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Abstract: In this paper, we investigate the existence, uniqueness, and continuity of weak 

solutions with respect to initial values for a nonlinear parabolic equation of reaction- 

diffusion nonlocal type by an application of the Faedo-Galerkin approximation and Aubin-

Lions- Simon compactness results. The nonlocal quantity appears in the diffusion coefficient. 

Moreover, we deal with a new class of nonlinearities which is no restriction on the growth of 

the nonlinearities. The long -time behaviour of solutions to that problem is considered via the 

concept of global attractors for the associated semigroups. 

Keywords: Nonlocal reaction diffusion equation, weak solution, nonlocal type, global 

attractors, exponential nonlinearity.  

1. Introduction 

Let 
n , 1n  , be a bounded open set with a sufficiently smooth boundary  . 

We are concerned with the following initial boundary valued problem 

2

2(| | ) ( ) ( ), , 0,
u

a u u f u g x x t
t


     


 

( , ) 0, , 0,u x t x t    (1.1) 

0( ,0) ( ), ,u x u x x   

where the nonlinearity f , the external force g  and the diffusion coefficient a  satisfy 

the following conditions:  

1( )H ( , )a C  isLipschitz continuous in the sense that there exists a constant L  

such that 

| ( ) ( ) | | |, , ,a t a s L t s t s      (1.2) 

and bounded, i.e, there are two positive constants m , M  such that 

0 ( ) , ,m a t M t      (1.3) 
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2( )H :f  is a continuously differentiable function satisfying 

2

1( ) ,f u u u c   ( ) ,f u     (1.4) 

where 1,c   are two positive constants, 10
m


   and 1  is the first eigenvalue 

of
1

0( , ( ))H  . 

3( )H 2 ( ).g L   (1.5) 

During the last decade, the nonlinear parabolic equations with nonlocal terms have been 

extensively studied associated with many operators for various issues and applications such as 

in physics, in fluid mechanics, in financial mathematics, in population dynamics, etc. One of 

the justification of such models is the fact that in reality the measurements are not made 

pointwise, but through some local average. For more details, we refer to, for instance, [2], [3], 

[6], [7], [8], [9] and in the references therein. In recent years, many mathmaticians have been 

studying problems associated with the Laplacian operator which appears in a variety of 

physical fields (see for example [2], [6], [8]). Usually, there are two main kinds of 

nonlinearities which have been considered (see [2], [6]). The first one is the class of 

nonlinearities that is locally Lipschitzian continuous and satisfies a Sobolev growth condition 

| ( ) | (1 | | ),
2

n
f u c u

n

   
  

2( ) ,f u u u c    

( ) ,f u     

The second one is the class of nonlinearities that satisfies a polynomial growth 

1 0 2 0| | ( ) | | ,p pc u c f u u c u c     

( ) ,f u     

for some 2p  . Note that for both the above classes of nonlinearities require some 

restriction on the upper growth of the nonlinearities imposed which an exponential 

nonlinearity, for example, ( ) uf u e , does not hold. In this paper, we will relax the condition 

on f  in order to remove this restriction. We will consider the problem (1.1) with the 

homogeneous Dirichlet boundary condition, in which the diffusion coefficient a  depends on 

the 
2L -norm of the solution (see [2], [3], [6], [7] for more types of the nonlocal diffusion 

coefficient), the nonlinearity satisfies an exponential growth type condition and the external 

force g  belongs to 
2 ( )L  .  

The problem (1.1) contains some important classes of parabolic equations, such as the 

semilinear heat equations (when 0a const  ), the Laplacian equation (when 1a  ), etc. 

The existence and long-time behaviour of solutions to these equations have attracted interest 

in recent years. 
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The structure of the paper is organized as follows. In section 2 , we prove the existence, 

uniqueness, continuity and joint continuity of weak solutions with respect to the initial values 

by using the compactness method and weak convergence techniques in [2]. In section 3 , we 

prove the existence of global attractors for the semigroup generated by the problem in various 

spaces. The main novelty of the paper is that the nonlinearity can grow exponentially. 

