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ABSTRACT: 
A consecutive-interpolation 4-node 

quadrilateral finite element (CQ4) is 
further extended to solve two-
dimensional heat transfer problems, 
taking the average nodal gradients as 
interpolation condition, resulting in high-
order continuity solution without 
smoothing operation and without 

increasing the number of degrees of 
freedom. The implementation is 
straightforward and can be easily 
integrated into any existing FEM code. 
Several numerical examples are 
investigated to verify the accuracy and 
efficiency of the proposed formulation in 
two-dimensional heat transfer analysis. 
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1. INTRODUCTION  

 Heat transfer analysis is of great importance 
to both engineering and daily life, as one may 
encounter the problem of heat transfer almost in 
every activities, such as heating, cooling, air 
convection etc. Since analytical solutions are only 
available for some restricted problems, in most 
cases one has to rely on numerical methods to 
perform analysis. 

 The standard finite element method (FEM) 
has been successfully used for heat transfer 
problems. However, despite its simplicity, the 
FEM still has many inherent shortcomings. The 
FEM shape function is C0-continuous, thus the 
nodal gradient fields, i.e., the temperature 
gradient in case of heat transfer, is discontinuous 
across element boundaries. More critically, FEM 

suffers loss of accuracy when the mesh is heavily 
distorted [1]. 

Various alternative methods have been 
proposed to overcome the difficulties raised by 
FEM. A class of meshfree methods like the 
Element Free Galerkin method (EFG) [2], the 
meshless local Petrov-Galerkin method [3] and 
the Radial Point Interpolation method [4] are 
used for investigating heat transfer problems. The 
meshfree methods offer flexibility due to the fact 
that only nodes are required, which would be 
great advantage in case the re-meshing is 
necessary. However, the disadvantages of 
meshfree methods include the complexity in the 
calculation of meshfree shape functions, and the 
lack of Kronecker delta property leading to 
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difficulties in the imposition of essential 
boundary conditions. Another trend is the 
application of smoothing technique into existing 
numerical methods, such as the smoothed finite 
element method (SFEM) [1] and the smoothed 
radial point interpolation method [5]. In this class 
of methods, the smoothing operator is applied 
during the calculation of gradient fields, i.e., the 
strain in mechanical problems and temperature 
gradient in heat transfer problems, leading to the 
modification of the “stiffness” matrices. The 
nodal gradient field is thus continuous. 

 Recently, a new consecutive-interpolation 
method (CFEM) has been proposed [6, 7], in 
which the conventional approximation used in 
FEM is modified such that the averaged nodal 
gradients are taken into account. The nodal 
gradient field is thus continuous, but unlike the 
SFEM, no smoothing technique is required. In 
post-processing, stress-recovery, which is quite 
often used in terms of the FEM, is not necessary. 
One interesting point is that there are no 
additional degrees of freedom to the system. The 
problem size remains the same as that in the 
FEM. Inspired by the advantages and potential of 
CFEM reported for the linear elastic problems [6, 
7], this particular research further extends the 
method by investigating its capabilities in heat 
transfer analysis. 

 The outline of the paper is as follows. A 
brief on CFEM formulation for heat transfer 
problems is reported in Section 2. Section 3 
presents the numerical examples, in which the 
capabilities of CFEM in heat transfer analysis are 
numerically illustrated. Conclusions and remarks 
are given in Section 4.  

2. CFEM FOR HEAT TRANSFER  
PROBLEMS  
2.1.  Brief on CFEM 

Let us consider a 2D body in the domain Ω 
bounded by Г = Гu + Гt và Гu ∩ Гt = { }. Using 
the Finite Element Method (FEM), the domain Ω 

is discretized into non-overlapping sub-domains 
Ωe called elements. The elements are 
interconnected at points called nodes. Any 
function u(x) with x  can be approximated 
by 

      uNxxx ˆˆ~
1

 


n

i
ii uNuu , (1) 

where û is the vector of nodal values, n is 
the number of nodes, N is the vector of shape 
functions and Ni is the shape function associated 
with node i. The standard approximation scheme 
within a finite element, e, is then given by 
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where ne is the number of nodes of the 
element. By assigning the approximated value at 
node i as    i

i uu x , and the vector of shape 
functions evaluated at node i as    i

i xNN  , 
the average nodal derivatives  i

xu,  (similar to 
 i
yu, ) can then be determined by [6,7] 
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where  i
x,N  are the averaged derivative of 

 iN , which are calculated by 
     
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with   ei
x,N  being the derivative of  iN  

computed in element e. In Eq. (4), Si is the the set 
of elements containing all the elements connected 
to node i, while we is a weight function dependent 
on the element type and is defined as in [7] 


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with and e  being the area of element 

iSe  

One well-known shortcoming of the 
standard FEM is the discontinuity of strains and 
stresses due to the discontinuity of the nodal 
gradients. In the CIP approach, both the nodal 
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values  iu  and the averaged nodal derivatives 
 i
xu,  (and  i

yu, ) are taken into the interpolations, 

which can substantially overcome such drawback 
of the discontinuity in the stress and strain fields. 
As a consequence, the approximation in Eq. (1) 
can be rewritten by means of the CIP scheme as 
follows 
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where 
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CIP shape functions, in which i , ix  and iy  

are the field functions dependent on the element 
type. Applying the CIP approach to the constant 
strain triangular element (T3), one obtained the 
CT3 element [6] and the CQ4 element [7] is 
obtained from the standard bilinear quadrilateral 
element (Q4). 

