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1. INTRODUCTION  

One challenge in motion control of bipedal walking is the high nonlinearities of dynamics and 
the inaccuracy of the parameters in biped models. The goal of the control law in this paper is to 
accommodate signal control so that the positions of each joint must track down the trajectory 
designed in the previous Motion planning section. This control law computes necessary torques to 
accommodate dynamics model so that the actual angles at each joints track the angles of the 
designed trajectory with a minimum error. The problem can be described as follow:     

After obtaining angles θ from the dynamics model of the biped robot in absolute co-ordinate 
system: 

( ) ( ) τθθθθθ =++ GVM &&& ,)(                      (1)  
    

We convert them into movements in generalized co-ordinates at each joint; q is relative angle 
between links.  

( ) ( ) τ=++ qGqqVqqM &&& ,)(                  (2) 
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, this vector was defined from the motion planning 

section. We build the closed- loop control system of the object to generate the vector of tracking 
error )(te  between the input signal and feed-back signal. The goal of the control law is to provide 
a signal τ so that the signal of tracking error is going on for Zero, 0)( →te  

Another challenge is the control of biped during Double Phase. About the general overview, 
we see that motion of a biped robot with Double phase has the advantage that it is more 
convenient to realize the stable motion and can fulfil more tasks than that only walking with 
Single phase. However it becomes more difficult when controlling a biped Double phase than that 
of the Single phase. Motion of a biped robot during Double phase can be described as the motion 
of dynamic system under holonomic constraints. However, in the case of using natural coordinate 
system, if we do not well in tracking down designed motion trajectory during the control, the 
constraints are difficult to be satisfied. Generally, approaches require to have an accurate 
estimation of dynamics model or to simplify the model. In simplification of the model, we can 
ignore some aspects, regardless of dynamics loading capacity. The interaction of parts and pre - 
unknown noise signals. As we know, it is difficult to obtain an accurate estimation of physical 
parameter of complicated models with the interaction of parts of a robot and under the force of 
gravity. Besides, the effect of noise loading capacity by friction on the system cannot be ignored. 
In this paper, the writer uses a robust damping control technique so-called RDC which was 
mentioned in reference book [2]. A RDC control model was built to apply to a biped robot so that 
it is not necessary to have estimated parameters. This control provides error compensative control 
signal based on the pre- designed motion trajectory and the data of measurement of velocity and 
the position of each joint. In addition, the parameters of this control model are built so that they 
can be adjusted easily. 
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2. BUILDING RDC CONTROL MODEL  

2.1 Dynamic Equations and Hypotheses 
We see that, in both of single phase and double phase, dynamics equations can be described 

as the following equation: 

Rdr FqCqM ττ =+++
••••

                                (3)   

In equation [3], F is a vector which describes the effect of gravity and friction force, dτ  is 
respective torque which describes the effect of noise on Biped robot. In order to be convenient for 
solving the problem, we give 2 hypotheses as follow: 

Hypothesis 1: (noise signal effects on covered Biped): Noise signal changes respect with time 
dτ in the dynamics equation of covered manipulator. It is described by a mathematical expression 

that is Nd ττ ≤sup ; here Nτ  is a positive constant.  
Hypothesis 2: (effecting of gravity and friction force is also covered):  

The vector 
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, here, 2ξ  and 3ξ are positive 
constants. 

With these hypothesises we can build RDC control method. Note that the dynamics equations 
was converted to use them in the generalized co-ordinates at each joint, q is relative angle 

between links. The control calculates and provides torque rτ to ensure the stability and accurate 
movements for the joints of the robot. 

