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Abstract: Advances in 3D graphics make it possible to generate highly realistic 3D models 

which usually contain a huge number of polygons. This large number of polygons gives rise to 

many challenges with respect to real-time rendering performance, storage requirements, and 

the transmission of graphics dataset over the network. In this paper, a networked rendering 

paradigm based on our pipeline-splitting method is introduced to facilitate the remote 

rendering system. Experimental results show that our method can reduce memory cost and 

computational workload for the client compared to that of client-side method. 
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1. Overview 

As 3D models are becoming more realistic, it is challenging to render such models in 

real time due to the limited resources on mobile devices. As a result, there is a need to make 

use of client/server architecture in order to offload graphics rendering workload to the remote 

server leaving only minor tasks on the client-side. In general, methods related to the rendering 

of 3D graphics in the network environment can be roughly divided into three major 

categories: client-side method, server-side method, and hybrid method. 

Client-side method: 

In this method, the client is fully responsible for rendering the entire 3D models and the 

server simply sends graphics data to the client. A conventional way of client-side rendering is 

to transmit graphics commands to the client to be processed at the client [1, 2]. This method 

can reduce workload at the server, but it increases the processing demand on the client. This is 

suited for small applications but is insufficient for applications that require high rendering 

power. Moreover, graphics data to be transmitted to the client may be large leading to a long 

downloading time. To make it possible for the transfer of large models, the server performs 

the simplification and conversion to calculate a progressive representation composed of a 
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simplified model and a series of refinements that the client will progressively download and 

display [3-5]. 

Server-side method: 

In contrast to the client-side method, this method involves the server as completely 

responsible for graphics processing. The server renders the 3D scenes and transmits the 

rendered images to the client to be displayed [6-8]. This is highly beneficial to thin clients 

which often lack specialized hardware and are memory-limited [9-11]. However, the 

limitation of this method is that the server may become congested when serving a large 

number of clients and an appropriate network connection needs to exist. This maybe fine for 

fixed type networks but not appropriate for wireless networks. In addition, the latency due to 

the constant transmission of rendered images from the server to client may cause a reduction 

of interactivity. This is also costly in terms of network bandwidth. Image based rendering 

(IBR) techniques can be implemented in the client to improve frame rates and to deal with the 

transmission delay [12, 13]. However, there are some tradeoffs between the image quality and 

transmission latency [8]. 

Hybrid method: 

In this method, both the client and server get involved in the rendering process. 

Rendering tasks are partially accomplished at the server and the remainder is performed at the 

client. The rendering workload can be shared between the server and client [14, 15]. However, 

deciding which parts to be performed at the client and which parts to be performed at the 

server is not an easy task. Noguera, et al., [14] proposed a technique to split the rendering 

workload between the server and the client based on the view volume. The client is 

responsible for rendering the terrain which is close to the viewer and the server renders the 

terrain far away from the viewer. Diepstraten, et al., [16], in a different manner, split up the 

image generation in order to balance workload between the client and the server. The server 

partially renders the 3D scene and sends 2D primitives to be processed on the client. 

However, this may lead to the downgrading of image quality since the client has to rely on 

feature lines abstracted from 3D models to draw the image. 

In this paper, we introduce a new networked paradigm for remote rendering. A novel 

method to split the rendering pipeline is proposed aiming to break the rendering workload 

from the point that geometry processing is performed at the server, leaving the remaining 

parts to be done at the client. Different from conventional pipeline-splitting approaches, our 

approach relies on transform feedback mode1 to obtain data from the buffer object in the 

graphics card, hence achieve hardware acceleration for geometry processing. Various 3D 

models have been experimented with our framework, the experimental results shown that our 

method can minimize memory cost and computational workload at the client and the 

processing time at the server. 