Before to start, let us introduce some notation that will be used in the sequel. As usual, 

the inner product in 
2 ( )L   will be denoted by (.,.)  and by 2| . |  its associated norm. The inner 

product in 
1

0 ( )H   is presented by ((.,.))  and by 2.‖ ‖  its associated norm. By .,.  , we 

represent the duality product between 
1( )H    and 

1

0 ( )H  andby *.‖ ‖  the norm in 
1( )H   . 

We identify 
2 ( )L   with its dual, and so, we have a chain of compact and dense 

embeddings
1 2 1

0( ) ( ) ( )H L H      . We use C  to denote various constants whose 

values may change with each appearance. 

2. Existence and uniqueness of weak solutions 

In this section, we will study the existence and uniqueness of weak solution to (1.1) . It 

is worth if we first give the definition of weak solution of our problem. In what follows, we 

assume that the initial data 
2

0 ( )u L   is given. 

Definition 2.1. A weak solution to (1.1) is a function u  that, for all 0T  , belongs to 

2 1 2

0(0, ; ( )) ([0, ]; ( ))L T H C T L   ,
1( ) ( )Tf u L  , 0(0)u u and such that for all 

1

0( ) ( )v H L    , we have 

2

2( ( ), ) (| | )(( ( ), )) ( ), ( , ),
d

u t v a u u t v f u v g v
dt

      (2.1) 

where (0, )T T   and the previous equation must be understood in the sense of 

(0, )T . 

It is known that (see [1]) that if u V  and
*u

V
t





, then

2([0, ]; ( ))u C T L  . This 

makes the initial condition in problem (1.1)  meaningful. The existence of weak solution is 

assured by the following theorem 

Theorem 2.1. Let 
2

0 ( )u L  and 0 T   . Assume 1( )H , 2( )H , and 3( )H  hold. 

Then problem (1.1) has a unique weak solution on the interval (0, )T , i.e, there exists a 

function u  such that  

2 1 2

0(0, ; ( )) ([0, ]; ( )),u L T H C T L    2 1(0, ; ( )),tu L T H   0(0) ,u u  
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2

2( , ) (| | )(( , )) ( ), ( , ),
d

u v a u u v f u v g v
dt

      (2.2) 

forall
1

0( ) ( )v H L    , where (2.2)  must be understood as an equality in (0, )T . 

Moreover, the mapping 0 ( )u u t  is continuous on
2 ( )L  . 

Proof  

i) Existence. Due to the theory of ordinary differential equations in variant t , we can 

find, for each integer 1n  , the Galerkin approximated solution by the following form  

1

( ) ( ) ,
n

n nj j

j

u t u t w


  (2.3) 

where
1

0{ ; 1} ( ) ( )jw j H L      is a Hilbert basis of 
2 ( )L   such that 

1 2span{ , , , }n

n

w w w


 is dense in 
1

0 ( ) ( )H L   , and ( )nju t  are solutions of the 

following problem 

2

2( ( ), ) (| | )(( ( ), )) ( ( )), ( , ),n j n n j n j j

d
u t w a u u t w f u t w g w

dt
      (2.4) 

0( (0), ) ( , ).n j ju w u w  

Now, multiplying by ( )nju t in (2.4) , summing from 1j   to n . We obtain  

2 2 2

2 2 2

1
| ( ) | (| | ) ( ) ( ( )) ( ) ( ) .

