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Abstract: Consider an ideal gas system consisting of a large number of particles. The nature 

of the macroscopic system could not be described in detail. It could only be described in terms 

of averages, i.e. only the mean values of the thermodynamic quantities characteristic of the 

medium of the macro system. The average values of the thermodynamic quantities 

characterizing the macroscopic state of the system such as state equation, free energy, the 

internal energy, etc. could be calculated by Boltzman distribution function. 
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1. Introduction 

An ideal gas system consisting of an extremely large number of particles could not be 

mechanically studied but could only be studied by statistical methods. The gas system here is 

considered as a homogeneous particle system. The Boltzmann distribution function is derived 

based on the application of the Gibss distribution function to the homogeneous particle 

system, through that it could describe the average nature of the ideal gas system. 

2. Establishing Boltzman function 

Consider a quantum macroscopic system consisting of a very large number of particles 

Physical description 

The wave function describes the system 

1 2 3, ,...., 1 2, ( , ,..., )
Nk k k k Nq q q   

( ik  is a full set of quantum numbers of particle ith) 

The energy of the system: ka

ka

E   

Schrodinger equation for single particle: 

ˆ ( , )a a ka ka kaH q p     (1) 
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Because the system is a homogeneous particle system, Hamilton operator for a particle 

is the same for all particles in the system. Hence, Schrodinger equation for each particle 

energy spectrum will be the same for all particles. 

Because the system is a homogeneous particle system, should energy spectrum of the 

particles are identical, we do not need and cannot indicate the state ka , which particles 

occupy in the state ,ka  that we only can say how many particles in the state corresponde to 

the wave function .ka  

Then the full set of quantum numbers 1 2( , ... )nk k k  is replaced by the filling set of 

number 1 2( , ... ).kn n n  

With a system of a large number of particles that the full set of quantum number is 

random, so the fill set of number also is the random and can get many different values  

(values: 0,1,2,3...) and the particles are non - negative integers, so we just calculated the 

average value of kn   

3210                 

                         

, ,.....3       ,2       ,1     ,0

nk

k Nn





 

nk is the probability that the particles appear kn  or probability that state k  has kn  

particles. Base on probability theory rules: 

....2.1.0 210

0






nk

n

kk nn

 

Which satisfies the normalizing conditions of probability function [1]:  

 0

1nk

n







  

* Consider: + A subsystem that all particles occupy in a state of 01 particle described 

by '.k  

 Another subsystems that all particles do not locate in the state '.k  

These two subsystems and other subsystems can still exchange particles, so the number 

of particles in the subsystem kn  is fluctuant, leading to the fluctuation of energy .
NnE  

Therefore, the considered subsystem is a system that the number of particles and energy are 

fluctuant. Hence, we apply generalized Gibbs distribution for those subsystems. 

The probability that the system has N  particles and quantum numbers are in 

thermodynamic equilibrium at temperature T is [1-3]: 

.
exp k nN

nN

N E

T




   
  

 
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 Because ,k nN k KN n E n    => 
Nn  depends on .kn  so we denote nN nk    

Thus, the probability that the system has a number of particles kn  staying in state 'k : 

 
exp

k k k

nk

n

T

 


   
  

 
 

Note that in this paper we consider the dilute ideal gas, in which the interaction between 

the particles is weak, so the number of particles occupying a given state is slight. Thus, the 

average number of particles in a certain state is 1kn    

then 

 
0

0
exp exp 1

k k k

T T

 


    
   

   

 

 1 exp .exp exp      1k k k

T T T

   


     
     

     

 

2

2 exp . expk k

T T

 


    
   

    

 3 4, ,... 0    rapidly 

In calculating later, infinitesimal levels increse rapidly, so it takes the infinitesimal 

level 1st 

0 1 2 10. 1. 2. ... 1. exp k
kn

T

 
   

 
       

   

Therefore, the average number of particles occupies quantum state of a particle is 

 

1. exp k
k kn

T

 


 
   

    

This result is the same with the previous calculation [1], [3]  

We see that k  increases, the number of particles decreases that means the particles tend 

to occupy lower - energy states and the speed of reduction depends on the temperature .T  

3. In classical Boltzman Distribution 

Considering the classical ideal gas which all degrees of freedom characterizing the gas 

particles are classical degrees of freedom. 

Degrees of freedom of the gas molecules include: The first is the degree of freedom 

involved in translational motion; the second is intrinsic freedom: Related to the rotation of 

molecules and the motion of atoms inside molecules. 

We temporarily considered intrinsic degrees of freedom as quantum degrees of freedom 

while the degrees of freedom relating to translational motion is classical degrees of freedom. 
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The status of a particle is characterized by coordinates and generalized momentum and 

they are measured simultaneously (because of classical particles) 

Particle (molecule) = (q,p) 

r  is a degree of freedom of a molecule. 

We have an average number of particles in the volume element dqdp surrounding the 

phase point  ,q p equal to average particle density  ,n q p  multiplying by the number of 

states corresponding to volume .dq dp  

 ,dN n q p d   

 

.

2
r

dq dp
d


   is the number of states corresponding to volume .dq dp   

Each state occupies a volume  2
r

  in the phase space. 

 
( , )

, exp
q p

n q p
T

  
  

 
; ( , )q p  is energy of a particle. 

The energy of a particle 

In the Cartesian coordinate system: ( , ) ( ) ( )q p K p U q    = Kinetic + Potential  

Meanwhile the distribution of particles is presented by the composition of 2 factorials 

A factorial determines the change the average number of particles according to 

momentum 

Another factorial determines the change of the average number of particles according to 

coordinates 

Considering the distribution of the average number of particles according to 

momentum. 

