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Abstract: In this paper, we present the techniques of simulation modelling for quantum 

dynamics of Kerr nonlinear coupler system which consists of two nonlinear quantum 

oscillators mutually coupled by continuous nonlinear interaction. We show that by using 

evolution operator formalism we can model the quantum system and derive the “exact” 

solution for finding the existence of nonclassical properties in terms of squeezing, 

antibunching, intermodal entanglement and their higher order counterparts under the effect of 

dissipation process.  
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1. Introduction 

Over last decades, there exists a rapid development of a particular interest in research 

of quantum correlations in multi-parties systems consisting of two or more subsystems. 

Such correlations are the significant problem from both the physical viewpoints and 

applications in quantum information theory [2,3,6,23]. These signature of nonclassicalities 

are related to different quantum features as squeezing, higher order squeezing, 

antibunching, higher order antibunching, intermodal entanglement, and higher-order 

entanglement. Squeezing can be defined in terms of the quadrature variance of a 

component, and used for the performance of continuous variable quantum information 

processing [6]. Antibunching can be defined by correlation function at zero delay. This 

phenomenon is used to build a high-quality single photon sources [23] and applied to 

perform quantum communication and quantum computation [6]. Entanglement plays an 

important role in implementation quantum cryptography, quantum teleportation, quantum 

key distribution [1,6,23]. Generation of those correlations in physical systems becomes one 

of the most important points. Therefore, finding physical models allowing for generating 

such states seems to be especially substantial. This paper aims to show how it is possible to 
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generate non-classicalities by using techniques of simulation modeling for quantum 

dynamics of Kerr-like nonlinear coupler system under effect of damping process. Quantum 

Kerr-like nonlinearity models are widely discussed in numerous applications. For instance, 

they are considered as a source of non-Gaussian motional states of trapped ions [21], and 

are discussed in a context of the Bell’s inequality violations [19]. Such models can also be 

applied in description of nanomechanical resonators and various optomechanical systems 

[20], Bose-Einstein condensates [18]. Thus, the modes of nonlinear directional coupler 

proved to be a promising device, easy treatment for finding numerical solutions and 

generating nonclassical effects and hence its quantumness.  

2. The model description and simulation method 

The considered system consists of two nonlinear Kerr-like oscillators mutually coupled 

by nonlinear interaction, where each oscillator corresponds to a single mode of the field 

labeled a and b [11] with not only the self-coupling term exits [12] but also so-called cross-

Kerr coupling is taken into account [10,15]. The Hamiltonian comprising all above- terms 

which describes the dynamics of the our system can be written as (assuming 1 ): 

int
ˆ ˆ ˆ ˆ

free nlH H H H    (1) 

Where 

† †ˆ ˆˆ ˆ ˆfree a bH a a b b    (2) 

is free renormalized Hamiltonian, 

†2 2 †2 2 † †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2

a b
nlH a a b b a ab b

 
     (3) 

describes Kerr-like media (involving cross-Kerr coupling), and 

†2 2 * †2 2
int

ˆ ˆˆ ˆ ˆH a b b a    (4) 

corresponds to the nonlinear interaction between two modes of the field. 

The parameters  a b  are proportional to the third-order susceptibility,   describes 

the cross-action process, whereas   means the strength of the nonlinear interaction. Since 

Hamiltonian system is expressed in term of bosonic creation and annihilation operators, we 

can present them as square matrices, for example of mode a: 

†

0 0 0 ... 0 0

1 0 0 ... 0 0

ˆ 0 2 0 ... 0 0

...

0 0 0 ... 1 0

a

n

 
 
 
 
 
 
 

 

    

 (5) 
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0 1 0 ... 0 0

0 0 2 ... 0 0

ˆ ... .

0 0 0 ... 0 1

0 0 0 ... 0 0

a

n

 
 
 
 
 
 
 
 

      (6) 

The creation (annihilation) operator  †ˆ ˆb b  for mode b can be also constructed by the 

same way. Assuming that the field was initially in the Glauber coherent states for the both 

modes as: 

 0     (7) 

Obviously, it is possible to construct those coherent states in Fock basis as: 
2 2

2 2

0 0

e ; e
! !

a b

a b

n n

a b

n na b

n n
n n

 
 

 
  

 

    (8) 

where   and   are equal to the mean number of photon by the following relation 

2†ˆ ˆ ˆ
an a a    and 

2†ˆ ˆˆ .bn b b    In consequence, we can easily express these 

states in the matrix presentation.  

The aim of our consideration is to check how interaction with external bath can 

influence on nonclassical properties generation. 