2
n n n n n n

d
u t a u u t f u t u t dx gu t dx

dt  
   ‖ ‖  (2.5) 

Taking (1.4) into account and using the Cauchy inequality, we get the estimate 

2 2 2 2 2 2

2 2 2 2 1 2 2

1 1
| ( ) | (| | ) ( ) | ( ) | | | | | | ( ) | ,

2 2 2
n n n n n

d
u t a u u t u t c g u t

dt





     ‖ ‖  (2.6) 

since 1  is the first eigen value of 
1

0( , ( ))H   satisfying 10
m


  . Therefore, in 

view of (1.3) , we deduce 

2 2 2

2 2 1

1 1

1 1
| ( ) | ( ) ( ) | | | |,

2 2 2
n n

d
u t m u t g c

dt

 

  
     ‖ ‖  (2.7) 

with sufficient small   that makes 
1 1

0
2

m
 

 
    satisfied. Now, integrating 

(2.7) between 0 and (0, )t T , we get  

2 2 2 2

2 2 2 1 0 2

1 1 0

1
| ( ) | 2( ) ( ) | | | | | | .

2 2

t

n nu t m u s ds g T c T u
 

  
      ‖ ‖  (2.8) 
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This inequality yields  

{ }nu is bounded in 
2(0, ; ( ))L T L  , 

{ }nu is bounded in 
2 1

0(0, ; ( ))L T H  . 

Note that 
2

2(| | )n na u u   defines an element of
1( )H   , given by the 

duality
2 2

2 2(| | ) , (| | ) ,n n n na u u w a u u wdx


      for all
1

0 ( )w H  . In addition, from (1.3)  

and the boundedness of { }nu in
2 1

0(0, ; ( ))L T H  , we deduce that 
2

2{ (| | ) }n na u u   is bounded 

in 
2 1(0, ; ( ))L T H   . From (1.3) and (2.5) , we can obtain that 

2 2 2 2

2 1 2 2 2

1 1
| ( ) | | ( ) | ( ( )) ( ) | | | ( ) | .

2 2 2
n n n n n

d
u t m u t f u t u t dx g u t

dt





     

We choose 1m  , and then this leads to 

2 2

2 2

1

1 1
| ( ) | ( ( )) ( ) | | .

2 2
n n n

d
u t f u t u t dx g

dt m
   (2.9) 

Integrating (2.9) from 0  toT , we have 

2 2 2

2 2 0 2

10

1 1 1
| ( ) | ( ( )) ( ) | | | | .

2 2 2

T

n n nu T f u t u t dxdt g T u
m

     

The last inequality implies that 

( ( )) ( ) ,
T

n nf u t u t dxdt C


  (2.10) 

For some positive constant C , we define ( ) ( )n n nh u f u u  , where   . In view 

of (1.4), it is easily to prove that 1( 0)n nh u u c   for all nu  , we have  

{| | 1} {| | 1}
| ( ( )) | | ( ( )) | | ( ( )) |

T T n T n
n n n

u u
h u t dxdt h u t dxdt h u t dxdt

      
     

{| | 1} {| | 1}
| ( ( )) ( ) | | ( ( )) |

T n T n
n n n

u u
h u t u t dxdt h u t dxdt

     
    

1 1
{| | 1} {| | 1}

| ( ( )) ( ) |
T n T n

n n
u u

h u t u t c dxdt c dxdt
     

    {| | 1}
| ( ( )) |

T n
n

u
h u t dxdt

  
  

1 1
| | 1

| ( ( )) ( ) | | | sup | ( ) || |
T

n n T T
s

h u t u t c dxdt c h s
 

       

1 1
| | 1

( ( )) ( ) | | sup | ( ) || |
T

n n T T
s

h u t u t c dxdt c h s
 

       

2

1
| | 1

( ( )) ( ) ( ) 2 | | sup | ( ) || | ,
T T

n n n T T
s

f u t u t dxdt u t dxdt c h s C
  

         

since{ }nu is bounded in 
2(0, ; ( ))L T L  ,   is bounded, and combining with (2.10) , 

we deduce that ( )nh u  is bounded in 
1( )TL  , and so is ( )nf u . As a consequence, there exists 
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2 2 1

