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A TWO-DIMENSIONAL SHALLOW FLOW MODEL 
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Abstract: The paper is dedicated to researching a numerical model for dam-break simulation, 
which is verified through a comparison between calculated results and observed data of two 
reference tests. The numerical model is applied to simulate the flooding wave for the Malpasset 
dam-break event, which occurred in southern France in 1959. This event is a unique opportunity 
for code validation due to the availability of extensive field data on the flooding wave. In this 
research, Finite Volume Method (FVM) is applied to solve Two-Dimensional Shallow Water 
Equations (2D SWE) on structured mesh. Also, flux difference splitting method is utilized to 
construct numerical solvers of SWE.  
Keywords: Finite Volume Method; Flux difference Splitting Method; Malpasset (France). 

1. INTRODUCTION1   
Finite Volume Method is considered as the most 
applied numerical strategy to simulate most 
complicated shallow water flow phenomena, for 
instant: transcritical and supercritical flows, 
discontinuous type flow or moving wet/dry 
front, etc. Besides, the numerical simulation of 
natural case study is characterized by several 
problems, such as: complex geometry, high 
roughness coefficient. Dam-break problem over 
real geometrical irregularities and rough bottom 
is always a big challenge in simulating flood 
wave on downstream. Thus, a stable algorithm, 
can work with 2D meshes and provided with 
shock-capturing ability is needed (Valiani et al, 
2002). The effectiveness and robustness 
demonstrated by comparing numerical results 
with observed ones of the reference test cases, 
indicating good application aspects is an 
important goal of this project. A well-known 
test case Malpasset (France) which has 
experiment data is applied to obtain hydraulic 
characters: water hydrographs, maximum water 
level or arrival time at survey points and 
inundation maps at certain time.  

                                                
1 Thuyloi University. 

2. NUMERICAL MODEL 
2.1. Governing mathematical scheme 
The conservation form of 2D SWE can be 

written as (Cunge et al, 1980): 
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In (1), U is the vector of conserved variables; 

K and H are flux vectors; S1 and S2 are bed 
slope term and friction term. 
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in which x and y are bottom shear stress 
given by: 
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where: h is flow depth, u and v are the 
velocity components in x and y directions. zb is 
bottom elevation; n is Manning roughness 
coefficient; g is the acceleration due to gravity. 

2.2. Numerical scheme 
The flow variables are updated to a new time 

step by the Eq. 5, based on Godunov type, 
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where superscripts denote time levels; 
subscripts i and j are space indices along x and y 
directions; t, x, y are time step and space 
sizes of the computational cell. 

Flux Difference Splitting method is proposed 
by (Hubbard et al, 2000), which construct 

numerical solvers of SWE. The discretisation is 
performed so that retains an exact balance 
between flux gradients and source terms; Roe 
scheme is selected for approximation flux terms.  

Hence, the final numerical solution obtained 
by this scheme is represented in (6), 
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2.3. Wet/dry front treatment 
Roe method does not yield the correct flux at 

a boundary between a wet and dry cell 
(Bradford and Sanders, 2002). In finite volume 
based SW models, moving boundaries are 
considered as wet/dry fronts and hence included 
in the ordinary cell procedure in a through 
calculation that assumes zero water depth for 
the dry cells. A cell is considered dry if the 
water depth in the cell is below threshold value. 
A numerical technique based on the discrete 
form of the mass conservation equation which 
preserved steady state at the wet/dry front over 

was proposed by Brufau et al. (2002) to avoid 
difficulties in correspondence of adverse slopes.  

According to Brufau et al. (2002), a proper 
way to deal with this problem is represented by 
Fig. 1. In order to avoid numerical error, local 
redefinition of the bottom level difference at the 
interface is enforced to fulfill the mass 
conservation equation.  

 LRbLbR hhzz mod
      (7) 

where zbR is bottom elevation on the right 
cell; mod

bRz  is modified bottom; hL and hR are 
water depth on the left and the right cells as 
presented on the Fig. 1. 

 

 

Fig. 1. Modification of the bed slope in steady wet/dry fronts over adverse steep slopes in real  
and discrete representations (Brufau et al., 2002). 

 
The test case sketched in Fig. 2 demonstrates 

the effectiveness of the above treatment. The 
domain contains two islands, one of which is 
fully submerged while another one is partially 

submerged. The elevation of water is remained 
at rest 0.152m and discharge is set equal 0.0. 
Obviously, without treatment of wet/dry front 
the numerical solution is unphysical. 
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Fig. 2. Numerical solutions with and without 
wetting/drying front treatment. 

