NGHIÊN CÚU CHẾ TẠO MÀNG TIN BẰNG PHƯƠNG PHÁP PHÚN XẠ PHẢN ỨNG MAGNETRON DC

Lê Trấn⁽¹⁾, Trần Văn Phương⁽²⁾, Trần Tuấn⁽¹⁾, Nguyễn Hữu Chí ⁽¹⁾ (1)Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM (2)Trường Cao đẳng Lý Tự trọng

(Bài nhận ngày 29 tháng 03 năm 2007, hòan chỉnh sửa chữa ngày 23 tháng 04 năm 2008)

TÓM TÅ**T**: Màng Titanium nitride (TiN) được chế tạo bằng phương pháp phún xạ phản ứng magnetron DC trên để thủy tinh. Trong công trình này, chúng tôi nghiên cứu sự ảnh hưởng của nhiệt độ đế, thế phún xạ ngưỡng theo tỉ lệ khí N_2/Ar , áp suất phún xạ và khỏang cách bia - đế lên tính chất cấu trúc, điện và quang của màng. Các tính chất của màng được nghiên cứu bằng cách sử dụng phương pháp đo nhiễu xạ tia X, phương pháp bốn mũi dò, phổ truyền qua quang học.

Kết quả cho thấy, nhiệt độ đế, thế phún xạ ngưỡng theo tỉ lệ N_2/Ar , áp suất phún xạ và khỏang cách bia-đế ảnh hưởng đến cấu trúc, tính chất điện và quang của màng. Màng có điện trở suất thấp nhất 35 **m**W.cm, chiết suất và hệ số tắt của màng ở bước sóng 550 nm lần lượt là 1.14 và 2.13, được chế tạo ở nhiệt độ đế 200°C, khoảng cách bia-đế 4.5cm, áp suất phún xạ 3 mtorr, thế phún xạ ngưỡng 550 V ở tỉ lệ $N_2/Ar = 0.1$

1.GIỚI THIỆU

Ngày nay, màng mỏng có nhiều ứng dụng trong nhiều lĩnh vực như: cơ, nhiệt, điện ,từ...Đặc biệt trong lĩnh vực quang học, màng mỏng được ứng dụng rất đa dạng như: màng khử phản xạ đơn lớp và đa lớp, màng dẫn điện trong suốt, màng quang tích hợp, gương lạnh, gương nóng ^[1,5,9]. Trong những năm gần đây nhiều tác giả trong và ngòai nước đã và đang tập trung nghiên cứu về màng gương nóng truyền qua – màng có độ truyền qua cao ở vùng khả kiến và phản xạ cao ở vùng hồng ngọai. Màng gương nóng truyền qua có thể được tạo ra bằng nhiều hướng như: Màng đa lớp điện môi-kim lọai-điện môi, màng dẫn điện như: Bạc, vàng và đồng có độ phản xạ cao ở vùng hồng ngọai, hấp thụ ít ở vùng khả kiến, màng bán dẫn có độ phản xạ cao ở vùng hồng ngọai như: MgO, ZnO, NiO, SiO, SnO₂, Bi₂O₃, PbO và In₂O₃; Bán dẫn pha tạp SnO₂:F, SnO₂:Sb, ZnO:Al, ZnO:Ga, ITO^[5]

Trong đó, một số loại màng đa lớp điện môi-kim loại-điện môi, đã được nhiều tác giả nghiên cứu như : $SiO_2/Al/SiO_2$, $Al_2O_3/Mo/Al_2O_3$, $TiO_2/Ag/TiO_2$, $Al_2O_3/Cu/Al_2O_3$ ^[1,2,3,4], nổi trội nhất là hệ màng đa lớp $TiO_2/Ag/TiO_2$, vì TiO_2 có chiết suất cao nên khử phản xạ tốt và nó là màng có độ bền cơ học cao. Tuy nhiên, lớp kim loại Ag ở giữa không bền về cơ học, hóa học lẫn nhiệt học theo thời gian ^[2,3,8]. Do đó, chúng tôi nghiên cứu vật liệu thay thế màng Ag như màng TiN - màng này có độ bền cơ học, hóa học lẫn nhiệt học rất cao và có tính chất quang điện giống màng kim loại $Au^{[4,7,8]}$

