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ABSTRACT:

A consecutive-interpolation 4-node
qguadrilateral finite element (CQ4) is
further extended to solve two-
dimensional heat transfer problems,
taking the average nodal gradients as
interpolation condition, resulting in high-
order  continuity  solution  without
smoothing  operation and  without

increasing the number of degrees of
freedom. The implementation is
straightforvard and can be easily
integrated into any existing FEM code.
Several numerical examples are
investigated to verify the accuracy and
efficiency of the proposed formulation in
two-dimensional heat transfer analysis.
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1. INTRODUCTION

Heat transfer analysis is of great importance
to both engineering and daily life, as one may
encounter the problem of heat transfer almost in
every activities, such as heating, cooling, air
convection etc. Since analytical solutions are only
available for some restricted problems, in most
cases one has to rely on numerical methods to
perform analysis.

The standard finite element method (FEM)
has been successfully used for heat transfer
problems. However, despite its simplicity, the
FEM still has many inherent shortcomings. The
FEM shape function is C°-continuous, thus the
nodal gradient fields, i.e., the temperature
gradient in case of heat transfer, is discontinuous
across element boundaries. More critically, FEM

suffers loss of accuracy when the mesh is heavily
distorted [1].

Various alternative methods have been
proposed to overcome the difficulties raised by
FEM. A class of meshfree methods like the
Element Free Galerkin method (EFG) [2], the
meshless local Petrov-Galerkin method [3] and
the Radial Point Interpolation method [4] are
used for investigating heat transfer problems. The
meshfree methods offer flexibility due to the fact
that only nodes are required, which would be
great advantage in case the re-meshing is
necessary. However, the disadvantages of
meshfree methods include the complexity in the
calculation of meshfree shape functions, and the
lack of Kronecker delta property leading to
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difficulties in the imposition of essential
boundary conditions. Another trend is the
application of smoothing technique into existing
numerical methods, such as the smoothed finite
element method (SFEM) [1] and the smoothed
radial point interpolation method [5]. In this class
of methods, the smoothing operator is applied
during the calculation of gradient fields, i.e., the
strain in mechanical problems and temperature
gradient in heat transfer problems, leading to the
modification of the “stiffness” matrices. The
nodal gradient field is thus continuous.

Recently, a new consecutive-interpolation
method (CFEM) has been proposed [6, 7], in
which the conventional approximation used in
FEM is modified such that the averaged nodal
gradients are taken into account. The nodal
gradient field is thus continuous, but unlike the
SFEM, no smoothing technique is required. In
post-processing, stress-recovery, which is quite
often used in terms of the FEM, is not necessary.
One interesting point is that there are no
additional degrees of freedom to the system. The
problem size remains the same as that in the
FEM. Inspired by the advantages and potential of
CFEM reported for the linear elastic problems [6,
7], this particular research further extends the
method by investigating its capabilities in heat
transfer analysis.

The outline of the paper is as follows. A
brief on CFEM formulation for heat transfer
problems is reported in Section 2. Section 3
presents the numerical examples, in which the
capabilities of CFEM in heat transfer analysis are
numerically illustrated. Conclusions and remarks
are given in Section 4.

2. CFEM FOR
PROBLEMS

2.1. Briefon CFEM

Let us consider a 2D body in the domain Q
bounded by I' =Ty + [y va I'y N It = { }. Using
the Finite Element Method (FEM), the domain Q

HEAT TRANSFER

is discretized into non-overlapping sub-domains
Q. called elements. The elements are
interconnected at points called nodes. Any
function u(x) with X € €2 can be approximated

by
u(x) = 0(x)= 3" N;(x)d, =Na, ()

where U is the vector of nodal values, n is
the number of nodes, N is the vector of shape
functions and N; is the shape function associated
with node i. The standard approximation scheme
within a finite element, e, is then given by

0= > NN, =NE*, @
i=1

where ne is the number of nodes of the
element. By assigning the approximated value at
node i as ulll = U(Xi), and the vector of shape

functions evaluated at node i as NI = N(Xi),
[

the average nodal derivatives u’i] (similar to
u’[;,]) can then be determined by [6,7]
all = Nlg ©)

where N’[ix] are the averaged derivative of

Nl , which are calculated by
NI = 5™ (w, - NEET), (4)

ee$;
with N’[ix][e] being the derivative of NI
computed in element e. In Eq. (4), Si is the the set
of elements containing all the elements connected
to node i, while we is a weight function dependent
on the element type and is defined as in [7]

W, = —=—, (5)

e

@|

€S,

with and A, being the area of element

ees,

One well-known shortcoming of the
standard FEM is the discontinuity of strains and
stresses due to the discontinuity of the nodal
gradients. In the CIP approach, both the nodal
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values u[‘] and the averaged nodal derivatives

EE] (and U,[;]) are taken into the interpolations,

which can substantially overcome such drawback
of the discontinuity in the stress and strain fields.
As a consequence, the approximation in Eq. (1)
can be rewritten by means of the CIP scheme as
follows

3= Y. (pu)+ 4,08+ 4,0)

i=1

ZZ(¢iN[i]+ N+ in,[iy]):" (6)
i=1

= N(x)u

where

N(x) = Zn:(gbiN[i] + ¢, N+ g NU) s the

=1
CIP shape functions, in which ¢, ¢, and @,

are the field functions dependent on the element
type. Applying the CIP approach to the constant
strain triangular element (T3), one obtained the
CT3 element [6] and the CQ4 element [7] is
obtained from the standard bilinear quadrilateral
element (Q4).

