# A NOTE ON GENERALIZED RAINBOW CONNECTION OF CONNECTED GRAPHS AND THEIR NUMBER OF EDGES 

Nguyen Thi Thuy Anh ${ }^{1}$ and Le Thi Duyen ${ }^{2}$<br>${ }^{1}$ Faculty of Management Information System, Banking Academy of Vietnam, Hanoi, Vietnam<br>${ }^{2}$ School of Applied Mathematics and Informatics, Hanoi University of Science and Technology


#### Abstract

Let $l \geq 1, k \geq 1$ be two integers. Given an edge-coloured connected graph $G$. A path $P$ in the graph $G$ is called $l$-rainbow path if each subpath of length at most $l+1$ is rainbow. The graph $G$ is called $(k, l)$-rainbow connected if any two vertices in $G$ are connected by at least $k$ pairwise internally vertex-disjoint $l$-rainbow paths. The smallest number of colours needed in order to make $G$ $(k, l)$-rainbow connected is called the $(k, l)$-rainbow connection number of $G$ and denoted by $r c_{k, l}(G)$. In this paper, we first focus to improve the upper bound of the $(1, l)$-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large $(1,2)$-rainbow connection number. Moreover, we also determine the $(1, l)$-rainbow connection number in a connected graph $G$ containing a sequence of cut-edges.


Keywords: edge-colouring, rainbow connection, $(k, l)$-rainbow connection.

## 1. Introduction

We use [1] for terminology and notation not defined here and consider simple, finite and undirected graphs only. Let $G$ be a graph. We denote by $V(G), E(G), n(G), m(G)$ the vertex set, the edge set, the number of vertices, the number of edges, respectively. Let $u v$ be an edge of $G$ and $c(u v)$ be its colour. A cut-edge of a graph is an edge whose deletion increases the number of components. Let $p(G)$ denote the number of edges of the longest path in $G$. We abbreviate the set $\{1,2, \ldots, k\}$ by $[k]$.

In the last years, the connection concepts of connected graphs appeared in graph theory and received much attention. They have many applications in the transmission of information in networks. Let $G$ be a connected and edge-coloured graph.

[^0]The first connection concept introduced by Chartrand et al. [2] is rainbow connection. A rainbow path in an edge-coloured graph $G$ is a path $P$ whose edges are assigned distinct colours. An edge-coloured graph $G$ is rainbow connected if every two vertices are connected by at least one rainbow path in $G$. For a connected graph $G$, the rainbow connection number of $G$, denoted by $r c(G)$, is defined as the smallest number of colours required to make it rainbow connected. After that, many researchers have studied problems with rainbow connection. Moreover, it has been shown in [3] that computing $r c(G)$ for a given connected graph $G$ is an NP-hard problem. Readers who are interested in this topic are referred to [4, 5].

Motivated by proper colouring and rainbow connection, Borozan et al. [6] and Andrews et al. [7], independently introduced the concept of proper connection. A path $P$ in an edge-coloured graph $G$ is a proper path if any two consecutive edges receive distinct colours. An edge-coloured graph $G$ is properly connected if every two vertices are connected by at least one proper path in $G$. For a connected graph $G$, the proper connection number of $G$, denoted by $p c(G)$, is defined as the smallest number of colours required to make it properly connected. Very recently, it has been shown in [8] that computing $p c(G)$ for a given graph $G$ is an NP-hard problem. For more details we refer to the survey [9].