Màng TiN là vật liệu có màu của kim lọai vàng, độ cứng cao (21 - 24 GPa), chịu nhiệt (nhiệt nóng chảy là 2950^{0} C), chống ăn mòn, và có điện trở suất khá nhỏ (20 - 30 μ \Omega.cm)^[4,8,13]. Hơn nữa, màng mỏng TiN có độ phản xạ cao trong vùng hồng ngoại, chiết suất thấp và hệ số tắt cao như màng Au, rất thích hợp làm lớp giữa trong hệ thống màng đa lớp. Tuy nhiên, tùy vào mục đích sử dụng khác nhau mà nhiều tác giả đã sử dụng các phương pháp chế tạo màng khác nhau trên các lọai đế khác nhau. Với mục đích dùng màng TiN làm hàng rào khuyếch tán trong công nghệ IC, một số tác giả đã chế tạo màng TiN trên đế Si^[10,11,18], cho điện trở suất cở

25 μΩ.cm . Một số tác giả khác ứng dụng tích chất cơ học của màng và ứng dụng cho mục đích trang trí, họ đã sử dụng đế thép (304) hoặc đế MgO(001), kết quả cho màng TiN có điện trở suất cở 13μΩ.cm - 192μΩ.cm, một số công trình khác, tác giả chế tạo màng TiN trên đế thủy tinh^[12,13,14,15,16] thì lại cho kết quả điện trở suất từ 50-200μΩ.cm. Trong công trình này, chúng tôi lắng đọng màng TiN trên đế thủy tinh kiềm với mục đích nghiên tứu tích chất quang và điện của màng để ứng dụng làm màng phản xạ trong hệ màng đa lớp.

Vì vậy, trong công trình này chúng tôi nghiên cứu, tìm những điều kiện tối tru để chế tạo màng TiN có chiết suất thấp, hệ số tất k lớn, nghĩa là màng có điện trở suất thấp hay độ phản xạ cao ở vùng hồng ngọai. Do đó, màng TiN phải có cấu trúc đặc, tức là mật độ khối lớn. Điện trở suất của màng TiN phụ thuộc vào nồng độ hạt tải và độ linh động của điện tử dẫn. Màng TiN có liên kết hoá học tương tự kim loại, nên nồng độ hạt tải cao (cở 10²² hạt/cm³)^[3,7,8]. Vậy yếu tố để làm giảm điện trở suất của màng TiN chủ yếu là do độ linh động của điện tử dẫn quyết định. Vì thế, để tạo được màng có điện trở suất thấp, cần tránh tạo màng có cấu trúc xốp vùng I (mô hình Thornton). Nghĩa là tránh tạo màng có nhiều biên hạt trống. Muốn vậy, ta cần phải tạo màng theo cơ chế nhiệt động học và động học.

Theo cơ chế nhiệt động học, ta cần cấp nhiệt độ đế đủ lớn để làm tăng độ linh động của các nguyên tử tới đế và làm chúng dễ dàng khuyếch tán vào những vị trí bên trong mạng tinh thể, làm cho Titan và Nitơ dễ hợp thức hơn. Với nhiệt độ đế lớn sao cho $T_s>0,3T_m$ (lớn hơn 500^0 C), màng sẽ có cấu trúc cột đặc trong mô hình Thornton ^[3,7,8,9]. Tuy nhiên, nhiệt độ đế trong đề tài này chỉ thay đổi từ 150^0 C đến 400^0 C, không đáp ứng được mô hình Thornton. Hơn nữa, nhiệt độ quá cao dễ gây ra cho thành buồng chân không giãi hấp những tạp chất và gây tạp trong màng.

Vậy để giảm điện trở suất của màng, ta cần áp dụng cơ chế thứ hai là cơ chế động học. Nghĩa là tăng cường mật độ ion năng lượng cao đến màng như các ion Ar^+ , N_2^+ , N^+ . Vì vậy, chúng tôi sử dụng hệ magnetron gần cân bằng. Mục đích là để tăng cường sự truyền xung lượng giữa ion năng lượng cao cho nguyên tử hấp thụ như Ti và N_2 trên bề mặt màng, làm tăng độ linh động của những nguyên tử hấp thụ và dẫn đến tăng sự khuếch tán của chúng vào mạng tinh thể ở những vị trí bền. Đồng thời tăng khả năng hợp thức giữa Titan và Nitơ làm cho màng có cấu trúc đặc.