2.2 Building RDC Control 
Choosing and defining Lyapunov function for the Biped Robot as follows: 
Review the equation (3); we define tracking error and derivation of the tracking error as 

follows:  

rrdrrd qqeqqe
•••

−=−=                       (4) 
We also define more extra parameters from tracking error and derivation of the tracking error. 

keer +=
•

 With k>0                             (5) 
We rewrite the dynamics equation (3) with the extra parameter r as follows: 

rdr FkerCMkrM τττ =++−−+−=
•

))((          (6) 
Here, F is effect of the friction and gravity force on the model. To build the torque control for 

the model, the writer chooses Lyapunov function as follows: 

MrrV T

2
1

=
                             (7) 

We also note that matrix M is positive define because M itself is inertial matrix of masses of 
the model (the elements of the matrix were made by inertial torque around different shafts of the 
masses). In addition, because of the limited angles of the robot; we have more features of Matrix 
M. 
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pp IMqMIM maxmin )( ≤≤                        (8) 
Mmin and Mmax are positive constants depending on features of mass of the model; Ip is the unit 

matrix  p× p. 
From the equation (8), after having the result of derivation both sides of equation (8), we can 

see the equation below : 

 { }dr
T FkeMkCMkrrV ττ ++−++−=

•

)(          (9) 
We can also rewrite (9) as follows: 
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     (10) 
From this result, we have a transformation process as follows: 
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Vectors ∆ andϕ  were defined as follows: 
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  (12)                  
According to the transformation above of choosing Lyapunov function of control law, the 

remaining work is to build a control which provides a torque Nτ  so that the system has robust-
stable status. We can choose the torque control law as follows: 

2
2 ϕτ rkk prr +=                                         (13) 

Here 0≥prk , 02 ≥k  are constant factors of gain of the controller, the vector ϕ was defined 
at (12) We can have conditions in order to prove the stability of the control. Substituting (13) into 
(10) we have : 

ϕϕ ∆+−≤
•

rrrkrrkV TT
pr
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2  
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Let see (14), using (8) and (12) we have ∆  as a limited value. Therefore we can apply 
Lyapunov and LaSalle [3] theory to solve the problem. If we chose a suitable value k2 

rV ∀≤
•

,0 and ∞→V  when 0→x . And we also have a largest set of invariable which is 

coordinate origin 0,0 ==
•

ee , therefore the phase trajectory trend to the coordinate origin 
asymptotically and globally when ∞→t . In other words, tracking errors trend to the coordinate 
origin when ∞→t . Based  on this feature we apply it to the Biped Robot model. 

 

 

2.3 Building the control during Single phase 

2.3.1 Building relative coordinate system qi at joints 
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Fig1. The relative coordinates qi 

We studied the absolute angles θ  at joints in chapter 3 to synthesis the motion gait of the 
biped robot. The nature of the biped control problem in this case is to control motors which places 
at joints so that these joint rotate following a desired angleθ . Combining the controls of these 
motors we get the motion gait of the biped robot. So we convert absolute coordinates  θ  to 
relative coordinates q, q is angle formed between directions of two links. This enables it is easier 
to control biped robot. 

We build the relative coordinate qi between joints as figure 1, qi is relative angle between 
joint i+1 and i 

Following the above method, we find out the relation between iq  and iθ  
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2.3.2 Some graphical results 
With the coordinates qi calculated (14) we have some results as follow  

( 4.3,130,5 21 === prkkk ) 

 

Fig2. The error of the 1st joint (degree/s) 

 

Fig3. The error of the 2nd joint (degree/s) 

 

Fig 4. The error of the 3th joint (degree/s) 

 

 

Fig 5. The error of the 4th joint (degree/s) 

 

Fig 6. The error of the 5th joint (degree/s) 
 

Fig 7. The error of the 6th joint (degree/s) 
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Fig 8. The error of the 7th joint (degree/s) 

 

Fig 9. The demonstration of 2ϕ  

3.CONCLUSION 
According to the demonstration in 2.2 section and the checked together the dynamic mode, 

we get the quite good results of the error of each joint. However, it is necessary to combine some 
more flexible control methods in the next research such as Neuron network and fuzzy algorithm 
or other adaptive control models. The main reason to develop these control model for the biped 
robot is that we simplified the problem, regardless of the effect of impact in contact with the 
ground when the swing leg step forward in this research, in this case we have to consider more 
the effect of the impulsive force from the ground when the swing leg starts contacting with the 
ground. In addition, we should use some sensor devices (camera, loadcell) in the next research so 
that we can build a humanoid robot with an artificial intelligence. So, it is necessary to bring out 
flexible control model for the next research. 
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