                                                      
1 http://www.opengl.org/registry/specs/NV/transform_feedback.txt 
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2. Rendering pipeline analysis 

In general, a rendering pipeline typically consists of a number of stages including 

vertex processing, geometry processing, rasterization, and fragment processing. For the sake 

of simplicity, we consider the pipeline with only two separated stages. The first stage named 

geometry processing is responsible for vertex transformations, lighting calculations, and 

triangle assembly. The second stage named rasterization is a combination of clipping/culling, 

rasterization, and fragment processing. 

 

Figure 1. The analytical rendering pipeline 

From this perspective, we present an analysis of the rendering pipeline in terms of 

processing time. It is worth noting that the determination of the most time-consuming stage in 

the graphics rendering pipeline is challenging as each stage depends on various factors. For 

example, the processing time at the geometry processing stage depends on the number of 

primitives while the processing time at rasterization stage depends on the number of input 

primitives, the viewing angle, and the image resolution. 

Let Tp be the processing time of the entire pipeline, and Tg be the processing time of 

geometry processing stage. The total execution time Tp is equal to the sum of the execution 

times for the two stages: geometry processing and rasterization. Tg can be roughly estimated 

by disabling rasterization stage to prevent primitives from being rasterized. Note that we do 

not take into account the time taken to clear and swap the buffer during the rendering for the 

sake of simplicity. 

  

(a) (b) 

Figure 2. Processing time at geometry processing stage compared to the rendering time in 

case of dragon model- graphics card: NVIDIA GeForce 9500GT (a) the number of faces is 

less than 100k (b) the number of faces ranging from 100k to 1M 
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Figure 3. Processing time at geometry processing stage compared to the rendering time in 

case of happy model- graphics card: NVIDIA GeForce 9500GT (a) the number of faces is less 

than 100k (b) the number of faces ranging from 100k to 1M 

    
(a) (b) (c) (d) 

Figure 4. 3D models are used in the test 

We consider the impact of the image resolution and the number of primitives to the 

processing time at geometry processing stage and the rendering time of the entire pipeline. 

Figure 3, 4, 5 demonstrate some experimental results obtained from the test. This shows that 

for complex 3D models and small image size, tremendous amount of time is spent at geometry 

processing stage. Therefore, it is desirable to offload geometry processing stage to a dedicated 

server, and the rasterization is handled at the client. This can balance the rendering workload 

between the client and the server to some extent. 

3. Networked rendering framework 

In this section, we describe a scheme for remote rendering based on our pipeline-

splitting method. At first, we present a paradigm for a networked rendering pipeline that 

extends the traditional rendering pipeline to include network transmission of geometry data. 

The rendering pipeline is divided in a way that some stages of it are offloaded to the remote 

server and the remainders remain at the client. 

  

(a) (b) 
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Figure 5. Different architectures of networked rendering pipeline, (a) the entire pipeline is 

placed on server, (b) geometry is placed on server, rasterization is on client, (c) the entire 

pipeline is placed on client 

Pipeline splitting 

Typically, the rendering pipeline resides on a single machine. It is difficult to achieve 

pipeline splitting due to the tight coupling of geometry and rasterization stage. Williams et al. 

[17, 18] proposed a method to separate the geometry stage and rasterization stage by adding 

two extensions to OpenGL library: triangle-feedback and triangle-rasterize. The triangle-

feedback function passes all primitives through the geometric portion without rasterizing them 

and the triangle-rasterize function takes the data from geometric portion then put it into 

rasterization stage. To achieve hardware acceleration for rasterization, a vertex program is 

implemented to pass primitives into the hardware rasterizer on the graphics card. Graphics 

hardware acceleration, however, remains uncompleted for geometry processing. Banerjee, et 

al., [19, 20] combined Mesa3D2 and socket networking code together to build RMesa which 

can split up the rendering pipeline into sub stages. The client can offload some stages in the 

pipeline to the remote server to be processed and then get the result back. Unfortunately, the 

approach offers no graphics hardware-acceleration for both geometry processing and 

rasterization. In our research, we split the rendering pipeline based on transform feedback 

mode. The use of transform feedback makes it possible to capture vertex attributes of the 

primitives processed by geometry processing stage. Vertex attributes are selected to store in a 

buffer, or several buffers separately which can be retrieved sometime later. The rest of 

pipeline can be discarded by disabling rasterization stage to prevent primitives from being 

rasterized. This way uncouples geometry processing stage from rasterization stage. The 
                                                      