0(0, ; ( )) (0, ; ( ))u L T L L T H    , 
1

1 ( )TL    and 
2 1

2 (0, ; ( ))L T H   , and a 

subsequence of nu  ( relabelled the same) such that  

* 2 weakly-star in (0, ; ( )),nu u L T L   

2 1

0 in (0, ; ( )),nu u L T H   

1

1( )  in ( ),n Tf u L   (2.11) 

2 2 1

2 2(| | )  in (0, ; ( )),n na u u L T H     (2.12) 

for all 0T  . We will show that 1 ( )f u   and 
2

2 2(| | )a u u     by using the 

compactness method. On the other hand,
2

2(| | ) ( )n
n n n

du
a u u f u g

dt
    plays a role as an 

operator on
1

0 ( ) ( )H L   . We deduce that { }ndu

dt
 is bounded in 

2 1 1(0, ; ( )) ( )TL T H L    , and therefore in 
1 1 1(0, ; ( ) ( ))L T H L    . As far as we know 

1 2 1 1

0( ) ( ) ( ) ( ).H L H L       By the Aubin - Lions - Simon compactness lemma (see 

[5]), we have that { }nu  is compact in
2 2(0, ; ( ))L T L  . In view of Lemme1.3, p.12 in [4], we 

identify 1  and 2  in (2.11)  and (2.12) respectively, 

1( ) ( ) in ( ),n Tf u f u L   (2.13) 

2 2 2 1

2 2(| | ) (| | )  in (0, ; ( )),n na u u a u u L T H       (2.14) 

Then, if we consider fixed n , (0, )T , and 1 2{ , , , }nw span w w w , it holds for 

all m n  

2

2

0 0

( ( ), ) ( ) (| | ) ( ), ( )

T T

m m mu t w t dt a u u t w t dt     
0 0

( ( )), ( ) ( , ) ( ) .

T T

mf u t w t dt g w t dt       

Now, let m  tend to infinity, using (2.13) and (2.14), and compactness of { }nu in 

2 2(0, ; ( ))L T L  . 

2

2

0 0

( ( ), ) ( ) (| | ) ( ), ( )

T T

u t w t dt a u u t w t dt     
0 0

( ( )), ( ) ( , ) ( ) ,

T T

f u t w t dt g w t dt     
 

for all 
1

0 ( ) ( )w H L    , since 1 2span{ , , , }n

n

w w w


 is dense in 

1

0 ( ) ( )H L   . Therefore, 
2

2(| | ) ( ) ,
du

a u u f u g
dt

    in 
1 1(0, ; ( ) ( ))T H L    , an 

taking into account the regularity of u  and 
'u , it holds that 

2([0, ]; ( )).u C T L   Finally, we 
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only need to check that 0(0)u u , we also fix 1n  ,
1(0, )H T  such that ( ) 0T   and 

(0) 0  , and 1 2{ , , , }nw span w w w , and consider .m n  We have   

2

0 2

0 0

( , ) (0) ( ( ), ) ( ) (| | ) ( ), ( )

T T

m m mu w u t w t dt a u u t w t dt         

0 0

( ( )), ( ) ( , ) ( ) .

T T

mf u t w t dt g w t dt       

Let m  

2

0 2

0 0

( , ) (0) ( ( ), ) ( ) (| | ) ( ), ( )

T T

u w u t w t dt a u u t w t dt         

0 0

( ( )), ( ) ( , ) ( ) .

T T

f u t w t dt g w t dt       

(2.15) 

On the other hand, from (2.1), 

2

2

0 0

( (0), ) (0) ( ( ), ) ( ) (| | ) ( ), ( )

T T

u w u t w t dt a u u t w t dt         

0 0

( ( )), ( ) ( , ) ( ) .