Fig. 1 illustrates the application of CIP

approach into Q4 element described particularly
in an irregular finite element mesh, in which the
sets Si, Sj, Sk, Sm contain all the neighboring
elements that share the node i, j, k, m,
respectively. It indicates that the supporting
nodes for the point of interest x include all the
nodes in the element sets S;, Sj, Sk, Sm. Thus, as
shown in Fig. 1, the support domain in CFEM is
in any cases larger than that of the standard FEM,
since it includes not only the nodes of the element
in interest but also the nodes of the adjacent
elements. Using Eq. (2), (3) and (6), the
interpolation scheme for a CQ4 element for any
point x can then be expressed by

i*(x)= 3 (pu + 4,0V +4,0"). @)

I=i,j.k,m

In Eq. (7), the field functions ¢, ¢, are

calculated as follows [7]

6 =L+ +L+L,)-L2+12+12)
)

¢, =—(x —x, 2L, + pLL,L, + pLiL,L,)
~ (% —x 2L, + pLL L, + pLLL, )+

— (% =%, 2L, + pLL, L, + pLiL, L)

9)
in which L;, Lj, Lk and L are the shape
functions of the element Q4 and p = 0.5. The

function ¢,

is obtained simply by replacing the

x-coordinates in  equation (9) by the
corresponding  y-coordinates. The functions

¢j 1¢jx and ¢jy ; ¢k ’¢kx and¢ky ; ¢m ’¢mx
and(bmy can be computed in the similar manner

by a cyclic permutation of indices i, j, k, m.

& Point of inferest x
# Supporting nodes for the point x g T

Figure 1. Schematic sketch of CQ4 element

2.2.Desirable properties of the shape
functions

Figs. 2a and 2b show a comparison of the
1D shape functions and the first-order derivatives
between FEM and CFEM. The CQ4 shape
function and the first-order derivative are
depicted in Fig. 3. It is observed that the CFEM
shape functions and their first-order derivatives
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are smoother than the FEM counterparts. In
particular, the CFEM shape functions are C!-
continuity on nodes, allowing the strain and stress
fields to be continuous across the nodes. Unlike
some other higher-order continuity methods, such
as the Element-free Galerkin method or
Isogeometric Analysis, the CFEM possesses the
Kronecker-delta  property, enabling direct
imposition of boundary conditions. It is also
worth mentioning that the unknowns contain only
the nodal displacement, as shown in Eq. (6).
Thus, no additional degrees of freedom are
required.
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Figure 2. Comparison of (a) one-dimensional shape
functions and (b) their first-order derivatives
between CFEM and FEM

@)
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Figure 3. Visualization of (a) Shape function and (b)
first-order derivative of CQ4 element

2.3. Governing equations of heat transfer
problems

The governing equation of a heat transfer
problem in a domain Q is given by

V- (kVT)+Q = pcT, (10)
with the following boundary conditions
T =T onI}: essential boundary (11)

—kVT =0 on T2 surfae heat flux
boundary (12)

—KkVT =0 on I's: adiabatic boundary (13)
—kVT = h(Ta —T) on Ty convective

boundary (14)
—kVT = gcr(Ta4 —T4) on T4 radiation
boundary (15)

In Egs. (10) to (15), k = diag(kx, Kyy, kzz) is
the tensor of thermal conductivities, T the
temperature field, Q the body heat flux, p the
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density and c the specific heat capacity, h the
convective  coefficient, T, the ambient
temperature, o the Stefan-Boltzmann constant for
radiation and € the emissivity which is taken as 1
in this paper. In case of steady-state analysis, the
time derivative term vanishes. In general, the heat
transfer problem is non-linear. If we consider
constant  thermal  conductivities,  constant
convective coefficient and do not take radiation
into account, the problem becomes linear. For the
sake of simplicity, but without loss of generality,
we consider linear steady-state heat transfer
problems in this paper.

3. NUMERICAL EXAMPLES

3.1. Heat conduction in 2D

In this example, a two dimensional heat
conduction problem is considered as depicted in
Fig. 4. The surface heat flux g = 3000 W/m2 is
applied on the Neumann boundary I'l. On
essential boundary I2, the temperature is
prescribed as T = 303K. The thermal conductivity
is given by k = 20 W/mK. There is no analytical
solution available for this problem, a FEM
solution wusing a fine mesh, e.g.10000 Q4
elements, is taken for comparison purpose. The
temperature distribution is given as in Fig. 5. Fig.
6 presents the equivalent thermal energy
evaluated by CFEM for various discretization, for
instance, 5 x 5, 10 x 10, 20 x 20 and 40 x 40
elements, showing the convergence tendency
with respect to the number of degrees of freedom.
It is observed in the results that even with a
coarsest mesh of 5 x 5 elements, the numerical
error is still very small, 0.09% and the result
converges quickly to an upper bound of the
reference one. Fig. 7 depicts a comparison of
temperature gradient obtained by CFEM and
FEM, respectively, highlighting the smoothness
of CFEM solution, while a discontinuity across
element is found for the FEM.

