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Abstract. We study the existence and uniqueness of weak solutions hend t
existence of global attractors to a class of semilinearljmdi@equations involving
the Grushin operator and nonlinearities of arbitrary ardié@e main novelty of our
result is that no restriction on the upper growth of the n@drities is imposed.
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1. Introduction

In recent years, a number of papers has been devoted to iihe aftiexistence
and asymptotic behavior of solutions to degenerate paabquations. In this paper
we consider the following semilinear parabolic equatiomolming an operator of
Grushin type

%—Gsu—i-f(u):g(x), reQt>0,

u(z,t) =0, x €00t >0, (1.1)
u(z,0) = up(x), x €,
where ) is a bounded domain iRY (N > 2) with smooth boundanpf?, the

nonlinearity f and the external forcg satisfy some conditions specified later. The
Grushin operato€; was first introduced in [1], is defined by

Gou = Ap,u+ |71|*Apyu, (21,75) € Q2 CRM x R 5 > 0.

Noting thatGy = A andG, whens > 0, is not elliptic in domain® 1 x Rz intersecting
with the hyperplandz; = 0}. The local properties aff; were investigated in [1, 2].
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To study problem (1.1) we have usually used the natural grepaces; () defined
as the completion af’} (Q2) in the following norm

iy = [ (ot + s Vs

. . 2N
We have the continuous embeddisif Q) — L7(Q), for1 < r < 2% = N(s)(s—)Q’

N(s) = Ny + (s + 1) N,. Moreover, this embedding is compactiK r < 2% (see [3]).
In [4], the authors considered problem (1.1) withR — R being locally Lipschitz
continuous and satisfying a Sobolev growth condition

where

4 — 2«

_ < _ Y v < -
1) = F@)] < Colu = vl (14 [ul + [ol) ,0 < 7 < =,

and some dissipativity conditions. Under the above assomgpof f, the authors proved
that problem (1.1) defines a semigrofit) : S3(2) — S3(2), which possesses a
compact global attractor in the spagg (2).

When the nonlinearity is supposed to satisfy a growth and dissipativity condition
of polynomial type, that is,

Cl\u\p — Co < f(U)U < Cg‘u‘p -+ C(], for somep > 2,
f'(u) > —C3, forallu e R,

the existence of a global attractor i ((2) in the autonomous case [5] and the existence
of an uniform attractor ir.?(Q2), L?(Q2) and.S§(£2) in the non-autonomous case [6].

Note that for both above classes of nonlinearities, sonteicesn on the growth
of the nonlinearity is imposed and an exponential nonligdor examplef(u) = e,
does not hold. In this paper we try to remove this restrictind we were able to prove the
existence of a weak solution and of a global attractor forg lage class of nonlinearities
that particularly covers both the above classes and evemnexgpial nonlinearities. This
is the main novelty of our paper.

In this paper we assume that the initial datum < L?(Q) is given, the
nonlinearityf and the external force satisfy the following conditions:

(F) f:R — Ris a continuously differentiable function satisfying

f(u) = =L, (1.2)

fluyu > —pu? — C, (1.3)

where(C; and/ are two positive constants, < p < A\, with A; > 0 is the first
eigenvalue of the operatotu = —G,u in Q, andF(u) = [ f(s)ds is a primitive
of f;

38



Global attractors for a class of semilinear parabolic eqoat involving grushin operator...

(G) g € L*().
It follows from (1.2) that0 < [(f'(s)s+¢s)ds, and so by integrating by parts, we obtain

F(u) = f(u)u+ 62&2 — /u(sf/(s) +Us)ds < f(u)u+ 62&2 forall u € R.
0

Thus,

lu?
Fu) < flw)u+ 3 forall u € R.

Using (1.2) we have

2

Pu) = [ ((6) = £0) + 7O)s = [ (7(@)s+ F0)ds = = + fO)u

Therefore,
(u?

F(u) > -+ f(O)u, YueR. (1.4)

It is noticed that the class of nonlinearities satisfy(RQ is very large in the sense that
no upper bound on the growth of nonlinearity is imposed,de=ssthe standard dissipative
condition (1.3) and the well-known condition (1.2) ensgrthe uniqueness of solutions.
In particular, this class contains all nonlinearities ob8kev type and polynomial type,

and even exponential nonlinearities.

The paper is organized as follows: In Section 2, we prove ttistence and
uniqueness of weak solutions by utilizing the compactnesthiod and weak convergence
techniques in Orlicz spaces [7]. In Section 3, we prove thstemce of global attractors
for the semigroup generated by the problem in various spadé& main novelty of
the paper is that the nonlinearity can grow arbitrarily fastd in particular, the results
obtained here extend previous ones in [8, 9, 10, 11].

