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Abstract: Consider a stochastic evolution equation containing Stratonovich-multiplicative
N du - - :
white noise of the form — + Au = f(t,u) + u°W where the partial differential operator A
dt

is positive definite, self-adjoint with a discrete spectrum; and the nonlinear part f satisfies
the @ -Lipschitz condition with ¢ belonging to an admissible function space. We prove the

existence of a (stochastic) inertial manifold for the solutions to the above equation. Our
method relies on the Lyapunov-Perron equation in a combination with the admissibility of
Sfunction spaces. An application to the non-autonomous Chafee - Infante equations is given to
illustrate our results.

Keywords: Stochastic inertial manifold; ¢ - Lipschitz; Admissibility, Lyapunov - Perron

equation, nonautonomous Chafee - Infante equations.

1. Introduction

In the present paper, we study the existence of an inertial manifold for a class of
stochastic partial differential equations (SPDE) in which the nonlinear part is assumed to be
@ -Lipschitz. Concretely, we will prove the existence of an inertial manifold for the

following stochastic evolution equation driven by linear multiplicative white noise in the
.. du .
sense of Stratonovich o + Au = f(t,u)+u°Ww (1.1)

where 4 is a positive definite, self-adjoint, closed linear operator with a discrete spectrum;
f is @ - Lipschitz (see Definition 2.3); and u°W is the noise.

There are two main difficulties when we transfer to the case of SPDE with ¢ -
Lipschitz nonlinear term f : Firstly, since the nonlinear operator f is ¢ -Lipschitz, the

existence and uniqueness theorem for solutions to (1.1) is not available. Secondly, the
appearance of the white noise changes the formula of mild solutions for SPDE, and therefore
changes the representation of Lyapunov-Perron equation used in the construction of the
inertial manifold.
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To overcome such difficulties, we reformulate the definition of inertial manifolds
suchthat it contains the existence and uniqueness theorem as a property of the manifold (see
Definition 2.5 below). Furthermore, we construct the structure of the mild solutions to (1.1)
using the white noise in such a way that it allows to combine the exponential estimates of the
linear part of Eq. (1.1) with the existence and uniqueness of its bounded solutions (in
negative direction) in the case of ¢ -Lipschitz nonlinear forcing terms. Consequently, we

obtain the existence of an inertial manifold for semi-linear SPDE with ¢ -Lipschitz nonlinear

term and general spectral gap conditions.

Our main result is contained in Theorem 2.8 which extends the results in [12] to the
case of semilinear SPDE. Finally, we apply the obtained result to the nonautonomous Chafee
- Infante equations (see Section 4).

2. Inertial Manifolds

Throughout this paper we assume that A4 is a positive definite, self-adjoint, closed and
linear operator on a separable Hilbert space X with a discrete spectrum, say

0< 21 <A, <---, each with finite multiplicity and klim /”tk = 00,
—0

Let {ek}cl)cozl be the orthonormal basis in X consisted of the corresponding
eigenfunctions of A4 (i.e.,Aek =Ae ).

Let then ﬂN and /1N 41 be two successive and different eigenvalues with
/IN < ﬂ“N nE let further P be the orthogonal projection onto the first N eigenvectors of the
operator 4. Denote by (e_tA )ZZO the semigroup generated by —A4.

. . o . . —tA
Since ImP is finite dimension, we have that the restriction (e P)l>0 of the

semigroup (e_tA) >0 to ImP can be extended to the whole line R.
For 0 <@ <1/ 2 we then recall the following dichotomy estimates (see [22]):

Anrlt
||e_tAP||£Me Nll, t € R for some constant M >1,
At
| 4% 4P 1< 28 Me L
—Ans
leA-pylc Me N 1>,

and 2.1

0
_ 0 —Aariqt
1 4% - Py 1< m (—j w28 e N s 0,050,
t
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Next, we recall some notions on function spaces and refer to Massera and Schaffer
[19], Rabiger and Schnaubelt [20], and Huy [11] for concrete applications.
Denote by B the Borel algebra and by A the Lebesgue measure onR .