T T

f u t w t dt g w t dt       

(2.16) 

Then, comparing (2.15) with (2.16), it holds that 0( , ) (0) ( (0), ) (0)u w u w   with 

1 2{ , , , }nw span w w w . This leads to 0(0)u u , and u  is a weak solution to problem (1.1). 

ii) Uniqueness and continuous dependence on the initial data.  Let us denote by 1u  and 

2u  two weak solutions of (1.1) with initial data 01u , 
2

02 ( )u L  . Then 

2

1 1 2 1 1( , ) (| | ) ( ), ( , ),
d

u v a u u vdx f u v g v
dt 

        

and 

2

2 2 2 2 2( , ) (| | ) ( ), ( , ),
d

u v a u u vdx f u v g v
dt 

        

thus  

2 2

1 2 1 2 1 2 2 2 1 2( ( ), ) (| | ) (| | ) ( ) ( ), 0,
d

u u v a u u vdx a u u vdx f u f u v
dt  

              

which leads to  

2

1 2 1 2 1 2 1 2
ˆ ˆ( ( ), ) (| | ) ( ) ( ) ( ),

d
u u v a u u u vdx f u f u v

dt 
        

 
2 2

2 2 1 2 2 1 2( (| | ) (| | ) ( , ),a u a u u vdx u u v


       
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where ˆ( ) ( )f s f s s  . Taking 1 2( )( )v u u t   for a.e.t, we have  

2 2 2

1 2 2 1 2 1 2 1 2 1 2

1 ˆ ˆ| | (| | ) | ( ) | ( ( ) ( ))( )
2

d
u u a u u u dx f u f u u u dx

dt  
         

2 2 2

2 2 1 2 2 1 2 1 2| (| | ) (| | ) | | || ( ) | | | .a u a u u u u dx u u dx
 

         

Thanks to (1.4) we have  1 2 1 2
ˆ ˆ( ( ) ( ))( ) 0.f u f u u u


    So 

2 2 2

1 2 2 1 2 1 2

1
| | (| | ) | ( ) |

2

d
u u a u u u dx

dt 
     

2 2 2

2 2 1 2 2 1 2 1 2| (| | ) (| | ) | | || ( ) | | | .a u a u u u u dx u u dx
 

         

Applying the Cauchy - Schwarz inequality and putting this together with (1.2) and 

(1.3), we get the estimate 

2 2 2 2 2

1 2 2 1 2 2 2 2 1 2 2 2 1 2 2 1 2 2

1
| | || | | | | | | .

2

d
u u m u u L u u u u u u u

dt
       ‖ ‖ ‖ ‖ ‖ ‖  

Then, applying Young's inequality we obtain 

2 2

1 2 2 1 2 2

1
| |

2

d
u u m u u

dt
  ‖ ‖ 2 2

1 2 2 1 2 2( ) | |
2

m
u u t u u   ‖ ‖ , 

which gives 2 2

1 2 2 1 2 2| | ( ) | | .
d

u u t u u
dt

   Then, with some more computation, we 

obtain 1 2 2 01 02 2
[0, ]

sup | ( ) ( ) | | | ,
t T

u t u t C u u


   where C  is some constant which, we will see 

later, depends on 2

1 1 2, , , ,| |, ,| |T m c g   . Hence, we get the desired results, i.e, the solution is 

uniqueness and continuous dependence on the initial data. 

3. Global attractors 

Thanks to Theorem 2.1, we can define a continuous (nonlinear) semigroup 

2 2( ) : ( ) ( )S t L L   associated to problem (1.1) as follows 0 0( ) : ( , ),S t u u t u  where 

0( , )u t u  is the unique weak solution of (1.1) with the initial datum 0u . We will prove that the 

semigroup ( )S t  has a global attractor  in 
2 ( ).L   For the sake of brevity, in the following 

important lemmas, we  give some formal caculations, the rigorous proof is done by use of 

Galerkin approximations and Lemma 11.2 in [5]. 

Lemma 3.1.  The semigroup 0{ ( )}tS t   has a bounded absorbing set in 
2 ( )L  . 