2.THỰC NGHIỆM

Màng TiN được chế tạo bằng phương pháp phún xạ phản ứng Magnetron dc trên đế thủy tinh, hệ chân không làm việc có áp suất tới hạn 10^{-4} torr với bia làm bằng vật liệu Titanium, độ tinh khiết 99.6%, kích thước bia 100 x 100 x 6 (mm). Khí làm việc là khí Argon (99.99%) và khí hoạt tính là khí Nitơ (99.99%), chúng được trộn lẫn theo tỉ lệ cho trước và được đưa vào buồng chân không bằng hệ van kim. Hệ magnatron được dùng có kích thước 119 x 119 x 51 (mm), từ trường trên bề mặt bia được tạo bằng loại nam châm vĩnh cửu Ferit, cường độ từ trường khoảng 350 Gauss. Quá trình tạo màng được tiến hành với áp suất 3.10⁻³ torr đến 6.10⁻³ torr, khoảng cách giữa bia và đế thay đổi được, thế phún xạ thay đổi từ 350 V đến 650 V, tỉ lệ khí N₂ so với Ar thay đổi từ 5% từ 15%. Bề dày màng được xác định bằng phương pháp Stylus, điện trở mặt của màng được xác định bằng phương pháp bốn mũi dồ^[4]. Cấu trúc tinh thể và kích thước hạt của màng được xác định bằng phương pháp Ellipsometry

3.KÉT QUẢ VÀ BÀN LUẬN

3.1.Tính chất điện

3.1.1.Khảo sát ảnh hưởng của thế phún xạ theo tỉ lệ khí Nitơ và Argon.

Với mỗi tỉ lệ % của Nitơ và Argon, chúng tôi khảo sát điện trở suất của màng theo thế phún xạ như đồ thị (hình 1) và tìm được điện trở suất thấp ứng với thế phún xạ ngưỡng). Kết quả nhận được cho thấy điện trở suất giảm theo thế phún xạ, là do sự truyền xung lượng giữa ion và nguyên tử Titan tăng, làm tăng độ linh động của nguyên tử hấp thụ Titan trên bề mặt, dẫn đến phản ứng giữa Titan và Nitơ tăng cho màng hợp thức tốt. Điều này được thể hiện rõ ở phổ nhiễu xạ tia X.

Từ phổ nhiễu xạ tia X (hình 2) cho thấy đỉnh phổ tương ứng mặt (111) giảm khi tăng thế phún xạ là do có sự giải phóng năng lượng, làm giảm năng lượng bề mặt, tức là làm tăng năng lượng biến dạng, bậc tinh thể tăng. Khi thế phún xạ đạt giá trị ngưỡng thì mặt (200) và (311) xuất hiện đồng thời màng có điện trở suất thấp nhất. Sự xuất hiện của đỉnh phổ (200) và (311) giải thích cho mẫu Q54 có điện trở suất nhỏ $3.5.10^{-5}$ (Ω cm). Điện trở suất của các mẫu tăng hay giảm thể hiện qua sự thay đổi tỉ lệ cường độ của mặt (200) và (311)

Từ kết quả khảo sát trên, ta thấy ứng với mỗi áp suất riêng phần của Nitơ, ta tìm được thế phún xạ ngưỡng để có thể thắng được sự Nitride hóa trên bia và tạo hợp thức tốt trên màng và như thế có thể cho điện trở suất thấp. Vì vậy ta cần thay đổi tỉ lệ khí giữa Nitơ và Argon. Đồng thời thay đổi thế phún xạ tại từng áp suất riêng phần của Nitơ. Kết quả cho thấy với tỉ lệ % của Nitơ và Ar là 10 thì thế phún xạ ngưỡng là 550 V, khi đó màng có điện trở suất thấp nhất (mẫu Q54)

Ngoài cơ chế truyền xung lượng giữa ion và nguyên tử Titan, khi tăng thế phún xạ đạt đến giá trị ngưỡng, cơ chế trung hòa Auger xảy ra có nghĩa là điện tử dẫn điện thứ nhất từ Ti chuyển qua trạng thái cơ bản của ion N_2 bằng hiệu ứng đường hầm, trung hòa nó và đồng thời trao năng lượng thừa cho điện tử thứ hai trong vùng dẫn điện, kích thích nó lên miền năng lượng liên tục. Vậy, khi tăng thế phún xạ, Nguyên tử trung hòa N_2 giải phóng từ bề mặt bia Ti và được cấp năng lượng cở thế áp vào bia. Do vậy, N_2 đến đế, làm tăng năng lượng truyền cho đế, và nó liên kết vào trong mạng nhiều hơn, dẫn đến điện trở suất của màng thấp.