The space L1 Toc (R) of real-valued locally integrable functions on R (modulo A -
nullfunctions) becomes a Frechet space for the seminorms p,,(f):=] Jy, |f(¢)| dt, where

J,, =[n,n+1] for eachneN .

We can now define Banach function spaces as follows
Definition 2.1. [12] A vector space £ of real-valued Borel-measurable functions on
R (modulo A -nullfunctions) is called a Banach function space (over (R,B, A )) if

(1) £ is Banach lattice with respect to a norm |- || , i.e., (£,[|-[|g) is a Banach

space, and if @ £ and w 1is a real-valued Borel-measurable function such that

lwO) o) ], 4 -ac.then w e E and [y ||<l| @]

(2) the characteristic functions y , belongsto £ forall 4 B of finite measure,
< d inf >0
;;1% | A[t,4+1] [p<e an tlélR | [t ,4+1] >0,

@) £ Ll,loc

’Bpn > 0 such that pn(f)Sﬂpn ||f||E forall f e E.

We remark that condition (3) in the above definition means that for each compact interval
J R there exists a number B; > 0% suchthat [;|f(t)|dt < B || fllg forall f € E.

Definition 2.2. [12] The Banach function space FE is called admissible if
(1) there is a constant M >1 such that for every compact interval [a,b] — R we have

b M- a) (2.2)
[p()|dt < ———|l@llp forallpeE,
a ”x[a,b] ”E

(R) , i.e., for each seminorm p, of L1 (R) there exists a number

Joc

t
2) for ¢ € E the function A,¢ definedby A;(¢):= | ¢@(r)dr belongs to E .
? 1 1
t—1

(3) E is TT+ - invariant and Tr_ - invariant, where TT+ and Tf_ are defined for
teR, by
T p(t):=p(t—1) forteR, (23)
T, o(t) =¢p(t+7) forteRR.
Moreover, there are Ny, N, such that | T; I< N1,|| Tr_ I< N2 forall reR .

Next, we introduce the notion of ¢ -Lipschitz function in the following definition.
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Definition 2.3. For € ¢ [0,1/2) put X@ = D(Ag). Let £ be an admissible Banach
function space on R and ¢ be a positive function belonging to E. A function

fiRxXy— X issaidtobe ¢ - Lipschitzif f satisfies

|7 @ x)|| < o) (1 + HAng) fora.e. teR andall xe X,;

0
”f(t,xl) —f(t,xz)” < (/)(I)HA (x1 — 2)” fora.c. 1 €R andall X],%, € XH‘
We can define the Green function as follows
—(t—s)A 2 4
I-P) fort> 24
Git.5) = e 'g ) ort>s,
—e 4p fort <s.
Then, one can see that G(¢,s) maps X into.X,. Also, by the dichotomy estimates and
for y =(A4, +4,,,)/2 we have

a (2.5)

e}/(t_s)AgG(t,s) =] forall t,s e R

<K(t,5)e

P o
M (_j a8 | if o>
where a=(2N+1—/IN)/2 and K(t,5) = r—=s
Mg]‘?] if t<s

We then recall the definition of metric dynamical systems (MDS) associated with the
Wiener process which will be used throughout this paper. For details on these notions we
refer the reader to [1,4,9,17,18,21].

Definition 2.4. [1] A family of mappings {0

t

}teR on a probability space (Q, F ,IP) is
called a metric dynamical system (MDS) if the following conditions are satisfied

()6, =1d, , and 0, ¢ =0,°0 forall t,s eR;

(if) The map (7,w) = B is (B QF;F ) - measurable;

(iii) P is invariant respect to HZ forall e R;

In this paper, we deal with the MDS induced by the Wiener process. Precisely, let W,
be a two-sided Wiener process with trajectories in the space C,(R,R) of real continuous

functions defined on R , taking zero value at # =0; F is the Borel o - algebra associated
with the Wiener process; [P is the classical Wiener measure on Q and for each r € R the

mapping ¢ :(Q,]-",]P’) - (Q, f,P) is defined by
6,0(-) = - + 1) — a(2). (2.6)
Moreover, we will consider a subset Q2 CO (R,R), which is invariant under {0 }ZER ,

ie, 0Q=Q forreR.
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Now, we make precisely the notion of a stochastic inertial manifold, and then prove its
existence for solutions to SPDE (1.1). To do this, we first rewrite equation (1.1) in a more
convenient form. To this purpose, let z(-) be a unique stationary solution to the following
scalar equation

dz + zdt = dw, (2.7

—z(6,0)