Proof.  Multiplying (1.1) by  u  we have 

2 2 2

2 2

1
| | (| | ) ( ), ( , ).

2
u

d
u a u u f u u g u

dt
   ‖ ‖  (3.1) 
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We perform the similar way as (2.6), (2.7) by using hypotheses (1.2) - (1.5), the 

Cauchy's inequality and  the Gronwall's inequality, we obtain 

1( )2 2

2 0 2 1| ( ) | | | ,m tu t u e R     

where 

2
2 1 1 2

1 1 1 1 2 2

1

2 | | ( ) | |
( , , ,| |, ,| | ) .

( )

c m g
R R m c g

m

 
 

 

  
  


 

Therefore, if choosing 1 12R  , we are sure that  

2

2 1| ( ) | ,u t 
 

(3.2) 

for all 1 1 1 0 2( , , ,| | )t T T m u   , and so the proof is completed. 

Lemma 3.2. The semigroup 0{ ( )}tS t   has a bounded absorbing set in 1

0 ( ).H   

Proof.   Multiplying (1.1) by u , and integrating by parts, we have 

2 2 2 2

2 2 2

1
(| | ) | | ( )( )

2

d
u a u u f u u dx g udx

dt
 

       ‖ ‖ 2 2 2

2 2 2

1
| | | | ,

2 2

m
u g u

m
   ‖ ‖  

Of course, we have already used the Cauchy inequality, and putting this with (1.3), it 

leads to  

2 2 2

2 2 2

1
2 | | .

d
u u g

dt m
 ‖ ‖ ‖ ‖  (3.3) 

On the other hand, integrating (3.1) from t  to 1t   and using (1.3) and (1.4) and the 

estimation (3.2)  

1 1

2 2 2 2 2 21
2 2 2 2 2

1 1 1 1
| ( 1) | | ( ) | | | | | | |

2 2 4

t t

t t

c
u ds u t u t u ds g

m m m m m


 


       ‖ ‖  

 2

2 2 1 1 2( , , ,| |, ,| | ),m C g       

(3.4) 

for all 1 1 1 0 2( , , ,| | )t T T m u   . By the uniform Gronwall inequality, from (3.3) and 

(3.4) we deduce that 

2

2 2( ) ,u t ‖ ‖  (3.5) 

for all 2 1 1t T T   . The proof is complete. 

As a direct consequence of Lemma 3.1, and Lemma 3.2 and the compactness of the 

embedding 1 2

0 ( ) ( )H L   , we get one of the main results of this section. 

Theorem 3.1. Suppose that the hypotheses 1( )H , 2( )H , and 3( )H    hold. Then the 

semigroup ( )S t  generated by problem (1.1) has a connected global attractor  in 
2 ( )L  . 

With more sophisticated arguments, it is possible to show that the regularity of the 

attractor increases as a  becomes more regular. 
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Lemma 3.3. The semigroup 0{ ( )}tS t   has a bounded absorbing set in 

2 1

0( ) ( ).H H    

Proof.  Differentiating the first equation of problem (1.1) with respect to t , then taking 

the dual product of the resultant with tu  yields 

2 2 2 2 2

2 2 2 2

1
| | (| | ) | | ( ) 2 (| | ) .

2
t t t t t

d
u a u u f u u dx a u uu dx u u dx

dt
  

           

and perform the following estimate deduced from the Holder's inequality 

2 2 2 2

2 2 2 2 2 2 2 2| | 2 | | 2 | | 4 | (| | ) || | | | | | | | .t t t t t

d
u m u u a u u u u u

dt
        (3.6) 

We make a use of the estimates (3.2) and (3.5) 2 2

2 1 2 2( . . | ( ) | , ( ) )i e u t u t  ‖ ‖ , and we 

define  

1

2 22sup | ( ) || | | | .
s

a s u u





   
(3.7) 

we get from (3.6) and (3.7) that 

2 2 2

2 2 2 2 2| | 2 2 | | 2 | | .t t t t t

d
u m u u u u

dt
   ‖ ‖ ‖ ‖  

Applying the Young's inequality, we get the estimate 

2 2 2 2 2

2 2 2 2 2

1
| | 2 2 | | 2 ( | | ).