When the system is influenced by external bath, time-evolution of our system is 

described by the density matrix, which is a solution of the master equation, within the 

standard Markov approximation [4] as: 

     ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ,
a b

loss loss

d
i H H L L

dt


         (9) 

where appearing here Liouvillian of two-mode density matrix ̂ are given by 

   
loss

† † †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , ,
2

a a
a aL a a a a n a a


                     (10) 

   loss

† † †ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , ,
2

b b
b bL b b b b n b b


            

      
 (11) 

caused by amplitude damping [4]. The parameter  ,i i a b   is damping constants, 

whereas  ,in i a b  denotes the mean number of photon in thermal bath. Note that we have 

quiet “reservoirs” at zero temperature corresponding to the case 0,a bn n  and noisy 

“reservoirs” when the temperature is greater than zero corresponding to , 0a bn n  .  

Thank to quantum Monte Carlo, it is possible to solve operator equation (9) by 

appropriate standard numerical simulation using calculation of matrix exponentials and 
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advantage of considering super operators. Matlab computing language [16] is a 

appropriate software for performing our purposes due to their simplicity and ease of use even 

for computer users who are not very experienced in numerical calculations. 

3. The existence of nonclassical properties 

3.1. Squeezing and higher-order squeezing effect 

In order to investigate the single mode squeezing effect we define quadrature variances 

and principal squeezing variances [14,22] as: 

 † 2

'

1
ˆ ˆ ˆRe

2

a

a

S
a a a

S

              
 (12) 

 † 21
ˆ ˆ ˆ

2
a a a a      

  
 (13) 

where the fluctuation of operators are defined as 

ˆ ˆ ˆ ˆ ˆ ˆX Y X Y X Y     (14) 

The expectation value can be calculated from density matrix as  

 ˆ ˆˆTrX X  (15) 

Two mode squeezing can be defined from two mode quadrature variances and principal 

squeezing as [9]: 

    † † † 2 2 †

'
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 1 2Re Re 2

ab

ab

S
a a b b a b a b a b

S

                          
 (16) 

   † † † 2 2 †ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 1 2Re 2ab a a b b a b a b a b                    
 (17) 

One mode squeezing can be detected when quadrature variances and principal 

squeezing go below zero [8] and two mode squeezing can be observed in a quantum system 

if the two mode quadrature variances and principal squeezing are smaller than 2 [9]. In the 

Fig.1 we show the time-evolution of the squeezing parameters   ,a b
S  

'
a bS  and that of 

principal squeezing  a b  for single mode. For the chosen values of the parameters, 

squeezing cannot be created in  
'
a bS factors. Assuming that the amplitude of the initial 

coherent states α and β are real and equal to each other. Because of the equivalence, the 

lines for two modes are identical. From the behavior of squeezing factors and principle 

squeezing, we see that despite of effect of dissipation process, our system can give single 

mode squeezing in both modes a and b.  
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Figure 1. Evolution of one mode squeezing factor when initial coherent states are 

0.2,  0.2  , other parameters 2 2 1,a b     0.5,  0.001  . We assume that 

0a bn n   in Figure a) and 0.1a bn n   in Figure b) 

In the Figure 2 two-mode quadrature variances ,abS 'abS and two-mode principle 

squeezing ab are plotted. For the initial coherent states α=0.2, β=0.2, we see that the 

quadrature 'abS  does not give any signature of squeezing, contrary to abS  and ab which 

appear with a quite high intensity. Additionally, with non-zero temperature bath, one and two-

mode squeezing decay very slow in the time domain. Of course, when 0.1,a bn n   

squeezing effects degenerate faster than for non-zero temperature bath, we can conclude that 

our system is more sensitive with nonzero temperature bath. 

 
a) b)  

Figure 2. The time-evolution of two-mode quadrature variances when initial coherent states 

are 0.2,  0.2  , other parameters 2 2 1; 1,a b     0.5,  0.001  . We assume 

that 0a bn n  in Figure a) and 0.1a bn n  in Figure b) 
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One-and two-mode squeezing are widely applied in the literatures. However, they can 

be treated as the lowest order nonclassicality indicators, whereas there appear other criteria 

which are can be applied to test higher-order squeezing effect. In our consideration, for 

convenience we use the definition given by Hillery [5], that provides witness for the existence 

of higher-order nonclassicality through the two amplitude powered quadrature variables 

defined with use of higher power of creation and annihilation operators as: 

† †

1, 2,

ˆ ˆ ˆ ˆˆ ˆ,
2 2

k k k k

a a

a a a a
X X i

 
   (18) 

for the mode a, where k is a positive integer. Since two operators X̂ and Ŷ  do not 

commute, from uncertainty relation, we can obtain a condition of higher-order squeezing: 

 
21,

,
2,

1ˆ ˆ 0,
2

a

j a
a

H
X Z

H

       
   

 (19) 

where  1, 2j  and 1, 2,
ˆ ˆ ˆ,a aX X iZ    

. Of course, we obtain similarly the condition of 

higher-order squeezing for mode b. 

Time-evolution of  1, 1,a bH H  and  2, 2,a bH H  are plotted in Figure 3 to seek for the 

signal of higher order squeezing. From this figure, where negative parts of the plots depict 

signature of higher-order squeezing we can recognize that this nonclassical properties are 

present for the both: zero- and non-zero temperature bath. Of course, one can see that the 

effect of damping is more evident for the case depicted at the right-hand plots where the 

negative parts predominate. 