2 http://www.mesa3d.org/ 



Hong Duc University Journal of Science, E.3, Vol.8, P (59 -70), 2017 

 

64 

transformed primitives copied from transform feedback buffer then can be rasterized in a 

different machine by simply put it back to the buffer without passing any transformation 

parameters. It is worth noting that the entire process happens inside the pipeline, therefore an 

advantage of our method is that it supports hardware-acceleration to both geometry processing 

and rasterization stage. 

 

Figure 6. Transform feedback operation-vertices are transformed and stored in the transform 

feedback buffer object which can be obtained in the middle 

Remote rendering based on pipeline-splitting method 

In this section, we introduce a remote rendering framework making use of pipeline-

splitting method that we have presented earlier. The basic concept is similar to image-based 

rendering, the major difference is that the sever sends back transformed primitives instead of 

rendered images to the client. 

 

Figure 7. Client-server architecture for the proposed framework 

Table 1. Notation 1 

Symbols Quantity 

F List of faces constructed the mesh 

Fc The remaining faces after culling 

M, N The number of faces stored in F and Fc respectively 

CHUNK Number of faces stored in a packet 

p Number of packets to be sent to the client 
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In our proposed framework, the server performs geometry processing on demand 

according to the viewing parameters received from the client. The back-face culling method 

then is employed to cull invisible primitives from transformed ones. The remaining primitives 

then are packaged to be sent to the client for rasterization. 

To deal with restrictions in network performance and bandwidth, we take into account 

the network protocol for the data transmission. For the sake of transmission efficiency, it is 

important that UDP is employed for data transmission and TCP is used for exchanging 

messages and commands. To further reduce the latency, graphics content is packetized or can 

be compressed prior to the transmission. A chunk of primitives is grouped in a packet to be 

sent to the client for further processing. The number of packets to be sent for the rendering of 

a frame can be calculated as follows: 

p = M/CHUNK  = αN/CHUNK        where α = M/N is culling ratio (0 < α  1).  

Transmission latency 

Supposed that the time taken to transmit a packet to the client is pt . pt depends on 

network capacity (bw) and the size of packet p p p(s ) : t =s /bw . 

Let T be the transmission time of all primitives after performing back-face culling. This 

is equivalent to the transmission of ppackets: 

p pT = p×t  = αN/CHUNK ×(s /bw)    

It can be seen that the transmission latency is linearly proportional to the number of 

faces ( N). 

Table 2. Time to transmit a packet 

CHUNK 
pt (secs) 

10 Mbps 100 Mbps 

600  0.03456  0.003456 

300  0.01728 0.0017728 

200  0.01152  0.001152 

100  0.00576  0.000576 

Table 3. A theoretical estimation of the time it takes to transmit 3D models with different level  

of details (CHUNK=600) 

N P 
T (secs) 

10 Mbps 100 Mbps 

10000 17 0.58752 0.058752 

20000 34 1.17504 0.117504 

40000 67 2.31552 0.231552 
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60000 100 3.456 0.3456 

80000 134 4.63104 0.463104 

100000 167 5.77152 0.577152 

4. Experimentation 

We have implemented a remote rendering system on Windows in C++ using OpenGL 

making use of the proposed pipeline-splitting method to split the rendering workload between 

the server and client. The server we used in the test is Intel ® Core ™ i7 CPU, 3.24 GB of 

RAM, with NVIDIA GeForce 9500. A DELL T6600, Intel® Core™ 2 Duo CPU 2.2 GHz, 2G 

RAM is used as a client. 