Then, by putting v(t) =e u(t) and using Ito formula, we arrive at

- . 1~ . (2.8)
de %) = (z(@,a))e 260) | _o Z(e‘“’)jdt—e Oqw
' 2
= z(Qw)e”"dt — e dW,,
where the second equality above follows from the conversion between the Ito and
Stratonovich integrals. Furthermore, we have that

dv = d(e_z(g’“))u) =u.de* % + e du. (2.9)
Hence, Eq. (1.1) becomes
dv () . z(Gw) (2.10)
— +Av=z(Giw)v +e f(te V).

dt
Next, by a mild solution to equation (2.10) on an interval J we mean a strongly

measurable function v(-) defined on J with the values on X, that satisfies the integral equation

=) A [ G)dr (=5 A+ 2(Gp)dr—2(6,0) 0.0 2.11)
v =e 3 v(s)+[e s f(r,e v v(r))dr
S

forae. t>s,t,s €] and we Q.

We then give the notion of inertial manifolds in the following definition.
Definition 2.5. A stochastic inertial manifold for mild solutions to Eq. (2.10) is a

collection of Lipschitz surfaces {M (a))}weQ in X such that

(i) for each w e Q), M(w) can be represented as the graph of a Lipschitz mapping
m(w): PX - 0X, ,ie., M(w) :{x + m(w)x" x ePX};;

(ii) there exists a constant y > 0 such that to each Xy € M (@) there corresponds one

and only one solution v(:) to Eq. (2.11) on (—o0,0] such that v(0) = X and

¢ (2.12)
yi—[ z(Opw)dr

sup |le 0 Agv(t) <o
<0

(iii)) M (w) is positively invariant under Eq. (2.11), i.e., if a solution v(¢),7# >0 of Eq.
(2.11) satisfies v(0) € M (w), then we have v(f) € M (6,w) forall t > 0;
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(iv) M (w) exponentially attracts all the solutions to Eq. (2.11), i.e., for any solution

* *
v(-) of Eq. (2.11) there exist a solution v () of Eq. (2.11) with v (#) e M(w) for all >0
9 *
A (v () —v(t))

Lemma 2.6. Let f:RxXg —> X be @-Lipschitz for a positive function @

< H(a))e_ﬂ for £ >0.

and a constant /1 (w) such that

belonging to an admissible space E such that

1+0 (2.13)
20
o(s)
R(¢,0) = sup f;_lw—ds <o
(t—s) 2

Let v(t),t <0, be a solution to (2.11) such that v(t) € XH for t <0 and

¢ (2.14)
yi—[z(Opw)dr
supl|le 0 Agv(t) < o0,
t<0
Then, v(¢) satisfies
t ¢ (2.15)
—td+[z(Gr0)dr [2(Gp@)dr—z(65) -(6)
v(t)=e 0 u+ [ G(t,s)e® f(s,e S v(s))ds
—00
where 1 € PX , and G(,5) is the Green function defined as in (2.4).
t
0 gz(ﬁ,ﬁa))dr—z(ﬁsa)) 2(6,0)
Proof. Put y(t)= [ G(t,s)e fls,e v(s) |ds. (2.16)
—Q0
We have y(¢) € Xg fort <0, and
t t (2.17)
yi—[ z(Or)dr yi—[z(Or0)dr
sup|le 0 Agy(t) <k|1+supe 0 HAHv(t)H <o
t<0 t<0
Where
g 0 7 1-6 (2.18)
M(Q Nl +AN+1N1 +}“NN2)||A ” +M09R( o) 1-6 1+
—e @ 1Zleo ?7 1+ 0)a
k= for0<0O< 1
2
M(N, +N,)
1 2 _
——=a= |l for 6=0.
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By computing directly, one can verify that y(-) satisfies the integral equation