Let $k \geq 1, l \geq 1$ be two integers. Very recently, the new concept of connection that is $(k, l)$-rainbow connection was defined in [11] as a generalization of rainbow connection and proper connection. A path $P$ in an edge-coloured graph $G$ is called an $l$-rainbow path if each subpath of length at most $l+1$ of $P$ is rainbow. An edge-coloured graph $G$ is called $(k, l)$-rainbow connected if every two vertices are connected by at least $k$ pairwise internally vertex-disjoint $l$-rainbow paths in $G$. For a connected graph $G$, the $(k, l)$-rainbow connection number of $G$, denoted by $r c_{k, l}(G)$, is defined as the smallest number of colours required to make it $(k, l)$-rainbow connected. From this definition, it can be readily seen that the $(1,1)$-rainbow connection number of a connected graph $G$ is actually its proper connection number, i.e $r c_{1,1}(G)=p c(G)$. Meanwhile, the $(1, l)$-rainbow connection number of a connected graph $G$ can be its rainbow connection number as long as $l$ is large enough, i.e. if $G$ is rainbow connected then $G$ is $(1, l)$-rainbow connected. Moreover, if each edge of $G$ is assigned by exact one different colour from [ $m(G)$ ] then $G$ is rainbow connected. Let $P_{n}$ be a path of order $n$, where $n \geq 4$. Hence, $p c\left(P_{n}\right)=2$ (by Andrews et al. [7]), $r c\left(P_{n}\right)=n-1$ (by Chartrand et al. [2]), $r c_{1, l}\left(P_{n}\right)=l+1$, where $l \geq 2$ (by Li et al. [11]). Recently, there is a few results on this topic. By the above concepts, it can be readily seen that

$$
1 \leq p c(G) \leq r c_{1,2}(G) \leq r c_{1,3}(G) \leq \ldots \leq r c(G) \leq m(G)
$$

Moreover, $r c_{1, l}(G)=1$ if and only if $G$ is complete.
In this paper, we improve the upper bound of the $(1, l)$-rainbow connection number depending on the size of connected graphs. We investigate the ( $1, l$ )-rainbow connection number of a connected graph containing a sequence of cut-edges. Moreover, we also characterize all connected graphs having the large (1,2)-rainbow connection number.

A note on generalized rainbow connection of connected graphs and their number of edges

## 2. Auxiliary results

In this section, we introduce some basic notations, results and definitions that will be essential tools in the proof of our results.

Remark 2.1. Let $P=v_{1} v_{2} \ldots v_{n}$ be a path of order $n(P)$ and $l$ be a positive integer. We alternately colour all edges of $P$ with colours from [l] that means every subpath of length at most $l$ is rainbow.

Definition 2.1. Let $G$ be a graph and $P$ be a path of $l$ edges. $P$ is said to be a l-cut-edge of $G$ if each edge of $P$ is a cut-edge of the graph $G$.

Similar to the proper connection number and the rainbow connection number, the following proposition is easily obtained in [11].

Proposition 2.1. (Li et al. [11]) Let $G$ be a nontrivial connected graph. If $H$ is a connected spanning subgraph of $G$, then $r c_{1,2}(G) \leq r c_{1,2}(H)$. Particularly, $r c_{1,2}(G) \leq$ $r c_{1,2}(T)$ for every spanning tree $T$ of $G$.

By using Proposition 2.1, the authors in [11] gave the (1,2)-rainbow connection number of the traceable graph, i.e. graphs containing a Hamiltonian path.

Proposition 2.2. (Li et al. [11]) Let $G$ be a traceable graph and $l$ be a positive integer, then $r c_{1, l}(G) \leq l+1$. Particularly, $r c_{1,2}(G) \leq 3$.

## 3. Main results

First of all, we improve the upper bound of the $(1, l)$-rainbow connection number by the following result.

Theorem 3.1. Let $G$ be a connected graph of size $m(G)$ and $l \geq 2$ be an integer. If $p(G)$ is the number of edges of a longest path in $G$, then $1 \leq r c_{1, l}(G) \leq \min \{m(G), m(G)+$ $l+1-p(G)\}$.

Proof. Clearly, we only consider that $p(G)>l+1$. Let $P=v_{1} v_{2} \ldots v_{p(G)+1}$ be a longest path of $G$. We alternately colour all edges of $P$ by $l+1$ colours. Hence, $P$ is the $l$-rainbow path. There are $m(G)-p(G)$ uncoloured edges of $G$. Next, each uncoloured edge of $G$ is assigned by a new colour from $[m(G)+l+1-p(G)] \backslash[l+1]$. It can be readily seen that every two distinct vertices of $G$ are connected by at least one $l$-rainbow path. Hence, $G$ is the $(1, l)$-rainbow connected. Therefore, $r c_{1, l}(G) \leq m(G)+l+1-p(G)$.