Hình 1. Biểu diễn sự ảnh hưởng của điện trở suất theo thế phún xạ, ứng với từng tỉ lệ phần trăm của Nitơ và Argon

Hình 2.Phổ nhiễu xạ của các màng TiN được tạo theo thế phún xạ khác nhau và các thông số: tỉ lệ N_2 /Ar là 10%; áp suất làm việc p=3mtorr

3.1.2. Khảo sát sự ảnh hưởng của điện trở suất theo khoảng cách bia đế

Khoảng cách giữa bia và đế cũng là vấn đề quan trọng cần phải khảo sát. Nếu khoảng cách quá xa thì năng lượng tới truyền cho màng không đủ lớn và vì thế màng có cấu trúc tinh thể chưa tốt , nếu khoảng cách gần thì dòng ion bắn phá sẽ làm tăng sai hỏng. Ở một khoảng cách tối ưu, sự truyền xung lượng giữa ion và màng sẽ cho hợp thức tốt và năng lượng bắn phá của ion chưa vượt qua ngưỡng để gây ra sai hỏng trong màng. Công trình này tìm được khoảng cách tối ưu là 4.5cm (mẫu Q54) thì màng có điện trở suất thấp nhất

Hình 3.Biểu diễn sự ảnh hưởng của điện trở theo khoảng cách bia – đế

Hình 4. Phổ nhiễu xạ của các màng TiN được tạo với các thông số: Up=550 V; tỉ lệ N₂/Ar là 10%; áp suất làm việc p=3mtorr, nhiệt độ là 200⁰C. khoảng cách bia và đế thay được : h=3,5cm; h=4,5cm; h=5,5cm

3.1.3. Khảo sát sự ảnh hưởng của điện trở suất theo nhiệt độ

Ngoài các thông số như cường độ dòng phún xạ ngưỡng, khoảng cách giữa bia và đế, nhiệt độ cũng là thông số quan trọng, ảnh hưởng đến quá trình hình thành tinh thể của màng. (Hình 5) cho thấy ở 300° C, bậc tinh thể của màng lớn nhất, thể hiện ở thông số $\frac{I_{311}}{I_T}$ lớn, làm tăng độ linh động của điện tử, khi đó màng có điện trở suất thấp cở $3.5.10^{-5} \Omega$ cm (mẫu T71) như (hình 6). Tuy nhiên, khi nhiệt độ tăng đến 400°C, vật liệu trong buồng chân không nhả khí, làm cho màng có nhiều tạp, dẫn đến bậc tinh thể giảm thể hiện qua $\frac{I_{311}}{I_T}$ giảm. Vì thế độ linh động của điện tử giảm đồng nghĩa với điện trở suất tăng.

Hình 5. Biễu diễn sự ảnh hưởng của điện trở suất theo nhiệt độ đế

Hình 6.Phổ nhiễu xạ của các màng TiN được tạo với các thông số: Up = 550 V; tỉ lệ N₂/Ar là 10%; áp suất làm việc p = 3mtorr; khoảng cách bia đế là h=4,5 cm; nhiệt độ thay đổi từ $200^{\circ}C$ đến $400^{\circ}C$

3.1.4.Khảo sát sự ảnh hưởng điện trở suất theo áp suất phún xạ

Hình 7. Biểu diễn sự ảnh hưởng của điện trở theo áp suất

Hình 8. Phổ nhiễu xạ của các màng TiN được tạo theo áp suất phún xạ và các thông số: Up= 550 V; tỉ lệ N₂/Ar là 10%,khỏang cách bia đế h =4,5cm; nhiệt độ 200⁰C

