
Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

59

A NETWORKED RENDERING PARADIGM FOR REMOTE RENDERING

Nguyen Thanh Dong, Le Dieu Linh1

Received: 15 March 2017 / Accepted: 7 June 2017 / Published: July 2017

©Hong Duc University (HDU) and Hong Duc University Journal of Science

Abstract: Advances in 3D graphics make it possible to generate highly realistic 3D models

which usually contain a huge number of polygons. This large number of polygons gives rise to

many challenges with respect to real-time rendering performance, storage requirements, and

the transmission of graphics dataset over the network. In this paper, a networked rendering

paradigm based on our pipeline-splitting method is introduced to facilitate the remote

rendering system. Experimental results show that our method can reduce memory cost and

computational workload for the client compared to that of client-side method.

Keywords: Remote rendering, cloud computing, networked graphics.

1. Overview

As 3D models are becoming more realistic, it is challenging to render such models in

real time due to the limited resources on mobile devices. As a result, there is a need to make

use of client/server architecture in order to offload graphics rendering workload to the remote

server leaving only minor tasks on the client-side. In general, methods related to the rendering

of 3D graphics in the network environment can be roughly divided into three major

categories: client-side method, server-side method, and hybrid method.

Client-side method:

In this method, the client is fully responsible for rendering the entire 3D models and the

server simply sends graphics data to the client. A conventional way of client-side rendering is

to transmit graphics commands to the client to be processed at the client [1, 2]. This method

can reduce workload at the server, but it increases the processing demand on the client. This is

suited for small applications but is insufficient for applications that require high rendering

power. Moreover, graphics data to be transmitted to the client may be large leading to a long

downloading time. To make it possible for the transfer of large models, the server performs

the simplification and conversion to calculate a progressive representation composed of a

Nguyen Thanh Dong

Faculty of Information and Communication Technologies, Hong Duc University

Email: Nguyenthanhdong@hdu.edu.vn ()

Le Dieu Linh

Department of Information System, Hong Duc University

Email: Ledieulinh1504@gmail.com ()

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

60

simplified model and a series of refinements that the client will progressively download and

display [3-5].

Server-side method:

In contrast to the client-side method, this method involves the server as completely

responsible for graphics processing. The server renders the 3D scenes and transmits the

rendered images to the client to be displayed [6-8]. This is highly beneficial to thin clients

which often lack specialized hardware and are memory-limited [9-11]. However, the

limitation of this method is that the server may become congested when serving a large

number of clients and an appropriate network connection needs to exist. This maybe fine for

fixed type networks but not appropriate for wireless networks. In addition, the latency due to

the constant transmission of rendered images from the server to client may cause a reduction

of interactivity. This is also costly in terms of network bandwidth. Image based rendering

(IBR) techniques can be implemented in the client to improve frame rates and to deal with the

transmission delay [12, 13]. However, there are some tradeoffs between the image quality and

transmission latency [8].

Hybrid method:

In this method, both the client and server get involved in the rendering process.

Rendering tasks are partially accomplished at the server and the remainder is performed at the

client. The rendering workload can be shared between the server and client [14, 15]. However,

deciding which parts to be performed at the client and which parts to be performed at the

server is not an easy task. Noguera, et al., [14] proposed a technique to split the rendering

workload between the server and the client based on the view volume. The client is

responsible for rendering the terrain which is close to the viewer and the server renders the

terrain far away from the viewer. Diepstraten, et al., [16], in a different manner, split up the

image generation in order to balance workload between the client and the server. The server

partially renders the 3D scene and sends 2D primitives to be processed on the client.

However, this may lead to the downgrading of image quality since the client has to rely on

feature lines abstracted from 3D models to draw the image.

In this paper, we introduce a new networked paradigm for remote rendering. A novel

method to split the rendering pipeline is proposed aiming to break the rendering workload

from the point that geometry processing is performed at the server, leaving the remaining

parts to be done at the client. Different from conventional pipeline-splitting approaches, our

approach relies on transform feedback mode1 to obtain data from the buffer object in the

graphics card, hence achieve hardware acceleration for geometry processing. Various 3D

models have been experimented with our framework, the experimental results shown that our

method can minimize memory cost and computational workload at the client and the

processing time at the server.