(=] (O )dr o $4—[2(6p0)dr—z(650) @.19)
yv(0)=e 0 y(t)+ ge 0 f(s,ez(esw)v(s))ds.
On the other hand,
4 S
tA-[ z(Gpw)dr 0 S4-] z(6,@)dr—z(6sw)
v(0)=e 0 v(it)+ e 0 f(s,ez(esa))v(s))ds.
t
Then
(2.20)

t
tA—[ z(Gp)dr
0)-y(0)=e © () = y(0)]
We need to prove that v(0)—y(0)e PX. To do this, applying the operator

AH(I — P) t0(2.20), we have

t
t4—[ z(6,w)dr

|49 = Pyvcy = yoy| =fe - O A9 (1 = PYv(t) - y(1)]

5
2 _ yit—[z(6.w)dr
< p N |1-Plle © Avi) - v

t
yt—[z(6p)dr
Since [e Y A7 v(t) = y(1)]| < =, letting + — —oo we obtain

|47 (1 = PYv(0) = 3(0)]| = 0,
Hence 49 (7 — P)[v(0) — »(0)] = 0.
Since A” is injective, it follows that (/ — P)[v(0) — y(0)]=0.
Thus, 1 =v(0) — y(0) € PX .

Since the restriction of e_tA on PX, t >0, is invertible with the inverse etAP , We
have for ¢t <0 that

—1A+fz(9rw)dr
vy=e Y p+y(0)
{ t
—tA+[ z(6rw)dr 0 [2(8y0)dr—z(8w)
—e 0 u+ [ G(t,s)e’ ’ ’ f(s,ez(esw)v(s))ds.

The proof is completed.
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The following lemma describes the existence and uniqueness of solution belonging to
weighted spaces.

Lemma 2.7. Let f:Rx X 9= X be @ -Lipschitz for @ satisfying the condition

(2.13). Let the constant k be defined as in (2.18). Then, if k <1, there corresponds to each
& € PX one and only one solution v(t) =v(t,®,E) of Eq.(2.11) on (—0,0] satisfying the

t
yi—[ z(Gw)dr

condition v(0) =& and supe 0 HAgv(t)H <o,
<0
Proof. We denote

=1 ((—oo,O],Xg)
={h:(-0,0] > XH" hisQrongly measurable

t
yt—[ z(Gpw)dr
and supe 0 HAHk(t)H < oo}
t<0
¢
yt—[z(Opw)dr
_supe 0 HAgh(t)H.

VP <0
For each & € PX , we define the transformation T as

endowed with the norm ||h|

4 {
~tA+] z(6pw)dr 0 [2(6,0)dr—z(65m)
T =e O cr ] Gl ’ f(s,ez(esw)v(S))ds for 1 <0,

By the following estimates,

¢
yt—[z(Op)dr

<M |||+ k| 1+supe O |40y

Mv()ell
V= <0 0)elis

71

and |[Tu(-) - Tv(-)”%_’OO <ki u(P=v() |y — o0,V Ve .
We conclude that 7: L}O/(;_ —)LZ;;_ is contraction since k <1. Thus, there exists a
unique v(-) € LZ(;_ such that 7v =v .

By definition of 7 we have that v(+) is the unique solution in L}O/O’_ of (2.11)for t £0.
Theorem 2.8. Let ¢ belong to an admissible space E and satisfy condition (2.13) and
let f be @ -Lipschitz. Suppose that

M3kl]2\,9N2 (2.21)
—r HAI(pH + k<1
(1-k)(1l-e 7) *
where k is defined as in (2.18).

k<1 and
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Then, there exists a stochastic inertial manifold for mild solutions to Eq. (2.10).
Proof. Foreach @ e Q2 we define the map m(w): PX — QX by

o $A4-2(0r)dr-z(650)
m@)x= [ e 0 (I-P)f(s,e

—00

2(Os) (2.22)

v(s))ds = (I — P)v(0)

where v(.) is the unique solution of Eq. (2.11) in LZS_ satisfying Pv(0) = x.
(Note that Lemma 2.7 guarantees the existence and uniqueness of such a v).
Furthermore, for cach @ € Q we put M (@) = {x +m(w)x: x € PX }
From the definition of m(w) it follows that
M(@) = {v, € PX there existsasolutionv = v(t,0,v, ) € 17 ((~0,00, X g)of (2.11) with v(0)=v,}.
Then, M (w) satisfies all the properties of an inertial manifold from Definition 2.5.
Firstly, we show that m(w®) is Lipschitz continuous. Indeed, for X5 Xy belonging to