 

Figure 3. The time-evolution of  1, 1,a bH H  (solid line), and  2, 2,a bH H  (dashed line) when 

initial coherent states are 0.2,    other 

parameters 2 2 1;a b   1,  0.5,  0.001  . We assume that 0a bn n   in Figure a) 

and 0.1a bn n   in Figure b) 
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3.2. Antibunching and higher-order antibunching  

In quantum statistics, signatures of the single-mode case photon antibunching can be 

obtained in terms of the correlation function [15], later defined in terms of the creation and 

annihilation operators as:  

2
2 †2 2 †ˆ ˆ ˆ ˆ 0.aD a a a a    (20) 

More general the criteria to investigate the higher-order antibunching of the pure modes 

was first introduced by C.T.Lee [13], and afterwards was simply expressed by Pathak and 

Garcia [17] as 

† †ˆ ˆ ˆ ˆ 0.
k

k k k
aD a a a a    (21) 

When k=2 we return to the normal antibunching. 

 

Figure 4. The time-evolution of  2aD (solid line), and  2bD  (dashed line) when damping 

effects are assumed. The parameters are 2 2 1; 1,a b     0.5,  0.001  , 

0.2,  0.2  0a bn n  in Figure a) and 0.1a bn n  in Figure b)  

 

Figure 5. The time-evolution of  3aD  (solid line), and  4bD  for k=4 (dashed line) when 

damping effects are assumed. The parameters are the same as those for Figure 4 
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When the coherent single modes are equal (α=β), there does not exist any signature of 

normal and higher-order antibunching. If two initial coherent states are not equal, these effects 

might be pronounced. The existence of the normal and higher order antibunching in our 

system are shown in the Figure 4 and the Figure 5. From two figures, we can not observe any 

normal- and higher-order antibunching in mode b when the value of β is smaller than that of 

α. It is easy to recognize that for our system, this nonclassical property is evident when the 

initial states are setting up with smaller values of mean number of photons. The figures also 

illustrate the influence of damping processes due to the degeneration of aD  factor. For the 

case of the non-zero temperature bath, this factor is decayed faster. 

3.3. Intermodal entanglement 

There exist several entanglement criteria which would be directly applicable for 

multimode problems expressed in terms of expectation values of field operators. Among them, 

Hillery-Zubairy (HZ) criteria I and II [2,7] have obtained more attention due to simple 

computation, experimental practicability and their recent success in observing entanglement in 

various physical system. The HZ-I criterion can be generally expressed in terms of the 

creation and annihilation operators in the following way [8]: 

2
† † †ˆ ˆ ˆˆ ˆ ˆ 0kl k k l l k l

abE a a b b a b    (23) 

The HZ-II criterion, which is fulfilled for the separability states can be generalized for 

higher-order moments as [8]: 

2
' † †ˆ ˆ ˆˆ ˆ ˆ 0kl k k l l k l
abE a a b b a b    (24) 

When one of these inequalities is fulfilled, the multimode system is entangled. 

 

Figure 6. The time evolution of 2,1
abE (a) and 2,2

abE (b) in the presence of damping effects. The 

parameters are 2 2 1; 1.6,a b     0.5,  0.001,  0a bn n  . The initial coherent state 

is described by α =0 .5, β = 0.2 (solid line), β = 0.3 (dashed line), β=0.4 (dotted line), β = 0.5 

(dash-dotted line) 
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Figure 7. The time evolution of 2,1
abE (a) and 2,2

abE (b) the same as Figure 6 but for 0.1a bn n   

The plots of factors showing the existence of intermodal entanglement in coupled-mode 

influenced by damping processes are shown in Figure 6 and Figure 7. The negative parts of 

the plots 2,1
abE and 2,2

abE show us that higher-order intermodal entanglement is present in our 

system. Also, we observe that the deeper minima appear for the greater values of the 

parameters α and β determining initial coherent states. For the case of the non-zero 

temperature bath, the deterioration of the entanglement is faster than of zero one. Furthermore, 

it is not possible to detect the signatures of lowest and higher intermodal entanglement by 

using (24) criterion. Therefore, one can say that our Kerr-like coupler system including 

nonlinear interaction term is sensitive for the interaction with environment, but still it can be 

seen as a source of intermodal entanglement and its higher orders. 

4. Conclusions 

Various types of nonclassical effects in the model of the nonlinear Kerr-coupler such as 

squeezing, antibunching, inter-mode entanglement and their higher order counterparts have 

been observed. Using unitary evolution operator formalism we simulated quantum dynamics 

of system and found numerically the “exact” solutions for these factors under damping effect. 

We showed that despite of interacting with environment, the parameters considered here can 

be an indicator of the generation such nonclassical effects and hence, quantumness of the 

system. Additionally, it was easy to recognize that under the effect of damping, those 

properties do not exist for some of parameters, but can be generated with small value of mean 

number of photons for the initial coherent states. 
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