4
t t t t t

d
u m u u u u

dt
  


   ‖ ‖ ‖ ‖  (3.8) 

The last inequality leads to the following estimation if we choose 0 m   

2 2

2 2| | (2 ) | | .
2

t t

d
u u

dt





   (3.9) 

Multiplying the first equation in (1.1) by tu , we obtain  

2 2

2 2| | (| | ) ( ) ( ) ,t t t tu a u uu dx f u u dx g x u dx

  

       

so 

2 2

2 2(| | ) ( ) ( ) | | 0.t t t ta u u u dx f u u dx g x u dx u

  

          

Using (1.3), we have   

( ) ( ) 0.t t tm u u dx f u u dx g x u dx

  

        

We define   

0

( ) ( ) .

s

F s f d    

Hence 

2 2

2 2( ( ) ( ) ) | | 0.
2

t

d m
u F u dx g x udx u

dt
 

     ‖ ‖  (3.10) 
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On the other hand, integrating (3.1) from t  to 1t  , and using (3.2), and (1.3), we have 

1

2

2 1[ ( ) ( ) ] .

t

t

m u f u udx g x udx ds 


 

    ‖ ‖  (3.11) 

It follows from (1.5) that  

2

( ) ( ) , .
2

u
F u f u u u     (3.12) 

From (3.11) and (3.12), we get 
1 1

2 2 1
2 2( ) ( ) ( ) ([ )

2 2
] [ ]

t t

t t

m
m u f u udx g x udx ds u F u dx g x udx ds




 

   

          ‖ ‖ ‖ ‖   

for all 1t T . Thus  

1

2

2 1[ ]( ) ( ) (1 ) .
2 2

t

t

m
u F u dx g x udx ds






 

     ‖ ‖  (3.13) 

Therefore, from (3.10) and (3.13), by using the uniform Gronwallinequality, we obtain 

2

2 3( ) ( ) ,
2

m
u F u dx g x udx 

 

   ‖ ‖  (3.14) 

for all 2 1 1t T T   . Integrating (3.10) from t  to 1t   and using (3.14), we have  

1

2

2 3| | ,

t

t

t

u 


  (3.15) 

for all 2t T . In view of (3.9) and (3.15) and using the uniform Gronwall inequality 

again, we get 

2

2 3| | ,tu   (3.16) 

for all 3 2 1t T T   . On the other hand, multiplying the first equation in (1.1) by 

u , using (1.3) and (1.5), we obtain 

2 2

2 2 2 2 2 2| | | | | | | | | | .tm u u u u g u     ‖ ‖  (3.17) 

Applying the Cauchy inequality, from (3.17), we have  

2 2 2 2 2

2 2 2 2 2

1 1
| | | | | | | | .

2 2
tm u u u g u 

 
     ‖ ‖  (3.18) 

Taking 
2

m
  , it follows from (3.18) that  

2 2 2 2

2 2 2 22 2

2 2 2
| | | | | | .tu u u g

m m m


   ‖ ‖  (3.19) 

Using the estimates (3.5) and (3.15), it implies that 
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2

2 4| | ,u    (3.20) 

for some constant 4 , and all 3t T . This completes the proof. 

Due to the compactness of the embedding 2 1 1

0 0( ) ( ) ( )H H H     , we get the 

following important result. 

Theorem 3.2. Suppose that the hypotheses 1( )H , 2( )H , and 3( )H    hold. Then the 

semigroup ( )S t  generated by problem (1.1) has a global attractor  in 2 1

0( ) ( )H H   . 
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