-—*A\ ””””””””

diabatic‘boundary

05m —-f g=3000W/mK T =303 K 04m

o Adiabatic boundary

07m

Figure 4. 2D heat conduction problem: model

B |

Figure 5. 2D heat conduction problem:
temperature distribution
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Figure 6. 2D heat conduction: convergence of the
equivalent thermal energy with respect to
mesh size
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Figure 7. 2D heat conduction: Temperature
gradient OT / OX obtained by (a) CFEM and (b) FEM

3.2. Heat convection in 2D

This example deals with a more complicated
problem of 2D heat transfer analysis where the
model is sketched in Fig. 8a. The inward surface
heat flux is defined as g = 20000 W/m?2. The
conductivity is k = 100 W/mK. Convection is
applied on the left hand side boundary with a
coefficient h = 100 W/m? and the ambient
temperature is Ta = 300 K. On the essential
boundary, the temperature is prescribed as T =
300 K. Again, no analytical solution is available
for this particular example and we hence adopt a
FEM solution using a fine mesh of 5936 Q4
elements as reference results.

g=20000w/m?

heat
convection
N
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Figure 8. 2D heat convection: (a) Geometry and
(b) Finite element mesh

The temperature distribution is illustrated in
Fig. 9. A comparison of the maximum
temperature (found at the Neumann boundary)
obtained by CFEM and FEM, respectively, for
the same mesh, are presented in Table 1. It is
interesting to see that, given the same mesh, the
CFEM solution is closer to the reference solution,
showing the higher accuracy of CFEM as
compared with the one derived from the FEM.
The higher accuracy of CFEM is clear as it is due
to the fact that the degree of shape functions of
the CFEM is higher than that of the FEM. The
nodal temperature gradient is plotted in Fig. 10,
where one can observe that the CFEM solution is
really smoother, which is again expected as
observed in Example 3.1.
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Figure 9. 2D heat convection: temperature distribution

(b)

Figure 10. 2D heat convection: Temperature

gradient aT/ ay obtained by (a) CFEM and (b) FEM
4. CONCLUSIONS

il We have successfully extended the
consecutive-interpolation finite element method
(CFEM) to solve the heat transfer problem in 2D.
1240 The CFEM provides some advantages as follows:

300

200 Smooth temperature gradient without using
any smoothing technique, while retaining
increasing the number of degrees of freedom.

Higher accuracy due to the higher-order
2] shape function.

0 Straightforward and easy to be implemented
into any existing FEM code.

From this particular study, the CFEM is
demonstrated as an effective numerical tool to be
considered as an alternative to the standard FEM
in modeling heat transfer problems.

-100

@

Table 1. 2D Convection: Comparison of the maximum temperature. The relative errors
with the reference results are displayed in brackets

FEM (219 Q4 CFEM (219 CQ4 FEM (546 Q4 CFEM (546 Q4 Reference (5936 Q4
elements) elements) elements) elements) elements)
410.742 K 410.844 K 411.174 K 411.215K 412.235K
(-0.36 %) (-0.34 %) (-0.26 %) (-0.25 %)
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Phwong phap phan t& hiru han ndi suy lién
tiép trong phan tich truyén nhiét

e Nguyén Ngoc Minh?*
e Nguyén Thanh Nha!
e BUli Quéc Tinh?

e Trwong Tich Thién*

' Trworng Dai hoc Bach Khoa, DPHQG-HCM

2 Khoa Co va Tin hoc méi trwong, Vién Coéng nghé Tokyo, 2-12-1-W8-22,
Ookayama, Meguro-ku, Tokyo, 152-8552, Nhat Ban

TOM TAT:

Phén ti 4 nut néi suy lién tiép (CQ4)
duoc mé rong dé gidi bai toan truyén
nhiét hai chiéu. Trong dé, gia tri gradient
trung binh tai ndt dwoc st dung trong
phuong trinh néi suy, dan t6i hé qué la
loi giai c6 bac cao hon, du khéng su
dung thuat toan lam tron va khéng lam

téng sb béac tw do ctia hé. Phuong phap
dé nghj c6 thé dé dang duoc hién thuc
héa va tich hop vao bat cr ma ngudn
FEM nao hién cé. Nhiéu vi du sé duoc
xem xét dé Jam r& tinh chinh xac va hiéu
suét cua phuong phap dé nghij trong viéc
phan tich truyén nhiét hai chiéu.

Tt khéa: truyén nhiét, CFEM, dan nhiét, déi luu, gradient tai nut.
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