Supposing that the system is not in the external field ( ) 0U q   (homogeneous in space) 

Then particle density is constant:
N

const
V

   

Distribution of particles according to the momentum: 

 

 2 2 2
2

2. . 2. .. . . . .

x y zP P PP

m T m T
x y zP P

N N
dN const e dp dN const e dp dp dp

V V

  

        

Using Poatxong formula: 

22 2.. .yx z
pp p

x y ze dp e dp e dp
  



  
 

  

      

 

 2 2 2

2. .
3

2

. .

2 .

x y zP P P

m T
p x y z

N
dN e dp dp dp

V mT

  

   

Replacing .p m v  we have the formula of velocity distribution: 
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 2 2 23

2
2. . .

2 .

x y zm v v v

T
v x y z

N m
dN e dv dv dv

V T

  

 
  

 
  

When v  increases, the particle density will decrease considering the distribution of 

particles according to coordinates: 

Assuming that the system is placed in the external field has the potential energy 

 ( ) , ,U U r U x y z   

At that the average density depends on coordinates as below: 
( ) ( )

0( ) .
U r U r

T Tn r const e U e
 

   

0 ( 0)U U r  they are the average particle density at point 0r    

In the external field is the Earth's gravitational field, we have: 

 ( ) . .U U r U z m g z    

. .

0

m g z

T
zU U e



   (Barometric formula) 

4. Hemholtz free energy for Boltzman ideal gases  

The free energy of the system are: 

 .lnF T Z   

Where, Z  is the statistical total of the system  

If the system is quantum macroscopic system, the quantum statistical total is: 

.
nE

T

n

Z e


   

Applying to the ideal gas Boltzman: 

1 2

1 2

...

, ...

1

!

k k kN

N

T

k k k
Z e

N

    
   
    

1 2

1 2

( ) ( ) ( )

, ...

1
...

!

kk k N

N

T T T

k k k
e e e

N

 
  

    

Because the considered gas here is dilute, so 1kn    

With kn  is large, the probability ratio of infinitesimal levels increases, so we just take 

infinitesimal level 1st: 0 1 0 10. 1. 0... 0. 1.kn           

0,1kn  . That means in a state there are not any particles or there is only a single 

particle, so the number of particles N need to distribute how in order that each state only 

contains a maximum of one particle that the full set of numbers of different particles is 

different. 

Thus, the system with (a - 1) particles is different from the system with (a '- 1) particles. 

1 2 3 ...a Nk k k k k       
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Therefore the factorials 
i

T






 are different. 

1 2

1 2

( ) ( ) ( )1

!

kk k N

N

T T T

k k k
Z e e e

N

 
  

     

Because the particle system is a homogeneous system, the single totals are the same 

although the full set 1 2 3 ...a Nk k k k k     so: 
1

!

k
N

T

k

Z e
N

 
 
 

 
  

 
 
   

 And 

 1.ln .ln !hatF T Z T N    

Using formula: ln ! .ln
N

N N
e

   

 1 1.ln ln ln . .lnhat hat

e
F T Z TN N e N T Z

N

 
       

 
 

Therefore, the energy in quantum statistics for macroscopic system with N particles 

becomes the statistical total for each particle. 

5. State equation of an ideal gas 

Considering Boltzman ideal gas in zero electro- magnetic field, the movement of the 

molecules includes 3 types of motion: (i): the translational motion of its center of mass; (ii): 

the rotation of the molecule; (iii): internal molecular motions 

In these three types of motion: 

The first movement is a classical motion because atoms can have translational motion 

in a volume of container. Degrees of freedom of this motion is classical degrees of freedom. 

The 02 left degrees of freedom are two quantum degrees of freedom 

=> Therefore we consider the system has both classical degrees of freedom and 

quantum degrees of freedom. 

The energy of a molecule:  ,k r p    

(k is the quantum degrees of freedom by fully set characterizing the rotation and 

internal molecular motion) 

    , , 'k kr p r p      = Energy for Classical degrees of freedom + Energy for 

quantum degrees of freedom 

Consider the case of the closed system in zero filed: 

      
2

, '
2.

k

p
r p p p

m
          

Replacing it into the formula of statistical total for 01 particle: 
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   

2
3

' '( , )
2

2. .
1 3 3 2

. .
.

22 2

k kpr p

m TT T T
hat

k k k

dV dp V mT
Z e e dp e V e

 

 

     
         
   

 

Replacing it into the formula of free energy: 

 

3
'

2

1 2

. .
. .ln . .ln , ,

2

k

T
hat

k

e eV mT
F N T Z N T e F N T V

N N





 
                

 

   [2, 3] 

we can deduce other thermodynamic quantities: 

Pressure P : 
.

. .
F N T

P PV N T
V V


   


 (Equation of state of an ideal gas) 

Entropy S : The changing speed of F and T: 
.

.ln . '( )
F eV

S N N f T
T N


  


 

  
.

. .ln . ( ) . . .ln ( ) ln
eV

F PV N N f T PV N T P N f T T T
N

              [2, 3, 4] 

  ( ) '( )W N f T Tf T T     

  . ''( ) .V V

V

E
C N T f T N c

T

 
    

 
  

 . ''( ) 1 .P P

P

W
C N T f T N c

T

 
     

 
 

=> For 1 molecule is: 1P Vc c  . This result is the same with previous calculation [3-4].  

6. Conclusion 

Through Boltzman distribution function, we can determine the average value of the 

thermodynamic quantities characterizing for states of an ideal gas state system. In this article, 

the Boltzman distribution function has been caculated in a more complete way than in 

previous caculation. The results in the article are consistent with previous calculations. 
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