Fig. 1 illustrates the application of CIP  

 

approach into Q4 element described particularly 
in an irregular finite element mesh, in which the 
sets Si, Sj, Sk, Sm contain all the neighboring 
elements that share the node i, j, k, m, 
respectively. It indicates that the supporting 
nodes for the point of interest x include all the 
nodes in the element sets Si, Sj, Sk, Sm. Thus, as 
shown in Fig. 1, the support domain in CFEM is 
in any cases larger than that of the standard FEM, 
since it includes not only the nodes of the element 
in interest but also the nodes of the adjacent 
elements. Using Eq. (2), (3) and (6), the 
interpolation scheme for a CQ4 element for any 
point x can then be expressed by 
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In Eq. (7), the field functions i , ix  are 

calculated as follows [7] 
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in which Li, Lj , Lk and Lm  are the shape 
functions of the element Q4 and p = 0.5. The 

function iy  is obtained simply by replacing the 

x-coordinates in equation (9) by the 
corresponding y-coordinates. The functions 

j , jx  and jy ;  k , kx  and ky ; m , mx  

and my  can be computed in the similar manner 

by a cyclic permutation of indices i, j, k, m. 

 
Figure 1. Schematic sketch of CQ4 element 

2.2.Desirable  properties of  the shape 
functions 

Figs. 2a and 2b show a comparison of the 
1D shape functions and the first-order derivatives 
between FEM and CFEM. The CQ4 shape 
function and the first-order derivative are 
depicted in Fig. 3. It is observed that the CFEM 
shape functions and their first-order derivatives 
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are smoother than the FEM counterparts. In 
particular, the CFEM shape functions are C1-
continuity on nodes, allowing the strain and stress 
fields to be continuous across the nodes. Unlike 
some other higher-order continuity methods, such 
as the Element-free Galerkin method or 
Isogeometric Analysis, the CFEM possesses the 
Kronecker-delta property, enabling direct 
imposition of boundary conditions. It is also 
worth mentioning that the unknowns contain only 
the nodal displacement, as shown in Eq. (6). 
Thus, no additional degrees of freedom are 
required. 

 
 (a) 

 
 (b) 

Figure 2. Comparison of (a) one-dimensional shape 
functions and (b) their first-order derivatives 

between CFEM and FEM 

(a) 

(b) 

Figure 3. Visualization of (a) Shape function and (b) 
first-order derivative of CQ4 element 

2.3. Governing equations of heat transfer 
problems 

The governing equation of a heat transfer 
problem in a domain Ω is given by 

  TcQTk  ,  (10) 

with the following boundary conditions 

TT   on Г1: essential boundary (11) 

qTk   on Г2: surfae heat flux 
boundary     (12) 

0 Tk  on Г3: adiabatic boundary (13) 

 TThTk a   on Г4: convective 
boundary    (14) 

 44 TTTk a    on Г4: radiation 
boundary    (15) 

In Eqs. (10) to (15), k = diag(kxx, kyy, kzz) is 
the tensor of thermal conductivities, T the 
temperature field, Q the body heat flux, ρ the 
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density and c the specific heat capacity, h the 
convective coefficient, Ta the ambient 
temperature, σ the Stefan-Boltzmann constant for 
radiation and ε the emissivity which is taken as 1 
in this paper. In case of steady-state analysis, the 
time derivative term vanishes. In general, the heat 
transfer problem is non-linear. If we consider 
constant thermal conductivities, constant 
convective coefficient and do not take radiation 
into account, the problem becomes linear. For the 
sake of simplicity, but without loss of generality, 
we consider linear steady-state heat transfer 
problems in this paper. 
3. NUMERICAL EXAMPLES 
3.1. Heat conduction in 2D 

In this example, a two dimensional heat 
conduction problem is considered as depicted in 
Fig. 4. The surface heat flux q = 3000 W/m2 is 
applied on the Neumann boundary Г1. On 
essential boundary Г2, the temperature is 
prescribed as T = 303K. The thermal conductivity 
is given by k = 20 W/mK. There is no analytical 
solution available for this problem, a FEM 
solution using a fine mesh, e.g.10000 Q4 
elements, is taken for comparison purpose. The 
temperature distribution is given as in Fig. 5. Fig. 
6 presents the equivalent thermal energy 
evaluated by CFEM for various discretization, for 
instance, 5 x 5, 10 x 10, 20 x 20 and 40 x 40 
elements, showing the convergence tendency 
with respect to the number of degrees of freedom. 
It is observed in the results that even with a 
coarsest mesh of 5 x 5 elements, the numerical 
error is still very small, 0.09% and the result 
converges quickly to an upper bound of the 
reference one. Fig. 7 depicts a comparison of 
temperature gradient obtained by CFEM and 
FEM, respectively, highlighting the smoothness 
of CFEM solution, while a discontinuity across 
element is found for the FEM. 