1 http://www.opengl.org/registry/specs/NV/transform_feedback.txt

Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

61

2. Rendering pipeline analysis

In general, a rendering pipeline typically consists of a number of stages including

vertex processing, geometry processing, rasterization, and fragment processing. For the sake

of simplicity, we consider the pipeline with only two separated stages. The first stage named

geometry processing is responsible for vertex transformations, lighting calculations, and

triangle assembly. The second stage named rasterization is a combination of clipping/culling,

rasterization, and fragment processing.

Figure 1. The analytical rendering pipeline

From this perspective, we present an analysis of the rendering pipeline in terms of

processing time. It is worth noting that the determination of the most time-consuming stage in

the graphics rendering pipeline is challenging as each stage depends on various factors. For

example, the processing time at the geometry processing stage depends on the number of

primitives while the processing time at rasterization stage depends on the number of input

primitives, the viewing angle, and the image resolution.

Let Tp be the processing time of the entire pipeline, and Tg be the processing time of

geometry processing stage. The total execution time Tp is equal to the sum of the execution

times for the two stages: geometry processing and rasterization. Tg can be roughly estimated

by disabling rasterization stage to prevent primitives from being rasterized. Note that we do

not take into account the time taken to clear and swap the buffer during the rendering for the

sake of simplicity.

(a) (b)

Figure 2. Processing time at geometry processing stage compared to the rendering time in

case of dragon model- graphics card: NVIDIA GeForce 9500GT (a) the number of faces is

less than 100k (b) the number of faces ranging from 100k to 1M

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

62

Figure 3. Processing time at geometry processing stage compared to the rendering time in

case of happy model- graphics card: NVIDIA GeForce 9500GT (a) the number of faces is less

than 100k (b) the number of faces ranging from 100k to 1M

(a) (b) (c) (d)

Figure 4. 3D models are used in the test

We consider the impact of the image resolution and the number of primitives to the

processing time at geometry processing stage and the rendering time of the entire pipeline.

Figure 3, 4, 5 demonstrate some experimental results obtained from the test. This shows that

for complex 3D models and small image size, tremendous amount of time is spent at geometry

processing stage. Therefore, it is desirable to offload geometry processing stage to a dedicated

server, and the rasterization is handled at the client. This can balance the rendering workload

between the client and the server to some extent.

3. Networked rendering framework

In this section, we describe a scheme for remote rendering based on our pipeline-

splitting method. At first, we present a paradigm for a networked rendering pipeline that

extends the traditional rendering pipeline to include network transmission of geometry data.

The rendering pipeline is divided in a way that some stages of it are offloaded to the remote

server and the remainders remain at the client.

(a) (b)

Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

63

Figure 5. Different architectures of networked rendering pipeline, (a) the entire pipeline is

placed on server, (b) geometry is placed on server, rasterization is on client, (c) the entire

pipeline is placed on client

Pipeline splitting

Typically, the rendering pipeline resides on a single machine. It is difficult to achieve

pipeline splitting due to the tight coupling of geometry and rasterization stage. Williams et al.

[17, 18] proposed a method to separate the geometry stage and rasterization stage by adding

two extensions to OpenGL library: triangle-feedback and triangle-rasterize. The triangle-

feedback function passes all primitives through the geometric portion without rasterizing them

and the triangle-rasterize function takes the data from geometric portion then put it into

rasterization stage. To achieve hardware acceleration for rasterization, a vertex program is

implemented to pass primitives into the hardware rasterizer on the graphics card. Graphics

hardware acceleration, however, remains uncompleted for geometry processing. Banerjee, et

al., [19, 20] combined Mesa3D2 and socket networking code together to build RMesa which

can split up the rendering pipeline into sub stages. The client can offload some stages in the

pipeline to the remote server to be processed and then get the result back. Unfortunately, the

approach offers no graphics hardware-acceleration for both geometry processing and

rasterization. In our research, we split the rendering pipeline based on transform feedback

mode. The use of transform feedback makes it possible to capture vertex attributes of the

primitives processed by geometry processing stage. Vertex attributes are selected to store in a

buffer, or several buffers separately which can be retrieved sometime later. The rest of

pipeline can be discarded by disabling rasterization stage to prevent primitives from being

rasterized. This way uncouples geometry processing stage from rasterization stage. The

