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Abstract: In this paper, we describe in detail some main occurrences of crossed modules. 

These are the common classes of crossed modules in algebra and topology. For every class of 

crossed modules, we also look for the analogues and show their special property. 
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1. Introduction 

Crossed modules (over groups) were invented almost 70 years ago by J. H. C. Whitehead 

in his work on combinatorial homotopy theory [10]. Whitehead's ideas on crossed modules and 

their applications were developed and explained in the book by R. Brown, P. J. Higgins, R. 

Sivera [1]. Some generalisations of the idea of crossed module were explained in the paper of G. 

Janelidze [3]. Recently, N. T. Quang and his co-workers have obtained some interesting 

concerning to extending the notion of crossed modules and solving the group extension 

problems of the type of a crossed module regards to the results of categorical theory [5, 6, 7, 8]. 

One can say that crossed modules have found important roles in many areas of 

mathematics including homotopy theory, homology and cohomology of groups, algebraic K-

theory, cyclic homology, combinatorial group theory, differential geometry, etc. Possibly 

crossed modules should be considered one of the fundamental algebraic structures. A crossed 

module is a quadruple ( , , , )B D d   satisfying two given conditions, where :d B D , 

: AutD B   are group homomorphisms. Giving a homomorphism : AutD B   means 

giving an action of D on B. In the works on crossed modules ([1, 2, 4]), the authors mention 

some examples of crossed modules, but they do not explain in detail the homomorphism 

: AutD B  (the action of D on B), in which in many cases this homomorphism is built not-

natural or in a flexible way. 

In this article we give an account of some of the main occurrences and uses of crossed 

modules in algebra and in topology in particular we give a detailed description of the 

homomorphisms :d B D , : AutD B  . These are: inclusion crossed modules, crossed 

modules of a module over a group ring, automorphism crossed modules of a group, semi-

direct product crossed modules, pullback crossed modules of a crossed module along a group 

homomorphism, crossed modules constructed from a pointed topological space. We also give 

the equivalent forms or properties of each class of crossed modules. 
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2. Crossed modules 

Definition. [10] A crossed module is a quadruple ( , , , )B D d  in which : ,d B D  

: AutD B   are goup homomorphisms (the homomorphism   we will conceive of as a 

map : D B B   , analogously to the adjoint action :G G G    of a group on itself) 

such that the two following diagrams commute: 

 

 
The two diagrams can be translated into equations, which may often be helpful. 

( ( ))( ') ( '),bd b b b   

( ( )) ( ( ))x xd b d b  , 

Where , , 'x D b b B  . 

The second equation is known as the Peiffer identity. 

If ( , , , ), ( ', ', ', ')B D d B D d   are crossed modules, a morphism,  

1 0( , ) : ( , , , ) ( ', ', ', ')f f B D d B D d   

of crossed modules consists of group homomorphisms 1 : 'f B B  and 0 : 'f D D  

such that the following diagram (of group homomorphisms) commutes 

 

and 1f  is an operator homomorphism, that is,  

01 ( ) 1( ) ' ( )x f xf b f b   

for all ,x D b B  . 

Crossed modules and their morphisms form a category denoted by Cross. 

For a fixed group D, there is a subcategory CrossD of Cross whose objects are those 

crossed modules with D as the “base”, i.e., all crossed module ( , , , )B D d   for this fixed D, 
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whose morphisms are morphisms 1 0( , )f f  from ( , , , )B D d   to ( ', , ', ')B D d   just those 

1 0( , )f f in Cross in which 0 :f D D  is the identity homomorphism on D. 

Below, we give some well known situations of crossed modules. 

3. Inclusion crossed modules  

Let B be a normal subgroup of a group D and :i B D  the inclusion, then we will say 

( , , )B D i  is a normal subgroup pair. The homomorphism 
0 : AutD B   is given by 

conjugation. Then, the quadruple 
0( , , , )B D i   is called a inclusion crossed module [4]. 

Conversely, it is easy to prove the following lemma. 

Lemma 1. [4] If ( , , , )B D d   is a crossed module, ( )d B  is a normal subgroup of D. 

The inclusion crossed module plays an important role in the group extension problem of 

the type of a crossed module [7]. It together with the general crossed module makes a 

homomorphism of crossed modules which is a constraint of this group extension problem. 

4. Crossed modules of a module over a group ring 

Let’s recall that if D is a group, the free abelian group ZD generated by the elements of 

D is a ring. We call ZD the group ring of D. 