Áp suất cũng là một thông số quan trọng làm ảnh hưởng đến tính chất của màng. Thực vậy, ở áp suất cao, các ion N_2^+ , N^+ và các nguyên tử Ti bị tán xạ bởi các phân tử khí, và vì thế xung lượng của chúng truyền cho đế giảm. Điều này làm cho độ linh động của nguyên tử hấp thụ trên bề mặt giảm. Nếu giảm áp suất thì sự truyền xung lượng giữa ion N_2^+ , N^+ và nguyên tử Ti tăng, làm tăng độ linh động của nguyên tử hấp thụ Ti trên bề mặt, dẫn đến phản ứng Titan và Nito tăng, giải phóng năng lượng, làm giảm năng lượng bề mặt, tức là làm tăng năng lượng biến dạng, nên cường độ mặt (111) giảm. điện trở suất của màng giảm. Điều này do cơ chế tán xạ của hạt tải bởi mặt phân cực (111). Tuy nhiên nếu tiếp tục giảm áp suất làm việc thì lượng Nito sẽ quá ít để có thể tạo được màng TiN. Nếu áp suất thấp hơn 3 mtorr thì thành phần Titan trong màng sẽ tăng, màng sẽ có màu trắng của kim loại Titan.

3.2.Tính chất quang

Chiết suất n và hệ số tắt k của màng mỏng TiN

Hình 9. Chiết suất n và hệ số tắt k của mẫu L1 theo bước sóng

Hình 10. Chiết suất n và hệ số tắt k của mẫu L4 theo bước sóng

Hình 11.Phổ phản xa của mẫu L1 theo bước sóng.

Hình 12. Phổ phản xạ của mẫu L4 theo bước sóng

Trong phần 3.1), chúng tôi đả tìm được màng có điện trở suất thấp cở 35 $\mu\Omega$.cm ở nhiệt độ 200°C và 300°C. Từ công thức thực nghiệm ^[17] $R = (1 + 2e_0c_0R_s)^{-2}$, với R_s là điện trở mặt của màng , $1/e_0c_0 = 376\Omega$. ta nhận thấy giữa tính chất điện và tính chất quang của màng có mối liên hệ sau: khi màng có R_s nhỏ thì hệ số phản xạ R lớn, do đó chúng tôi chỉ khảo sát tính chất quang của màng có điện trở suất thấp như đã đề cập. Ở nhiệt độ 300°C, màng L4 với bề dày 33nm có chiết suất và hệ số tắt ở bước sóng 550nm là 1.35 và 3.49 (hình 10) trong 9). Hai lọai màng này có cùng bề dày và điện trở suất. Mặc dù chúng có cùng điện trở suất, độ phản xạ trong vùng hồng ngọai của màng L1 (hình 11) là cao hơn so với màng L4 (hình 12). Vì vậy chúng tôi chọn nhiệt độ đế tối ưu để tạo màng là 200°C.

4.KÉT LUÂN

Màng TiN tạo được có cấu trúc tinh thể cao, tồn tại đủ các mặt mạng (111), (200) và (311). Màng có điện trở suất thấp $\rho = 35\mu\Omega$.cm ứng với các thông số tạo màng tối ưu: Thế phún xạ ngưỡng U_p=550 V, tỉ lệ N₂/Ar = 10%, khoảng cách giữa bia đế h = 4,5cm, áp suất phún xạ tòan phần P = 3.10^{-3} torr, nhiệt độ đế 200°C. Chiết suất và hệ số tắt của màng ở bước sóng 550nm là 1,14 và 2,13.

STUDYING AND PREPARING TIN FILMS BY D.C REACTIVE MAGNETRON SPUTTERING METHOD

Le Tran⁽¹⁾,Tran Van Phuong ⁽²⁾, Tran Tuan⁽¹⁾, Nguyen Huu Chi ⁽¹⁾ (1) University of Natural Sciences, VNU-HCM (2)Ly Tu Trong College

ABSTRACT: TiN thin films have been deposited by DC reactive magnetron sputtering method on glass substrates. This report, we study the effects of substrate temperature, threshold sputtering voltage versus gas ratio N_2/Ar , sputtering pressure and target-substrate distance on structure, electrical and optical properties. Thin film properties studied by using X rays diffraction, Four probes resistivity and optical transision measurements.