2 http://www.mesa3d.org/

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

64

transformed primitives copied from transform feedback buffer then can be rasterized in a

different machine by simply put it back to the buffer without passing any transformation

parameters. It is worth noting that the entire process happens inside the pipeline, therefore an

advantage of our method is that it supports hardware-acceleration to both geometry processing

and rasterization stage.

Figure 6. Transform feedback operation-vertices are transformed and stored in the transform

feedback buffer object which can be obtained in the middle

Remote rendering based on pipeline-splitting method

In this section, we introduce a remote rendering framework making use of pipeline-

splitting method that we have presented earlier. The basic concept is similar to image-based

rendering, the major difference is that the sever sends back transformed primitives instead of

rendered images to the client.

Figure 7. Client-server architecture for the proposed framework

Table 1. Notation 1

Symbols Quantity

F List of faces constructed the mesh

Fc The remaining faces after culling

M, N The number of faces stored in F and Fc respectively

CHUNK Number of faces stored in a packet

p Number of packets to be sent to the client

Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

65

In our proposed framework, the server performs geometry processing on demand

according to the viewing parameters received from the client. The back-face culling method

then is employed to cull invisible primitives from transformed ones. The remaining primitives

then are packaged to be sent to the client for rasterization.

To deal with restrictions in network performance and bandwidth, we take into account

the network protocol for the data transmission. For the sake of transmission efficiency, it is

important that UDP is employed for data transmission and TCP is used for exchanging

messages and commands. To further reduce the latency, graphics content is packetized or can

be compressed prior to the transmission. A chunk of primitives is grouped in a packet to be

sent to the client for further processing. The number of packets to be sent for the rendering of

a frame can be calculated as follows:

p = M/CHUNK = αN/CHUNK where α = M/N is culling ratio (0 < α 1).

Transmission latency

Supposed that the time taken to transmit a packet to the client is pt . pt depends on

network capacity (bw) and the size of packet p p p(s) : t =s /bw .

Let T be the transmission time of all primitives after performing back-face culling. This

is equivalent to the transmission of ppackets:

p pT = p×t = αN/CHUNK ×(s /bw)

It can be seen that the transmission latency is linearly proportional to the number of

faces (N).

Table 2. Time to transmit a packet

CHUNK
pt (secs)

10 Mbps 100 Mbps

600 0.03456 0.003456

300 0.01728 0.0017728

200 0.01152 0.001152

100 0.00576 0.000576

Table 3. A theoretical estimation of the time it takes to transmit 3D models with different level

of details (CHUNK=600)

N P
T (secs)

10 Mbps 100 Mbps

10000 17 0.58752 0.058752

20000 34 1.17504 0.117504

40000 67 2.31552 0.231552

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

66

60000 100 3.456 0.3456

80000 134 4.63104 0.463104

100000 167 5.77152 0.577152

4. Experimentation

We have implemented a remote rendering system on Windows in C++ using OpenGL

making use of the proposed pipeline-splitting method to split the rendering workload between

the server and client. The server we used in the test is Intel ® Core ™ i7 CPU, 3.24 GB of

RAM, with NVIDIA GeForce 9500. A DELL T6600, Intel® Core™ 2 Duo CPU 2.2 GHz, 2G

RAM is used as a client.

Processing time in the pipeline

We make a comparison between local rendering and our method in terms of processing

time in the rendering pipeline at the client. As the number of faces being processed at the

client has been reduced and geometry processing has been carried out at the remote server, our

method can reduce the processing time at the client.