PX one has

HAH (m(a))x1 —m(®)x, )H (2.23)
S
O P 20|, 2(0,0) 2(0)
< _Lo A’e (I-P)|| e Hf(s,e " (N - f(s,e Vs I [ds
s
0 sA-[z(O,@)dr
<[4l O (I - P)lo(s)| 4° (v) =7y ) s
S
0 ) 7s—| z(G,w)dr 4
< | 7 |60sfore HA (n&)=r, @) < £]y0-, (-)||y. Do
Next, we estimate"v1 () - Vs (-)"7/ 0.0 " We have that
yl—fz(@,,a))dr 5 }/t—?z(@,ﬁa))dlf s —tA+?z(6’,,a))dr
e O HA (vl(t)—vz(t))H =le O A" | e 0 (x1 —xz)
t
0 [2(Or@)dr—z(Osw)
2T G Ay 0= 6.5 A 1)

<mif HA9 (x, =, )H vk 0-v, (-)||y _ forall 10,
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Hence, we obtain

”Vl(‘)‘vz(')”y,_, <MA HA (x1‘x2)H+k||V1()‘V2()||

o
and since k <1 , we get ” v (- v2()||}/ oo r ‘A (x - 2)”
Substituting the above inequality into (2.23) we obtaln
Mkl 0
HA m(a))x —m(a))x H ‘A (x —x2)H

Therefore, the property (i) in Definition 2.5 holds.
The property (ii) in Definition 2.5 follows from Lemma 2.7.

We then prove the property (iii). To do this, for each fixed w € Q, Vo € M (w) and
t>0,let v(-) bea mild solution of (2.10) on [0, ] with initial datum v (in the fiber ).
Put £(s,0;0,v(t,@,v))) = V(s +1,0,v,) forall s <0.

Then, to prove v(t) =v(t, @, VO) € M(6,0) we will show that & € Ljo/(;_ Oy ).

This claim follows from the fact that

ySs— j 2(0,., ,0)dr

supe 0 |42 6,0, v0.0,0p)
s<0
S+
ys— | z(6.@)dr
=supe ¢ HAHV(S +t,m, VO )H
s<0
y(e=1)-] (B 0)dr
=Supe t HAHV(Ta , VO )H
<t
t T
—yt+[z(Oyw)dr yr—[z(Op)dr
=e 0 supe 0 HAHv(z',a), 0 )H <,
<t

Therefore, the property (iii) in Definition 2.5 holds.
Lastly, we prove the property (iv). To this end, denote
t
yt—[ z(Op0)dr

={v:[0,4+%0) > X" visGtrongly measurable and supe 0 Aev t)|| < +o0}.
0
>0

=

* *
Assume that v (:),v(-) are two solutions of (2.10). Letw=v —v , then w is a

solution to the equation

Z(Hta)) (2.24)

—z(6w) )

W
— + Aw=z(Qo)w+e

F(te
dt
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(6,0) ) )

W)= fte 1 wrwy—fte 1),

One can see that if we Lé/c;Jr solve (2.24) then w can be expressed by

z
where F(t,e

2.25
—lAﬁZ(@rw)dr oo fz(erw)dr—z(esw) A (2.25)
wty=e 0 oW+ [ G(t,s)e® Fs.e” O (s))ds.

0

Since u"(0) = u(0)+w(0) € M(®), and u" lics on M iff Qu*(O) = m(w)(Pu*(O))

we have Ow(0) = —Qu(0) + m(e)( Pu(0) + Pw(0)).

