗‖dτ

≤ ǫ‖∆u∗‖
∫ t

T

ω
(

t− τ, λ1 − κ0,
λ1

λ1 − κ0

)

dτ

+

∫ T

0

m(τ)‖∆u∗‖dτ
1 + (λ1 − κ0)

∫ t−τ

0
[1 + λ1

λ1−κ0

m(s)]ds
,

thanks to Proposition 2.2(1). Then utilizing Proposition 2.2(2), we get

U2(t) ≤ ǫ‖∆u∗‖
∫ t

0

ω
(

t− τ, λ1 − κ0,
λ1

λ1 − κ0

)

dτ

+
‖∆u∗‖(λ1 − κ0)

−1

∫ t−T

0
[1 + λ1

λ1−κ0

m(s)]ds

∫ T

0

m(τ)dτ

≤ ǫ‖∆u∗‖(λ1 − κ0)
−1 +

‖∆u∗‖(λ1 − κ0)
−1

t− T + λ1

λ1−κ0

∫ t−T

0
m(s)ds

∫ T

0

m(τ)dτ

≤ ǫ‖∆u∗‖(λ1 − κ0)
−1 +

‖∆u∗‖(λ1 − κ0)
−1

t− T + λ1

λ1−κ0

∫ T

0
m(τ)dτ

∫ T

0

m(τ)dτ

≤ 2ǫ‖∆u∗‖(λ1 − κ0)
−1,
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for t large enough such that

∫ T

0
m(τ)dτ

t− T + λ1

λ1−κ0

∫ T

0
m(τ)dτ

< ǫ.

We have proved thatU2(t) → 0 ast → ∞, which implies lim
t→∞

‖u(·, t) − u∗‖ = 0. The

proof is complete.
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