2. Existence and uniqueness of a weak solution

Definition 2.1. A functionu is called a weak solution of proble(.1)on (0,7) if u €
C([0,T1; L2()) N L*(0, T S5(Y)), f(u) € LN (Qr), u(0) = uo, and

ou

Ewdij/(Vmuvwlw—i-|x1\25V$2uV$2w)d9£+/f(u)wdx:/gwdx (2.2)
Q Q 0 Q

for all test functionsy € W := S3(Q) N L>°(2) and for a.eit € (0, T).

Theorem 2.1. AssuméF)—(G) hold. Then for any,, € L*(©2) andT > 0 given, problem
(1.1) has a unique weak solutianon the interval(0, 7). Moreover, the weak solution
depends continuously on the initial dataiiA(<?).

39



Ho Thi Hang, Bui Thi Hue and Le Thi Thuy

Proof. i) Existence. We will prove the existence of a weak solution by using the
compactness method. To overcome the essential difficukéytduno restriction on the
upper bound of the nonlinearity is imposed, so the nonlinean f(u) only belongs
to L1(Q), we will exploit the weak convergence technigues in Orlipaces introduced
in [7].

Let {¢;}2, be a basis of;(f2) consisting of eigenvectors of the operatbu =
—G4u in © with the homogeneous Dirichlet boundary condition, thadrihonormal in
L*(2). We look for an approximate solutian, (¢) of the form

t) = Z Unj(t)e

that solves the following problem

<%,ej> + (Aun, e;) + ( f(un), ;) = (g,¢€;),

(un(0),€5) = (ug,€5), j=1,...,n

This is a system of first-order ordinary differential eqoas for the functions

Un1, Un2, - - - Unn

Up; T Ajung + (f(un), €5) = (g,€5), j=1,...,n
Ui (0) = (uo, €;)-

By the theory of ODEs, we obtain the existence of approxireatetionsu,, (t).

We now establish some priori estimates for:,,. Multiplying the first equation in
(1.1) byu,,;(t), then summing froni to n, we obtain

1d

2dt|]unHLz(Q + Huanl @ +/f Up ) Upd —/gunda: (2.2)

Hence using (1.3) and the Cauchy inequality, we have

1d
5%”%(%%2(9) + Hun(t)HQsl(Q — pllun(®)I720) — CLI9
1 A
< m”gﬂm ot —5— Hun( Nz (6)-
Therefore,
d

T lun (@) 1z20) + 2lun(®)ll5y0) = 20llwn(®)lz2) = Ar = ) llun ()220 23)

<

1 2
2C41QY.
sl + 20119

40



Global attractors for a class of semilinear parabolic eqoat involving grushin operator...

Slnce||u||S1(Q > >\1||u||iQ(Q), where); > 0 is the first eigenvalue of the operatdr =
—Gu, we get

d 1
@Hun(t)HZﬂL()\l llun®li20) < — N HgHLz(Q +204|Q].

By the Gronwall inequality, we obtain
||un(t)||%2(ﬁ) < C= C(||u0HL2(Q)7 Hg||L2(Q)7 )\1,,LL, ‘Q‘u Olu T)? forallt € [07 T] (24)

Integrating (2.3) frond to¢,0 < ¢ < 7', and using (2.4), we arrive at
t
Hun(t)H?—i-/O f1tn(3) | oy ds < €. forallt € [0,7).

This inequality yields

{u,} is bounded in.>(0, T’; L*(2)),
{u,} is bounded in.?(0, T’; S3(Q)).
Using the boundedness éf.,,} in L?(0,T;5}(Q)), it is easy to check thafAu,} is
(2) is

bounded inL?(0,T; S~(2), whereS—!(Q) is the dual space df!(Q2). From the above
results, we can assume that

w, — win L*(0,T; S5()),
u, —*uin L>=(0,T; L*(Q)),
Au, — Auin L*(0,T; S71()).