The results showed that substrate temperature, threshold sputtering voltage versus gas ratio N_2/Ar , sputtering presure and target-substrate distance effect on structure, electrical and optical properties of thon films. Films having low electrical resistivity of 35 mW.cm, refractive and extinct index of 1.35 and 3.49 at 550 nm wave length, are prepared at substrate temperature of $300^{\circ}C$, target-substrate distance of 4.5 cm, sputtering presure of 3 mtorr, threshold sputtering voltage of 550 V at gas ratio N_2/Ar of 0.1.

TÀI LIỆU THAM KHẢO

[1]. O. S. Heavens, *Optical Properties of Thin Solid Film*, London Butterworths Scientific Publication, ch4, (1955).

- [2]. S.M.A. Durrani, E.E. Khawaja , A.M. Al-Shukri , M.F. Al-Kuhaili, Dielectric/Ag/dielectric coated energy-efficient glass windows for warm climates, *Energy and Buildings 36*, 891–898, (2004).
- [3]. Ion Dima, Benedict Popescu, Floriana Iova, Gabriela Popescu, Influence Of The Silver Layer On The Optical Properties Of The Tio2/Ag/Tio2 Multilayer, *Thin Solid Films*, 200, 11-18, (1991).
- [4]. J.-E. Sundgren, Structure And Properties Of Tin Coatings, *Thin Solid Films*, 128, 21-44, (1985).
- [5]. H.K. Pulker, Coating on Glass, Elsevier, p 391-459, (1984).
- [6]. M. A. Angadi, k. Nallaamshetty, *Heat mirrors using CeO2/Cu/CeO2 multilayer films*, Journal Of Materials Science Letters S, 391-394, (1989).
- [7]. J. E. Sundgren, Structure And Properties Of Tin Coatings, *Thin solid Films*,p 21-44, (1985).
- [8]. Patrick R. LeClair, *Titanium Nitride Thin Films by the Electron Shower Process*, Massachusetts Intitute Of EchnologY, May (1998).
- [9]. Donald .L Smith, *Thin Film deposition- principle and practice*, Mc Graw-Hill, Inc, New York San Francisco Washington DC, (1995).
- [10]. M. Kawamura^a, y. Abe^a, H. Yanagisawa^b, K. Sasaki^a, Characterization of TiN films prepared by a conventional magnetron sputtering system: influence of nitrogen flow percentage and electrical properties, Thin Solid Films 287, 115-119, (1996).
- [11]. C. S. Shin, S. Rudenja, D. Gall, N. Hellgren, T.-Y. Lee, I. Petrov, and J. E. Greene, Growth, surface morphology, and electrical resistivity of fully strained substoichiometric epitaxial TiNx $.0.67 \le x < 1.0$. layers on MgO(001), Journal Of Applied Physics Volume 95, Number 1
- [12]. Li-Jian Meng ^a,*l, M.P. dos Santos ^b, Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures, Surface and Coatings Technology 90, 64-70, (1997).
- [13]. Chung-Hsing Sun, Dr. Jia-Hong Huang, Dr. Ge-Ping Yu, Using Design of Experiment to Optimize the Deposition Process of TiN Thin Film by Unbalanced Magnetron Sputtering
- [14]. S. Guruvenket and G. Mohan Rao, Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering, Department of Instrumentation, Indian Institute of Science, Bangalore-560 012, India
- [15]. H. Wang, A. Kvit, X. Zhang, C. C. Koch, J. Narayan, *Mechanical and Electrical Properties of Nanocrystalline and Epitaxial TiN Films*, Mat. Res. Soc. Symp. Proc. Vol. 697 © 2002 Materials Research Society.
- [16]. Witold Posadowski And Lubomila Kr6l-Sti~Pniewska- Zbigniew Ziolowski, Properties Of Tin~ Films Reactively Sputtered In And Argon-Nitrogen Atmosphere, Thin Solid Films, 62 (1979) 347-351
- [17]. G.Frank, E.Kauer And H.Kostlin, Transparent Heat- Reflecting Coatings Based On Highly Doped Semiconductors, Thin Solid Films, 77, 107 117, (1981).
- [18]. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surface and Coatings Technology 149 (2002) 7–13