 
Figure 4. 2D heat conduction problem: model 

 
Figure 5. 2D heat conduction problem: 

temperature distribution 

 
Figure 6. 2D heat conduction: convergence of the 

equivalent thermal energy with respect to 
mesh size 
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(a) 

 
(b) 

Figure 7. 2D heat conduction: Temperature 
gradient xT   obtained by (a) CFEM and (b) FEM 

3.2. Heat convection in 2D 
This example deals with a more complicated 

problem of 2D heat transfer analysis where the 
model is sketched in Fig. 8a. The inward surface 
heat flux is defined as q = 20000 W/m2. The 
conductivity is k = 100 W/mK. Convection is 
applied on the left hand side boundary with a 
coefficient h = 100 W/m2 and the ambient 
temperature is Ta = 300 K. On the essential 
boundary, the temperature is prescribed as T = 
300 K. Again, no analytical solution is available 
for this particular example and we hence adopt a 
FEM solution using a fine mesh of 5936 Q4 
elements as reference results. 

(a) 

 
(b) 

Figure 8. 2D heat convection: (a) Geometry and 
(b) Finite element mesh 

The temperature distribution is illustrated in 
Fig. 9. A comparison of the maximum 
temperature (found at the Neumann boundary) 
obtained by CFEM and FEM, respectively, for 
the same mesh, are presented in Table 1. It is 
interesting to see that, given the same mesh, the 
CFEM solution is closer to the reference solution, 
showing the higher accuracy of CFEM as 
compared with the one derived from the FEM. 
The higher accuracy of CFEM is clear as it is due 
to the fact that the degree of shape functions of 
the CFEM is higher than that of the FEM. The 
nodal temperature gradient is plotted in Fig. 10, 
where one can observe that the CFEM solution is 
really smoother, which is again expected as 
observed in Example 3.1. 
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 Figure 9. 2D heat convection: temperature distribution 

 

 (a) 
 

 

 
(b) 

Figure 10. 2D heat convection: Temperature 

gradient yT   obtained by (a) CFEM and (b) FEM 

4. CONCLUSIONS 

We have successfully extended the 
consecutive-interpolation finite element method 
(CFEM) to solve the heat transfer problem in 2D. 
The CFEM provides some advantages as follows: 

Smooth temperature gradient without using 
any smoothing technique, while retaining 
increasing the number of degrees of freedom. 

Higher accuracy due to the higher-order 
shape function. 

Straightforward and easy to be implemented 
into any existing FEM code. 

From this particular study, the CFEM is 
demonstrated as an effective numerical tool to be 
considered as an alternative to the standard FEM 
in modeling heat transfer problems. 

Table 1. 2D Convection: Comparison of the maximum temperature. The relative errors 
with the reference results are displayed in brackets 

FEM (219 Q4 
elements) 

CFEM (219 CQ4 
elements) 

FEM (546 Q4 
elements) 

CFEM (546 Q4 
elements) 

Reference  (5936 Q4 
elements) 

410.742 K 
(-0.36 %) 

410.844 K 
(-0.34 %) 

411.174 K 
(-0.26 %) 

411.215 K 
(-0.25 %) 

412.235 K 
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Phương pháp phần tử hữu hạn nội suy liên 
tiếp trong phân tích truyền nhiệt 
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TÓM TẮT: 
Phần tử 4 nút nội suy liên tiếp (CQ4) 

được mở rộng để giải bài toán truyền 
nhiệt hai chiều. Trong đó, giá trị gradient 
trung bình tại nút được sử dụng trong 
phương trình nội suy, dẫn tới hệ quả là 
lời giải có bậc cao hơn, dù không sử 
dụng thuật toán làm trơn và không làm 

tăng số bậc tự do của hệ. Phương pháp 
đề nghị có thể dễ dàng được hiện thực 
hóa và tích hợp vào bất cứ mã nguồn 
FEM nào hiện có. Nhiều ví dụ số được 
xem xét để làm rõ tính chính xác và hiệu 
suất của phương pháp đề nghị trong việc 
phân tích truyền nhiệt hai chiều. 

Từ khóa: truyền nhiệt, CFEM, dẫn nhiệt, đối lưu, gradient tại nút. 
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