Substituting this equality into (2.25) we obtain
‘ (2.26)

—tA+| z(6.0)dr

w(t)=e ° [ —0u(0) + m(w)(Pu(0) + Pw(0)) ]

I3
z(0.w)dr—z(0,w)

+ I G(t,9)e’ F(s,e” % w(s))ds.
0

We now prove the existence of solution w(-) € " to the Eq. (2.26).

To do this, we show that the transformation 7" defined by

—tA+fz(9rw)dr (2.27)

(Tx)t)=e O [~0u(0)+m(@)( Pu(0) + Px(0)) ]

t
0 z(0.0)dr—z(0,w)
++j G(t,s)e£ ' T F(. %) (s)ds for 120,
0

acts from LZ;L into itself and is a contraction.

0.0
Indeed, for x(-) € LZ;JF we have |[F (t,ez( @)

x) < oo™ 4 |49

<p(t)e A x(t)H

and by putting g(x) = |:—Qu(0) + m(w) (Pu(O) + Px(O)):| we can estimate

t { ¢ (2.28)
yi—|z(6,w)dr yi=[z(6,w)dr —tA+(z(6,@)dr

e O HAQ(T,\‘)(K)HSe 0 A, 0 a(x)

L t
yt=[z(O.@)dr © 2(0,0)dr—z(6,0)
te U A +j G(t,s)e*£ ' ’ F (s,eZ(HSa))x(s))ds
0

<o HAee_tAq(x)

+ k||x|| l&,ﬁ—
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HF(t,e

94

" |40 g <7 40T (~0u0) + mie) (Pu())|

™ (im(e)((Pu(0) + Px(0)) - m() (Pu(O)))H

TN (14 (~0u(0) - mien (Put)|

and < e
+]49 (m(@)(Pu(©)+ Px(0)) - m(@) (Pu@)
<Mn+M HAQ (m(a))(Pu(O) + Px(0))— m(a))(Pu(O)))H

Where 7 = HAQ (—Qu(O) 4 m(w)(pu(o)))H . By Lipschitz property of m(®) we have

HA m(a))(Pu(O)+Px(0)) m(a))(Pu(O)))H NHA Px (O)H
o6 sA—J' z(Grw)dr—z(65m)
MEkAr; [
< N j'Age 0 PF(s,eZ(HSa))x(s))a’s
1-k |0
§ MZkz]%]HNz ” 1¢|| ”x”Ly+
a-ma-
where £ is deﬁned as in (2.18). Substituting these estimates into (2.27) we obtain
+ 320N
Tx ELZ;/o and || M~ kAN 2
4 <Mn+ A + k |||x +.
I = +| Ao vk ol
Therefore, T acts from LZCZ+ into itself. Now, using the fact that
z +
Z(etw)wl)_ F( t,e—(eta))wz) <o (t)ez(ﬁta)) H Ae(wl _ 2)H and for X,Z eLg; we estimate
t
yt—[z(6 0)dr
e O A2 (1) - T=(0))
S
2 sd—[ 2(6pw)dr—=(O4)
Mk A5, ||oo r s
< N ]‘?] fAee 0 P(F(s,ez(esw)x)—F(S,ez(esw)z)) ds
- 0

ys=| 2(6,)dr—z(O50)

+OFHe7/(t_S)AgG(t,s) e O (F(s,ez(esa))x) - F(s,ez(esw)z))
0

M k/120N
N e G +k]||x<> Ol
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3,,20

A-k)(1-¢ %)

Hence, if

HAI(DHOO + k <1, then T:Lg;Jr —>LZ;;+ is a contraction.

k
Thus, there exists a unique w(-) € LZ&JF such thatv (0) =u(0) + w(0) € M (w) and

t
—yt+[z(6 w)dr
o * W [
A \v @)—v(@)]|=||4 w@)|<——e , V=0

1-L

M -
< il K(w)e ﬂ, Ve=>0
1-L

<H@)e "', vi>o.

3, .20

(1-k)(1-e %)

Therefore, M (@) exponentially attracts every solution u of (2.10).

where H(w) = Mlc(a)), L= HA (DH + k.
1-L o

. 1
Remark 2.9. By the determination the constant k& we have that, for 0 <0 < 5 the

condition (2.21) is fulfilled if the following two conditions hold.