Suppose D is a group and B is a left ZD -module, let 0: B D  be the trivial map 

sending everything in B to the identity element of D, : AutD B  is given by module 

action. Then, ( , , , )B D d   is called a crossed module of a module over a group ring. 

Again conversely: 

Lemma 2. [4] If ( , , , )B D d   is a crossed module, Kerd is central in B and inherits a 

natural D-module from the D-action on B. Moreover, Imd acts trivially on Kerd, so Kerd has 

a natural Cokerd-module structure. 

As these two examples suggest, general crossed modules lie between the two extremes 

of normal subgroups and modules. Their structure bears a certain resemblance to both - they 

are “external” normal subgroups but also are “twisted” modules. 

5. Crossed modules of a surjective group homomorphism 

Let :p B D  be a surjective group homomorphism whose kernel lies in the center of 

B, the homomorphism 
0 : AutD B   is given by conjugation. Then, the quadruple 

0( , , , )B D p   is called a crossed module of a surjective group homomorphism. 

Equivalently, given any central extension of groups 

 0 A B D 1 
i d 

https://en.wikipedia.org/wiki/Group_extension#Central_extension
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that is, the above sequence is exact and A is in the center of B. Then, the surjective 

homomorphism :d B D  together with the action of D on B define a crossed module.  

Thus, central extensions can be seen as special crossed modules. Conversely, a crossed 

module ( , , , )B D d  with the surjective boundary d defines a central extension. Because of 

this, one can use the results on crossed modules to solve the problems relating to central 

extensions. 

Analogously to the inclusion crossed module, the crossed module plays an important 

role in the group extension problem of the co-type of a crossed module [9]. It together with 

the general crossed module makes a homomorphism of crossed modules which is a constraint 

of this group extension problem. 

6. Automorphism crossed modules of a group 

Let B be a group, then, as usual, let Aut(B) denote the group of automorphisms of B. 

The homomorphism : Aut( )B B   sends an element b B  to the inner automorphism of 

the group B . Then, the tuple ( ,Aut( ), , )B B id  is a crossed module, called the automorphism 

crossed module of the group B and its own notation Aut(B) [4]. 

More generally, if A is some type of algebra, U(A) denotes the set of units of A, the 

homomorphism : Aut( )A A   sends a unit to the automorphism given by conjugation by 

it, then ( ( ),Aut( ), , )U A A id  is a crossed module. 

This class of crossed modules has a very nice property with respect to general crossed 

modules. The homomorphism : Aut( )D B   of a general crossed module ( , , , )B D d   

together with the homomorphism : Aut( )B B   gives a square: 

 
We see that the first condition in the definition of a crossed module means the 

commutative square, i.e., the second condition in the definition of a morphism of crossed 

modules holds. Analogously, that the second condition in the definition of a crossed module 

means the second condition in the definition of a morphism of crossed modules holds. Thus, 

we do have a morphism of crossed modules ( , ) : ( , , , ) ( ,Aut( ), , )id B D d B B id   . 

Moreover, in the group extension problem of the type of a crossed module [7], if we 

replace the general crossed module ( , , , )B D d   by the automorphism crossed module 

( ,Aut( ), , )B B id , we get the group extension problem as usual. Thus, the results of the group 

extension problem of the type of a crossed module cover those of the group extension problem. 
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7. Semi-direct product crossed modules 

Let G be a group, : M N   be a morphism of left G-modules, and N G be the 

semi-direct product group. We define a homomorphism  

:d M N G by ( ) ( ( ),1)d m m , 

where 1 denotes the identity element of G. The homomorphism 

: N Aut( )G M  

is defined via the projection from N G to G, that is,  

( , ) ( ) , for , , .n g m gm n N g G m M      

Then, the quadruple is a crossed module. 

In particular, if A and B are abelian groups, and B is considered to act trivially on A, the 

any homomorphism :f A B gives a crossed module ( , , ,0)A B f . 

8. Pullback crossed modules of a crossed module along a group homomorphism 

Suppose that we have a crossed module ( , , , )B D d  , and a group homomorphism 

: A D  , then we can form the “pullback group” 

{( , ) / ( ) ( )}DA B a b a d b    

which is a subgroup of the product A B , where the multiplication in DA B  is 

componentwise. The group homomorphism ' : Dd A B A   is the restriction of the first 

projection morphism of the product, that is '( , )d a b a . 

The homomorphism ' : Aut( )DA A B    is defined by: 

' ' ( ')' ( , ) ( ( ), ( ))a a aa b a b   , 

where ' , ( , ) ,Da A a b A B     is given by conjugation. Then, the tuple 

( , , ', ')DA B A d   is a crossed module. It is denoted by 
*( , , , )B D d   and called a pullback 

crossed module of ( , , , )B D d   along   [4]. 