 
The proposed numerical model is written by 

Fotran 90 language. Several test cases with 
analytical or empirical results are simulated to 
validate it (Le, 2014). Such challenges in 
working with numerical model such as: 
oscillation unphysical result, satisfied C-
property or good tracking wet, dry fronts... are 
verified that this numerical model can be 

applied to a real case study – Malpasset 
(France) which has complex bathymetry and 
topography. 

3. VALIDATION 
3.1. Total dam-break flow over triangle 

obstacle  
One of the famous tests mentioned (see its 

configuration in Fig. 3) is provided by the 
Laboratory of Researches Hydraulics of Chatelet 
and the Free University of Bruxelles (Belgium). 
The width of channel is 1.0m, water depth in 
reservoir is 0.75m and total length of channel is 
38.0m. The height of obstacle is 0.4m. Manning 
coefficient n is set equal to 0.0125sm-1/3. For the 
simulation, the computational domain is divided 
by a uniform grid of 0.1m resolution and the 
computational time is 40s. Reflective boundary 
conditions are used at the upstream end and two 
lateral sides of the domain, while transmissive 
condition is imposed at the downstream end.  

 
Fig. 3. Sketch of test case of flow over triangular obstacle 

Firstly, the computational results of water surface 
profiles at different times are shown in Fig. 4. These 

solutions are quite close with the same ones published 
in (Kuiry et al, 2012) and (Guan et al, 2013). 
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Fig. 4. Water surface profiles at difference times: t = 3s; t = 5s; t = 10s; t = 20s. 

Secondly, the numerical solutions of water 
hydrographs obtained by the proposed scheme 
at different gauges G4, G10, G11, G13 are 
indicated in Fig. 5. The comparison shows that 
the predictions of arrival time and water depth 
have good agreement with measurement data at 
gauges G4, G10, G11. However, at gauge G13 (the 
crest of obstacle), a discrepancy of water depths 
of numerical solutions and experiment data 
appears, but the arrival time is still well-
predicted. 

The Nash-Sutcliffe model efficiency coefficient 

(E) is used to quantitatively describe the 
accuracy of model outputs for water depth at 
different study points by equation (8): 
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where Xobs is observed values and Xmodel is 
modeled values at time i. 

The Nash values at gauges G4; G10; G11 and 
G13 are 88.2%; 95.1%; 94.4% and 60.04%, 
respectively. It shows the above conclusion is 
correct 
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Fig.5. Water hydrographs at different sections: G4, G10, G11, G13 

3.2. Partial dam-break flow over horizontal 
floodable area  

(Aureli et al, 2011) also presented an 
experiment data of dam-break flow over 
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horizontal floodable area. Initial water depths in 
the reservoir and downstream of the gate are 
6.3cm and 1.27cm - 1.57cm, respectively. The 
initial water depth at the six gauge locations is 
slightly different (about 3mm) due to the 
deformation of the bottom of the experimental 
device, which was accurately measured and 
taken into account (see Fig. 6). 

In the numerical simulation, Manning coefficient 
n is 0.007sm-1/3 and a grid size x=y=5mm is used. 
The computational time is set equal to 20s while 

the threshold value of water depth is 0.0004m. 
Fig. 7 indicates water hydrographs at 6 study 

points. Globally, numerical result can capture 
well the trend of experimental hydrographs in 
all observed gauges. Especially arrival time to 
all the study points is very well captured (Fig. 
7). For instant, Fig 8 is zoom out of 5 seconds 
first of water hydrographs at gauges G3 and G6. 
A remarkable good matching between computed 
and measured arrival times to the different 
gauges is also observed in this figure. 

 

Fig. 6. Configuration of experiment test (dimension in cm). 
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Fig. 7. Water hydrographs at 6 gauges: G1; G2; G3; G4; G5; G6 

The Nash values at 6 gauges G1; G2; G3; G4; G5; 
G6 are: 90.5%; 87.46%; 94.08%; 89.82%; 84.0% 
and 89.77%, respectively. A very close agreement 

between experiment data and numerical solution is 
indicated. Thus, the proposed model is quite 
effective and robust in simulating dam break flow. 