Table 4. A comparison between our proposed method and local rendering in terms

of processing time

Model Num of verts Num of faces Local rendering (secs) Our method (secs)

Beethoven 2521 5030 0.0042 0.0027

Car 5247 10474 0.0072 0.0048

Ateneam 7546 15014 0.0100 0.0060

Dragon 10006 20000 0.0170 0.0080

Venus 19847 43357 0.0320 0.0180

Bunny 34834 69451 0.0486 0.0276

We compare our method with server-side rendering in terms of processing time at

the server. In case of server-side rendering, we measure the processing time of the entire

pipeline plus the time taken to copy data from the frame buffer to CPU. For our method,

we measure the processing time at geometry processing stage and the time to copy data

from the transform feedback buffer. When the number of primitives to be processed is

small and the image size is large, the processing time at the server is significantly reduced

in our method compared to that of server-side rendering. Note that when the fragment

processing is relatively cheap, the transform feedback could end up being a major

bottleneck leading to more processing time at the server in our method compared to that

of server-side rendering.

Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

67

Figure 8. A comparison between server-side rendering and our method in terms of processing

time tested with dragon model

Figure 9. A comparison between server-side rendering and our method in terms of processing

time tested with happy model

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

68

Storage requirements

After back-face culling3 is performed at the server, only visible faces are sent to clients

for further processing. Therefore, the amount of faces to be handled at the client is

significantly reduced. As can be seen in the Figure below, about 40-50% of the faces are

actually processed at the client. As such, our method would be of great benefits to thin clients

since they are limited in their storage capacity.

Figure 10. Average number of faces processed at the client

Network communication

The data transfer capability is considered a major bottleneck in the remote rendering.

Network communication for the proposed framework is built on TCP/IP sockets. We employ

UDP for the transmission of graphics datasets and TCP for sending commands from client to

server and vice versa. We have previously presented a theoretical analysis of transmission

latency in previous section. Therefore, this experiment is also able to verify the theoretical

analysis of our proposed framework. Our test is conducted in both a 10Mbps and 100Mbps

Ethernet connections. To further reduce the transmission latency, we can make use of a

compression/decompression technique. However, it is worth noting that the process of

compression/decompression may introduce some delays to the system.

Table 5. Transmission latency measured in different network connections

Model Num of faces
Latency (seconds)

10 Mbps 100 Mbps

Shark 734 0.0380 0.0043

Apple 1704 0.0750 0.0084

3 https://en.wikipedia.org/wiki/Back-face_culling

Hong Duc University Journal of Science, E.3, Vol.8, P (59 - 70), 2017

69

Ant 912 0.0380 0.0044

Beethoven 5030 0.1778 0.0199

Car 10474 0.3432 0.0337

Ateneam 15014 0.3840 0.0469

Big dodge 16646 0.5261 0.0543

Dragon 1 20000 0.6247 0.0641

Dragon 2 35000 1.0741 0.1117

Venus 43357 1.2881 0.1359

Bunny 69451 2.1737 0.2124

5. Conclusion

In this paper, we have investigated the graphics rendering pipeline in terms of

processing time. We have proposed a networked rendering paradigm based on our pipeline-

splitting method to facilitate remote rendering. It is shown that our method can reduce

memory cost and computational workload at the client compared to that of client-side

rendering and processing time at the server compared to that of server-side rendering. The

work also can be applied to distributed-rendering as we can distribute geometry processing

and rasterization to be handled on different machines in the cloud. It is worth noting that our

framework can work with pretty large 3D models, however, there must be a limit since the

residual list is linearly proportional to the number of faces of the 3D model.

References

[1] G. Jung and S. Jung (2006), A Streaming Engine for PC-Based 3D Network Games

onto Heterogeneous Mobile Platforms, in Technologies for E-Learning and Digital

Entertainment. vol. 3942, Z. Pan, R. Aylett, H. Diener, X. Jin, S. Göbel, and L. Li, Eds.,

ed: Springer Berlin / Heidelberg, pp. 797-800.

[2] A. Mohr and M. Gleicher (2002), HijackGL: reconstructing from streams for stylized

rendering, presented at the Proceedings of the 2nd international symposium on Non-

photorealistic animation and rendering, Annecy, France, pp.13-ff.