Moreover, there is a morphism of crossed module  

( , ) : ( , , ', ') ( , , , )Dp A B A d B D d     

 in which p is the second projection, i.e., : , ( , )Dp A B B p a b b   . 

In the above construction, if we replace groups by other algebraic structures, we obtain 

a class of pullback crossed modules of a given crossed module along a homomorphism. 

9. Crossed module constructed from a pointed topological space 

Let X be a pointed topological space, that is a point 0x  has been chosen in X. Recall that 

the fundamental group 1 0( , )X x  consists of all homotopy classes of continuous maps 
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:[0,1]f X  with 0(0) (1)f f x  . (Two such maps are homotopic if one can be 

continuously deformed into the other in such a way that the image of 0 and 1 remains 0x  

throughout the deformation.) We think of these maps as paths in X beginning and ending at 0x . 

The composition of paths yields a (not necessarily abelian) group structure on 

1 0( , )X x . 

Now, if A is a subspace of X containing the point 0x  then we can consider the second 

relative homotopy group 2 0( , , )X A x . This group consists of homotopy classes of 

continuous maps :[0,1] [0,1]g X   from the unit square into X which maps three edges 

of the square onto the point 0x  and the fourth edge into A. The appropriate picture of such a 

map g is 

 

The juxtaposition of squares 

 

yields a (not necessarily abelian) group structure on 2 0( , , )X A x .  

By restricting to the fourth edge of the unit square we obtain a boundary 

homomorphism 2 0 1 0: ( , , ) ( , )X A x A x   . 

Moreover, we construct a homomorphism 1 0 2 0: ( , ) Aut( ( , , ))A x X A x    as follow. 

First, there is a continuous map p from the unit square onto four faces of the unit cube: 
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Now, given a path :[0,1]f A  representing an element 1 0[ ] ( , )f A x , and a square 

:[0,1] [0,1]g X   representing an element 2 0[ ] ( , , )g X A x , we can construct a 

continuous map 
f g  from the four faces of the unit cube to the space X by using g to map the 

face uvyz onto X, and mapping each horizontal line in the remaining three faces by f onto A. 

On composing 
f g  with p we get a map which represents an element of 2 0( , , )X A x . Thus, 

we have a homomorphism 

1 0 2 0 [ ]: ( , ) Aut( ( , , )), ([ ]) [ ]f

fA x X A x g g p     . 

Therefore, the tuple  2 0 1 0( , , ), ( , ), ,X A x A x    is a crossed module. It is called a 

fundamental crossed module of the pair ( , )X A  [4]. 

Based on the fundamental crossed module of a pair of spaces, one can determine the 

second homotopy group of a CW-complex which is a free crossed module on 2-cells. 

Moreover, there is a functor from the category of pairs of pointed spaces to the category of 

crossed modules satisfying a form of the van Kampen theorem preserving the colimits. 

References 

[1] R. Brown, P. J. Higgins, R. Sivera (August 2011), Nonabelian algebraic topology: 

filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in 

Mathematics, vol.15, 703 pages.  

[2] R. Brown, O. Mucuk (1994), Covering groups of non-connected topological groups 

revisited, Math. Pro. Camb. Phil. Soc, 115, 997-110. 

[3] G. Janelidze (2003), Internal crossed modules, Georgian Math. J., 10, no.1, 99-114. 

[4] T. Porter (2010), The crossed menagerie: an introduction to crossed gadgetry and 

cohomology in algebra and topology, (ten chapters), Bangor and Ottawa. 

[5] N. T. Quang, P. T. Cuc (2012), Crossed bimodules over rings and Shukla cohomology, 

Math. Commun, 17, no.2, 575-598. 

[6] N. T. Quang, P. T. Cuc (2015), Equivariant crossed modules and cohomology of groups 

with operators, Bull. Korean Math. Soc, 52, no.4, 1077-1095. 

[7] N. T. Quang, P. T. Cuc, N. T. Thuy (2014), Crossed modules and strict Gr-categories, 

Commun. Korean Math. Soc, vol.29, no.1, 9-22. 

[8] N. T. Quang, C. T. K. Phung, P. T. Cuc (2014), Braided equivariant crossed modules and 

cohomology of  -modules, Indian Journal of Pure and Applied Mathematics, 953-975. 

[9] N. T. Quang (2015), Group extensions of the co-type of a crossed module and strict 

categorical groups, arXiv: 1503.04379v1. 

[10] J. H. C. Whitehead (1949), Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, 

453-439. 