Our result is obtained.
Next, we determine the $(1, l)$-rainbow connection number of a connected graph $G$ containing a path as an $l$-cut-edge, where $l \geq 1$ is a positive integer.


Figure 1. The star graph $S_{n}$


Figure 2. The double star $T_{n_{1}, n_{2}}$

Theorem 3.2. Given a positive integer $l \geq 1$. Let $G$ be a connected graph with a path as an l-cut-edge, say $P=v_{1} v_{2} \ldots v_{l+1}$ and $H_{1}, H_{2}$ be two components obtained from $G$ by removing all vertices from $V(P) \backslash\left\{v_{1}, v_{l+1}\right\}$. If $G_{i}$ is a connected graph such that $G_{i}=G\left[V\left(H_{i}\right) \cup V(P)\right]$, where $i \in[2]$, then $r c_{1, l}(G)=\max \left\{r c_{1, l}\left(G_{1}\right), r c_{1, l}\left(G_{2}\right)\right\}$.

Proof. First, it can be readily seen that $r c_{1, l}(G) \geq \max \left\{r c_{1, l}\left(G_{1}\right), r c_{1, l}\left(G_{2}\right)\right\}$. Let $r c_{1, l}\left(G_{1}\right)=k_{1}$ and $r c_{1, l}\left(G_{2}\right)=k_{2}$. Without loss of generality, we may assume that $k_{1} \geq k_{2}$. Let $i \in[2]$ and $c_{i}$ be a $(1, l)$-rainbow colouring of $G_{i}$ with $k_{i}$ colours, $\left(c_{i}(e) \in\left[k_{i}\right]\right.$, for all edges $\left.e \in E\left(G_{i}\right)\right)$ such that $c_{1}\left(v_{t} v_{t+1}\right)=c_{2}\left(v_{t} v_{t+1}\right)$, where $v_{t} \in V(P)$ and $t \in[l]$, and $\left\{c_{2}(e): e \in E\left(G_{2}\right)\right\} \subseteq\left\{c_{1}(e): e \in E\left(G_{1}\right)\right\}$. Let $c$ be an edge-colouring of $G$ such that $c(e)=c_{1}(e)$ for any $e \in E\left(G_{1}\right)$ and $c(e)=c_{2}(e)$ otherwise. Clearly, $c$ is a $(1, l)$ - rainbow colouring of $G$ using $k_{1}$ colours. We will show that $G$ is the ( $\left.1, l\right)$-rainbow connected. For any two distinct vertices of $G$, say $u, v \in V(G)$, it can be readily seen that there is a $(1, l)$-rainbow path between them if $u, v \in V\left(G_{1}\right)$ or $u, v \in V\left(G_{2}\right)$. Hence, we only consider that $u \in V\left(G_{1}\right) \backslash V(P)$ and $v \in V\left(G_{2}\right) \backslash V(P)$. Since $c_{1}$ is the $(1, l)$-rainbow colouring of $G_{1}$, there exists a $(1, l)$-rainbow path connecting $u$ and $v_{l+1}$. Since $c_{2}$ is the $(1, l)$-rainbow colouring of $G_{2}$, there exists a $(1, l)$-rainbow path connecting $v$ and $v_{1}$. As $c_{1}\left(v_{t} v_{t+1}\right)=c_{2}\left(v_{t} v_{t+1}\right)$, where $t \in[l]$, so it can be readily deduced that $P_{G}=u P_{1} v_{1} P v_{l+1} P_{2} v$ is a $(1, l)$-rainbow path connecting $u, v$ in $G$. Therefore, we have that $r c_{1, l}(G) \leq k_{1}$.