On the other hand, integrating (2.2) fromto 7, using the Cauchy inquality and
lullgs @) = Adllull7z), we have

T
1
/ gyt +2 | Flunundedt < ol + -l
0 ’ Qr A1

Hence

f(up)updzdt < C.
Qr

We now prove thaf f(u,)} is bounded inL!(Q7). Puttingh(s) = f(s) — f(0) + ks,
wherex > (. Note thath(s)s = (f(s) — f(0))s + ks*> = f'(c)s* + ks? > (k — £)s> > 0
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for all s € R, we have

/ \h(un)\dxdtg/ \h(un)un\dxdtJr/ |h(wy,)|dzdt
T Qr{fun|>1} Qr{lun|<1}

< / h(un)u,dzdt + sup |h(s)||Qr|

s|<1

< ; S (un)undzdt + &l|un ()1 720p + 17O [un(®)] L1 @)
T

+ sup |h(s)||Qr]

s|<1

<C.

Hence it implies that(u,,)}, and thereford f(u,)} is bounded in.!(Q7). Since

du,

2N A —
s un, — fun) + 9,

we deduce that{%} is bounded inL?(0,7;S~4(Q)) + L'(Qr), and therefore in

LY0,T;S71(Q) + L'(Q2)). BecauseSj(2) cc L*(Q2) ¢ SHQ) + LY(Q)), by the
Aubin-Lions-Simon compactness lemma (see e.g. [12, Tinedrs.16, p. 102]), we have
that {«, } is compact inL?(0, T; L*(Q2)). Hence we may assume, up to a subsequence,
thatu,, — u a.e. inQr. Applying Lemma 6.1 in [13], we obtain thatu) € L!'(Qr) and

for all test functiong € C5°([0, T; S3(22) N L>(2)),

/ h(u,)€édxdt — h(u)&dxdt.
T Qr

Hencef(u) € L'(Qr) and

f(up)édxdt — f(u)édzdt, forall & € C5°([0, T7; S&(Q) NL>®(Q)).
Qr Qr

Thus,u satisfies equality (2.1).

It remains to be shown that(0) = uo. To do this, we choose test functiopse
CH([0,T7; S§ () N L>=(Q)) with o(T') = 0. Integrating by parts in thevariable, we have

T T
[ —twiars [ ogadt+ [ (7w -0 paadt = (0}, 000))
0 0 T
Doing the same in the Galerkin approximations yields
T T
| e [ (st + [ () - g) oo
0 0 T
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Taking limits asn — oo we arrive at

/0 (ul)dt + / (1, 0)) syl + / (f(u) — g) pdadt = (uo, (0))

sinceu,(0) — wp. Thus,u(0) = wug and this implies thai: is a weak solution to
problem (1.1).

if) Unigueness and continuous dependence on the initial.dagt « andv be two
weak solutions of (1.1) with initial data,, vy € L?(Q2). Puttingw = v — v, we have

dw .
E+Aw+f( u)— f(v) —lw=0

w(0) = up — vo,

(2.5)

wheref(s) = f(s) + £s. Here because(t) does not belong tol := S} (Q) N L>(Q),
we cannot choose(t) as a test function as in [8]. Consequently, the proof will beren
involved.

We use some ideas in [7]. L&, : R — R be the truncated function

k if s>k
Bi(s) =1 s if |s| <k
-k if s < —k.

Consider the corresponding Nemytskii mappig: W — W defined as follows:
Bi(w)(x) = Bi(w(z)), forallxz € Q.

By Lemma 2.3 in [7], we have thgt3;,(w) — w||y, — 0 ask — co. Now multiplying the
first equation in (2.5) by3,.(w), then integrating ovel x (¢, t), wheret € (0,T), we get

/ / da:ds—/ /w Bk ))dxds
+// (| Ve w|? + |21 |*|Ve,w|?)dzds
{z:|w(z,s)| <k}

// ) Bu(w)drds — ¢ //ka

43



Ho Thi Hang, Bui Thi Hue and Le Thi Thuy

. d . 1d, . )
Noting thatw%Bk(w(s)) = 5%(B’k,(w(s)) ) we have

[ w®Buw) O~ SIBw) 0
Q
Vi, w 24 |xq|® Vi, w Ndxds
n / /{W,M}“ 24 |V )
+ / /Q (F(€)) w B (w)dads
_ /Q w(e)Bu(w) )z — 3| Bu(w) @)l 3o + ¢ / /Q wBy(w)dz.

So, we have
. 1 ) t .
[ W Buw) ez = S1B@) Ol 0y~ [ [ whitw)ds
< /Q w(e)Bk(w)(e)dx—%Hék(w)(s)H%g(Q)Jrﬁ / /Q wBy,(w)dz.