G3

0

10

20

30

0 2.5 5t(s)

h(
m

m
)

 

G6

10

30

50

0 2.5 5t(s)

h(
m

m
)

 
Fig. 8. Well-capture shock wave at gauges G3 and G6 

4. APPLICATION 
In order to validate the capability of the 

presented model in simulating dam break 
flows referring to field-scale case studies, the 
well-known test case of Malpasset (France) is 
taken as a reference test. Actually, observed 
data as well as experimental results obtained 
by physical modeling are available for this 

dam break event. The Malpasset Dam was 
located at a narrow gorge of the Reyran River 
valley with water storage of 55106m3 and 
had a 66.5m high arch dam with a crest length 
of 233m. The dam failure occurred during the 
night of 2nd December 1959 because of heavy 
rain in the preceding days. A total of 433 
casualties were reported. 

 
Fig. 9. Location of survey points (Shi et al, 2013) 
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Fig. 10. Predicted inundation maps at different times: 600s and 2400s 

The initial water elevation is set equal to 
+100.0m a.s.l. The elevation of valley floor 
ranges from -20.0m to +107.0m a.s.l. Except in 
the reservoir and in the sea, the bottom is 
considered dry although the outlet gate was 
opened. The Manning coefficient is set to 
0.033sm-1/3. 

In this study, the 17200m  9200m 
computational domain is divided by a uniform 
mesh with 430230 cells, corresponding to grid 
size x=y=40m. The threshold water depth h 
is set up 10-4m to define wet, dry cell. 
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Fig. 11. Maximum water elevation at policy 

survey points 

Fig. 10 shows water depth and flooding 
extents at t = 600s and t = 2400s computed by 
presented scheme. Meanwhile, Fig. 11 compares 
the predicted maximum water elevations at 
given study points (see their positions in Fig. 9) 
with those obtained by policy survey and other 
numerical results taken from (Huang et al, 
2013), (Shi et al, 2013) and (Valiani et al, 
2002). A good agreement is observed at all 
survey points. 
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Fig. 12. Water hydrographs at policy  
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Figure 12 illustrates water hydrographs at 
different gauges, and indicates the numerical 
results of arrival time to these points. The close 
agreement can be seen between predicted 
solutions with experiment data and other 
numerical solutions in the Fig. 13. At points S10 
and S13, numerical errors are +8.4% and -3.5%, 
respectively, better than Shi’s results (+12.9% and 
-5.76%). However, the opposite trend is shown at 
point S9 (+15.2% in comparison with +7.6%). 
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Fig. 13. Arrival time of the wave front at gauges 

in physical model 
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5. CONCLUSIONS 
In this work, FVM is selected to solve 2D-

SWEs on Cartesian mesh, FDS method is 
utilized to remain exactly balance between flux 
gradients and source terms. By two tests 
presented in this paper, the scheme demonstrated 
to behave satisfactorily with respect to their 
effectiveness and robustness in simulating total 
and partial dam-break flow over complex 

topographies, which can be able to work with 
real case study. The dam-break flood flow from 
Malpasset reservoir (France) is simulated by 
using presented model to obtain outflow 
hydrograph and flooding map. The numerical 
solutions are quite close with others in different 
works. It can be seen that this model is an 
indispensable tool for calculating and simulating 
scenarios if a dam-break occurs. 
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Tóm tắt: 
MÔ PHỎNG SỰ CỐ VỠ ĐẬP MALPASSET (PHÁP) BẰNG MÔ HÌNH  

TOÁN DÒNG CHẢY SÓNG NƯỚC NÔNG HAI CHIỀU 
 

Bài báo này nghiên cứu về việc xây dựng một mô hình toán để mô phỏng sự cố vỡ đập. Mô hình đã 
được kiểm định bằng cách so sánh kết quả tính toán với số liệu thực đo của hai thí nghiệm. Mô hình 
toán được sử dụng để mô phỏng dòng chảy lũ khi xảy ra sự cố vỡ đập Malpasset ở Pháp năm 1959. 
Đây là cơ hội hy hữu để kiểm định mô hình toán  vì có đầy đủ các số liệu thực đo và thực nghiệm 
mô hình. Trong nghiên cứu này phương pháp thể tích hữu hạn đã được sử dụng để giải hệ phương 
trình sóng nước nông hai chiều trên lưới có cấu trúc. Ngoài ra, thuật toán phân chia thông lượng 
đã được ứng dụng để tìm lời giải số cho hệ phương trình sóng nước nông. 
Từ khóa: Phương pháp thể tích hữu hạn; thuật toán phân chia thông lượng; Malpasset (Pháp). 
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