Processing time in the pipeline 

We make a comparison between local rendering and our method in terms of processing 

time in the rendering pipeline at the client. As the number of faces being processed at the 

client has been reduced and geometry processing has been carried out at the remote server, our 

method can reduce the processing time at the client. 

Table 4. A comparison between our proposed method and local rendering in terms  

of processing time 

Model Num of verts Num of faces Local rendering (secs) Our method (secs) 

Beethoven 2521 5030 0.0042 0.0027 

Car 5247 10474 0.0072 0.0048 

Ateneam 7546 15014 0.0100 0.0060 

Dragon 10006 20000 0.0170 0.0080 

Venus 19847 43357 0.0320 0.0180 

Bunny 34834 69451 0.0486 0.0276 

We compare our method with server-side rendering in terms of processing time at 

the server. In case of server-side rendering, we measure the processing time of the entire 

pipeline plus the time taken to copy data from the frame buffer to CPU. For our method, 

we measure the processing time at geometry processing stage and the time to copy data 

from the transform feedback buffer. When the number of primitives to be processed is 

small and the image size is large, the processing time at the server is significantly reduced 

in our method compared to that of server-side rendering. Note that when the fragment 

processing is relatively cheap, the transform feedback could end up being a major 

bottleneck leading to more processing time at the server in our method compared to that 

of server-side rendering. 
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Figure 8. A comparison between server-side rendering and our method in terms of processing 

time tested with dragon model 

 

Figure 9. A comparison between server-side rendering and our method in terms of processing 

time tested with happy model 
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Storage requirements 

After back-face culling3 is performed at the server, only visible faces are sent to clients 

for further processing. Therefore, the amount of faces to be handled at the client is 

significantly reduced. As can be seen in the Figure below, about 40-50% of the faces are 

actually processed at the client. As such, our method would be of great benefits to thin clients 

since they are limited in their storage capacity. 

 

Figure 10. Average number of faces processed at the client 

Network communication 

The data transfer capability is considered a major bottleneck in the remote rendering. 

Network communication for the proposed framework is built on TCP/IP sockets. We employ 

UDP for the transmission of graphics datasets and TCP for sending commands from client to 

server and vice versa. We have previously presented a theoretical analysis of transmission 

latency in previous section. Therefore, this experiment is also able to verify the theoretical 

analysis of our proposed framework. Our test is conducted in both a 10Mbps and 100Mbps 

Ethernet connections. To further reduce the transmission latency, we can make use of a 

compression/decompression technique. However, it is worth noting that the process of 

compression/decompression may introduce some delays to the system. 

Table 5. Transmission latency measured in different network connections 

Model Num of faces 
Latency (seconds) 

10 Mbps 100 Mbps 

Shark 734 0.0380 0.0043 

Apple 1704 0.0750 0.0084 

                                                      
3 https://en.wikipedia.org/wiki/Back-face_culling 
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Ant 912 0.0380 0.0044 

Beethoven 5030 0.1778 0.0199 

Car 10474 0.3432 0.0337 

Ateneam 15014 0.3840 0.0469 

Big dodge 16646 0.5261 0.0543 

Dragon 1 20000 0.6247 0.0641 

Dragon 2 35000 1.0741 0.1117 

Venus 43357 1.2881 0.1359 

Bunny 69451 2.1737 0.2124 

5. Conclusion 

In this paper, we have investigated the graphics rendering pipeline in terms of 

processing time. We have proposed a networked rendering paradigm based on our pipeline-

splitting method to facilitate remote rendering. It is shown that our method can reduce 

memory cost and computational workload at the client compared to that of client-side 

rendering and processing time at the server compared to that of server-side rendering. The 

work also can be applied to distributed-rendering as we can distribute geometry processing 

and rasterization to be handled on different machines in the cloud. It is worth noting that our 

framework can work with pretty large 3D models, however, there must be a limit since the 

residual list is linearly proportional to the number of faces of the 3D model. 
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