(1) the difference AN 1 —ﬂN is sufficiently large, and/or
¢
(ii) the norm HAl(pH =sup | @(s)ds is sufficiently small.
© teRe-1

3. Application to Chafee-Infante Equation

In this section we will apply our results to non-autonomous Chafee-Infante equation
with multiplicative noise which has the form

; | 3.1)
8u(att, x) _ 0 u(;,X) +ru(t,x) —b(l)u3 (1, %) +u(t,xW(), t>0,0<x <7
Oox

u(t,0)=u(t,7) =0, € R;u(0,x) =¢(x) 0<x<r.

We choose the Hilbert space X = L2[0, 7], consider the linear operator
A:D(A) > X defined by
D(A) = { v e X :yand ) are absolutely continuous y' € X, y(0) = y(x) = O} ,
A(y) ==y"—ry Vy e D(A).

Without loss off generality, we can assume 7 <1 then A is a positive operator with

discrete point spectrum being 12 -7, 22 — 7, n2 — Fy e o,
Now, (3.1) can be expressed as the following abstract Cauchy problem.
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du(t,”) . (3:2)
o Au(t,) = f(@ut,) Fult, )W (@) >0

u(0,) =¢()eX
where f:Rx X — X isdefined by f(¢,4)(x):= —b(t)¢3 (x) Vx € (0, 7).

By “cut-off” technique we next modify the equation (3.2) into modified one in which

dt

we can apply our results.

Concretely, for any fixed p >0 we denote by B o = {v eX ||v|| < 1} the ball with

radius p in X . One can see that ||f(t,u) - f(t, v)” < 3p2b(t)||u — v” Yu,v e Bp.

Now, let y(s) be an infinitely differentiable function on [0, +00) such that
7()=1, 0<s5<1; y(s)=0,522;0< y(s5) <1,

7(5) 22, s €[0,+0)
and consider a mapping G : Rx X — X such that

G(t,u)(x) = Z[%”u”jf(t,u)(x) Yu e D(A).

Then G is ¢ - Lipschitz with @(¢) =3p(50 + 4)b(¢) . Indeed, for any u,v € D(A)

If u,veBp , we have

z[inunjf(z,u)—z(invn]f(z,v)

p P

z[inunjf(z,u)—z[invnjf(z,u) z[ﬁnvnjfa,u)—z[invn]fa,v)
p p p p

<22l -l a0 - e

|G, u) - G(z,v)|| =

< +

< 3p2b(t)(i (1+p)+ 1]”14 —
P

< ¢(t)||u -V

ifueBp and vqéBp,wehave

2

[Glto) =Gt = Hz[inun]f(t,u) _ z[invnj_m,v)
P P

<

z[inun]mm—z[invn]f(r,u)
P P

2
<22 |- il 7]

4
<3 pzb(t);(l + o) =

< (p(t)”u —v

B
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If u,ve Bp, we have ”G(t,u) —-G(t, v)” =0< qp(t)”u — v”
Thus, G is ¢ - Lipschitz with @(t) =3p(5p +4)b(¢) .
Now, we consider the following stochastic semilinear differential equation of abstract form

du(t.- . (3.3)
% ANt = Gltu(t,) +u(t, @) 150
t
u(0,) =g¢()eX.
The equation (3.3) is called the modified equation of (3.1) which defines the
asymptotic behavior of original one.

AN ~ANv _2N+1
2

Furthermore, y = is large enough when N is sufficiently large.

2

t t
Theorem 2.8 implies that if the norm HAlq)H =sup | @(s)ds=sup [ 3p(5p+4)b(s)ds
® teRt-1 teRe-1
is sufficiently small, then there exists an inertial manifold for mild solutions to Eq. (3.3). This

is an inertial manifold for mild solutions of Eq. (3.1) which are staying in B p a8 1 —>—o0.

4. Conclusion

By Theorem 2.8, we proved the existence of an inertial manifolds for a class of
stochastic differential equations which relate to non-uniformly Lipschitzian nonlinearity.
Furthermore, in Section 3 we presented an example to illustrate our results.
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