Our proof is obtained.
By using Theorem 3.1, we determine all connected graphs having the large (1,2)-rainbow connection number. We use $S_{n}$ to denote the star graph on $n$ vertices and $T\left(n_{1}, n_{2}\right)$ to denote the double star in which the degrees of its adjacent center vertices are $n_{1}+1$ and $n_{2}+1$, respectively. Clearly, two graphs $S_{n}$ and $T_{n_{1}, n_{2}}$ are already mentioned in [12] but our result is different.

Proposition 3.1. Let $G$ be a nontrivial connected graph of size $m(G)$. Then $r c_{1,2}(G)=$ $m(G)$ iff $G \cong S_{n}$, where $n \geq 2$ or $G \cong T\left(n_{1}, n_{2}\right)$, where $n_{1}, n_{2} \geq 1$.

Proof. If $G \cong S_{n}$ or $G \cong T_{n_{1}, n_{2}}$ then it can be readily check that $r c_{1,2}(G)=m(G)$. So it remains to verify the converse. Let $T$ be a spanning tree of $G$. Hence, $m(T) \leq$ $m(G)$. By Proposition 2.1, $r c_{1,2}(G) \leq r c_{1,2}(T)$. Since $r c_{1,2}(G)=m(G)$, we see that $m(G)=r c_{1,2}(G) \leq r c_{1,2}(T)$. Let $P$ be a longest path of $T$ and $p(T)$ be the number of edges of $P$. By Theorem 3.1, $r c_{1,2}(T) \leq \min \{m(T), m(T)+3-p(T)\}$. If $p(T)>3$, then $r c_{1,2}(T) \leq m(T)+3-p(T)$. So $m(G) \leq m(T)+3-p(T)$, a contradiction to $m(T) \leq m(G)$.

Now, $p(T) \leq 3$. Since $T$ is a tree, we conclude that $T \cong S_{n}$ or $T \cong T_{n_{1}, n_{2}}$ [1]. On the other hand, $m(G)=r c_{1,2}(G) \leq r c_{1,2}(T) \leq m(T)$. It can be readily deduced that $G \cong T$ i.e. $G$ is a tree. Therefore, $G \cong S_{n}$ or $\cong T_{n_{1}, n_{2}}$.

Our result is obtained.

## REFERENCES

[1] D. B. West, 2001. Introduction to Graph Theory. Prentice Hall.
[2] G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, 2008. Rainbow connection in graphs. Math. Bohemica, 133, No. 1, pp. 85-98.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, 2011. Hardness and algorithms for rainbow connection. J. Comb. Optim., 21, pp. 330-347.
[4] X. Li, Y. Shi, Y. Sun, 2013. Rainbow connections of graphs: A survey. Graphs \& Combin., 29, pp. 1-38.
[5] X. Li, Y. Sun, 2012. Rainbow Connections of Graphs. Springer Briefs in Math., Springer, New York.
[6] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs. Tuza, 2012. Proper connection of graphs. Discrete Math., 312, pp. 2550-2560.
[7] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, 2016. On proper-path colorings in graphs. J. Combin. Math. Combin. Comput., 97, pp. 189-207.
[8] F. Huang, X. Li, 2020. Hardness results for three kinds of colored connections of graphs. Theoretical Computer Science, Vol. 841, No. 12, pp. 27-38.
[9] X. Li, C. Magnant, 2015. Properly colored notions of connectivity-a dynamic survey. Theory \& Appl. Graphs., Issue 1, Art. 2.
[10] Pham Ngoc Diep, 2021. A new condition for a graph having conflict free connection number 2 (in Vietnamese). HNUE Journal of Science, Vol. 66, pp. 25-29. DOI: 10.18173/2354-1059.2021-0003
[11] X. Li, C. Magnant, M. Wei and X. Zhu, 2016. Distance proper connection of graphs. arXiv:1606.06547 [math.CO]
[12] X. Li, C. Magnant, M. Wei, X. Zhu, 2018. Generalized rainbow connection of graphs and their complements, Discuss. Math. Graph Theory, 38, pp. 371-384.


[^0]:    Received September 6, 2021. Revised October 15, 2021. Accepted October 22, 2021. Contact Nguyen Thi Thuy Anh, e-mail address: anhntt@hvnh.edu.vn