Note thatf’(s) > 0 andsBy(s) > 0 for all s € R, by lettinge — 0 andk — oo in the
above inequality, we obtain

lw(t)1720) < Nlw(0)[172(q) + 4 /Ot lw(®)]720)-
Hence by the Gronwall inequality of integral form, we get
Hw(t)H%g(Q) < Hw(O)H%Q(Q)(l + 40te*, forall t € [0, 7).
This implies the desired result. O

3. Existence of global attractors inL2(2)

By Theorem 2.1, we can define a continuous (nonlinear) sems|(t)
L*(Q) — L*(Q2) associated to problem (1.1) as follows:

whereu(-) is the unique weak solution of (1.1) with the initial datugn We will prove
that the semigroup'(¢) has a global attractod in the spaces; (9).

For the sake of brevity, in the following lemmas we give sowrafal calculations,
the rigorous proof is done by use of Galerkin approximatems$ Lemma 11.2 in [14].

We first prove the existence of a bounded absorbing skt(f?).
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Lemma 3.1. The semigroup{S(¢)};>0 has a bounded absorbing set i¥(Q), i.e.,
there exists a positive constapt such that for any bounded subsBtin L?(Q2), the
corresponding solution(.) of (1.1)with initial datumu, € B satisfies

Proof. Multiplying the first equation in (1.1) by, we have

1d
5%““@)”%2(9) + ||U(t)’|ig(ﬂ) "‘/Qf(U)UdJU: /qudx. (3.2)
Using (1.3), the mequalltyuHSl(Q > Ailjul?, o) and the Cauchy inequality, we arrive at

d 1
@Hu(ﬂH%?(Q) + (A — ) ||u(t )HL2 @ = 2C1|Q| + ||9HL2

Hence, thanks to the Gronwall inequality, we obtain
”u(t)H%Q(Q) < HUOHQQ*()‘I*M)t 1R,

whereR; = Ry(A1, 11, |9, ||9]| 2@)). This completes the proof if we choose, for instance,
P1 = 2R1 ]

We now prove the existence of a bounded absorbing s&4(if1).

Lemma 3.2. The semigroup{S(¢)};>o has a bounded absorbing set (1), i.e.,
there exists a positive constapt such that for any bounded subsBtin L?(Q2), the
corresponding solution(.) of (1.1)with initial datumu, € B satisfies

Proof. Multiplying the first equation in (1.1) by,, we obtain

d (1, ., B )
dt <§||u||53(9) +/QF(u)dx — /quda:) = —[Juel|72(q) < 0. (3.3)

On the other hand, integrating (3.2) frano ¢ + 1 we get

t+1 1 d ) ) t+1
—— 2 1 dr|ds = dxds.
[ e + oy + [ fude] ds= [ [ gudsas

45



Ho Thi Hang, Bui Thi Hue and Le Thi Thuy

Using (3.1) we have

t+1 1
[ [y + [ e~ [ guae] as
t Q Q

t+1
= [ [y o + [P0 stanis] 0

1 Ly
< —Slult+ Dl + Oy + [ gyt
t
t+1 E ) 1 )
< §’|U(t)||L2(Q)dt+ iHu(t)HL?(Q)
t
< p1(0+1)
- 2
Hence

t+1 1 Y 1
/ [ﬁl\u(s)]@é(m +/QF(u)dx - /qudx] ds < %—H,W >T. (3.4)
¢

By the uniform Gronwall inequality, from (3.3) and (3.4) wedlice that

Vvt > T

1
§Hu(t)||§3(0) + /Q F(u)dz — /qudx < Ry, forallt > T, =T + 1. (3.5)
Using (1.4) and the Cauchy inequality, we have
1
Ry > 5”“(@”%&(9) +/F( )dx—/gudx
1
> SOy~ Gl gy + 7O [ ude— [ guds

> L 0) 2y - ﬂ(»h ~ (O + )

12
- 5”“(75))“%2(9) - ﬂHgH%Q(Q)

Using (3.1) we obtain
Hu(t)Héé(Q) S P2 = pQ()‘hg? |Q|7 HQHL?(Q); ‘f(O)D, forall ¢ Z TQ'
This completes the proof. O

Finally, we have the following result about the existenceglaibal attractors in
L3(Q).

Theorem 3.1. The semigroup (¢) genenated by proble(d.1) has a compact connected
global attractorA;: in L*().
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Proof. From [14], we need to show the existence of an absorbing séf(f) and
prove thatS(t) is asymptotically compact in?(Q2). Indeed, the former is obtained from
Lemma 3.1. Sincé} () — L?*(2) is compact and using Lemma 3.2, we obtain i@}
is asymptotically compact in?(2). Note thatZ?(Q2) is connected, we immediately get
the following theorem. O
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