[3] G. Hesina and D. Schmalstieg (1998), A Network Architecture for Remote Rendering,

presented at the Proceedings of the Second International Workshop on Distributed

Interactive Simulation and Real-Time Applications, pp.88.

[4] M. Isenburg and P. Lindstrom (2005), Streaming meshes, in Visualization, 2005. VIS

05. IEEE, 2005, pp. 231-238.

[5] H. T. Vo, S. P. Callahan, P. Lindstrom, V. Pascucci, and C. T. Silva (2007), Streaming

Simplification of Tetrahedral Meshes, Visualization and Computer Graphics, IEEE

Transactions on, vol. 13, pp. 145-155.

Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017

70

[6] X. Liu, H. Sun, and E. Wu (2000), A hybrid method of image synthesis in IBR for novel

viewpoints, presented at the Proceedings of the ACM symposium on Virtual reality

software and technology, Seoul, Korea.

[7] Z. J. Y. Lei, D. Chen, and H. Bao (2004), Image-Based Walkthrough over Internet on

Mobile Devices, in Proc. GCC Workshops, pp. 728-735.

[8] Y. a. C.-O. Mann, D. (1997), Selective Pixel Transmission for Navigating in Remote

Virtual Environments, Eurographics '97, Volume 16, Number 3.

[9] A. Boukerche, T. Huang, and R. W. N. Pazzi (2005), A real-time transport protocol for

image-based rendering over heterogeneous wireless networks, presented at the

Proceedings of the 8th ACM international symposium on Modeling, analysis and

simulation of wireless and mobile systems, Montral, Quebec, Canada.

[10] A. Boukerche, F. Jing, and R. B. de Araujo (2006), A 3D image-based rendering

technique for mobile handheld devices, in World of Wireless, Mobile and Multimedia

Networks, International Symposium, pp. 7 pp.-331.

[11] F. Lamberti and A. Sanna (2007), A Streaming-Based Solution for Remote Visualization

of 3D Graphics on Mobile Devices, Visualization and Computer Graphics, IEEE

Transactions on, vol. 13, pp. 247-260.

[12] P. Bao and D. Gourlay (2003), Low bandwidth remote rendering using 3D image

warping, in Visual Information Engineering, 2003. VIE 2003. International Conference

on, 2003, pp. 61-64.

[13] P. Bao and D. Gourlay (2006), A framework for remote rendering of 3-D scenes on

limited mobile devices, Multimedia, IEEE Transactions on, vol. 8, pp. 382-389.

[14] J. M. Noguera, R. J. Segura, C. J. Ogáyar, and R. Joan-Arinyo (2011), Navigating large

terrains using commodity mobile devices, Computers & Geosciences, vol. 37, pp.

1218-1233, 2011.

[15] M. Levoy (1995), Polygon-assisted JPEG and MPEG compression of synthetic images,

presented at the Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques.

[16] J. Diepstraten, M. Gorke, and T. Ertl (2004), Remote Line Rendering for Mobile

Devices, presented at the Proceedings of the Computer Graphics International.

[17] J. L. Williams and R. E. Hiromoto (2005), Sort-middle multi-projector immediate-mode

rendering in Chromium, in Visualization. VIS 05. IEEE, 2005, pp. 103-110.

[18] J. L. Williams and R. E. Hiromoto (2003), A proposal for a sort-middle cluster

rendering system, in Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications, 2003. Proceedings of the Second IEEE International

Workshop on, 2003, pp. 36-38.

[19] K. S. Banerjee and E. Agu (2005), Remote execution for 3D graphics on mobile

devices, in Wireless Networks, Communications and Mobile Computing, International

Conference on, 2005, pp. 1154-1159 vol.2.

[20] E. Agu, B. Kutty, N. Shirish, O. Rekutin, and D. Kramer (2005), A middleware

architecture for mobile 3D graphics, in Distributed Computing Systems Workshops.

25th IEEE International Conference on, 2005, pp. 617-623.

