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ABSTRACT:

In this paper, prediction of failed
evolution of anisotropic voided ductile
materials will be developed based on
Dung’s microscopic damage model. An
isotropic and anisotropic formulation of
the Dung’s damage model that using von
Mises yield criterion and Hill's quadratic
anisotropic  yield criterion  (1948)
integrated with isotropic hardening rules
of matrix material used to simulate the
deep drawing process of aluminum alloy

sheets. The model is implemented as a
vectorized user-defined material
subroutine (VUMAT) in the
ABAQUS/Explicit  commercial finite
element code. The predictions of ductile
crack behavior in the specimens based
on void nucleation, growth and
coelescence are compared with Gurson
— Tvergaard — Needleman (GTN) model
and experiment results from reference.

Key words: Ductile fracture, Sheet forming, Dung’'s model, Micro-crack mechanism,

Anisotropy.

1. INTRODUCTION

Recently, the aluminum alloy materials
widely applied in automotive and aerospace
industry since their light weight and excellent
strength characteristics. The sheet metals made
from aluminum alloys by rolling process is
usually  induced  anisotropy.  Therefore,
investigation of plastic fractured behavior of
these materials play an important role in
industrial applications. The plastic micro-crack
mechanism in the metal materials are based on
assuming that matrix material contain inclusions
and second phase particles. During matrix
material under deformation then micro-crack will
appear because of void nucleation, growth and
coalescences. Gurson [1] proposed a Yyield
function that isotropic matrix material contains

spherical voids that including a special damage
parameter of void volume fraction (f). Tvergaard
[2, 3] modified the Gurson model by adding two
adjusted parameters to consider interaction of the
voids and hardening by deformation. Needleman
and Tvergaard [4] extended Gurson model to
simulate rapid loss of loading carrying capacity in
the void materials. Therefore, Gurson model is
also known as Gurson — Tvergaard — Needleman
(GTN) model. Base on McClintock [5] spheroidal
void growth model, Dung NL [6] investigated the
cylindrical and elipsoidal void growth and then
proposed a yield function similar to the yield
function in GTN model but it has a hardening
exponent (n). R. Schiffmann et al [7] used the
Dung’s void growth model to predict failure
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development at ductile fracture of steel, it
exhibited good agreement with experiment
results. To determine void volume fraction
growth during matrix material under deformation,
Chu and Needleman [8] supplied the criterions
for void nucleation into Gurson model. There is
limit to anisotropic material of original porous
plastic material model. Therefore, in recent years,
some reseachers extended original Gurson model
to anisotropic materials. Liao et al [9] integrated
Gurson model with the Hill quadratic and non-
quadratic anisotropic yield criteria to describe the
matrix normal anisotropy and planar isotropy.
Wang et el [10] formed a closed-form anisotropic
Gurson yield criterion based on an average
anisotropy parameter. Tanguy et al [11]
developed a constitutive model based on Gurson
model that integrating anisotropic behaviour and
ductile damage for a X100 pipeline steel. Grange
et al [12] predicted ductile fracture of Zircaloy-4
sheets based on the Gurson-Tvergaard—
Needleman model which is extended to take into
account plastic anisotropy and viscoplasticity.
Chen and Dong [13] developed an implicit stress
integration procedure to adapt the explicit
dynamic solver for GTN model with equivalent
stress is Hill’s quadratic anisotropic yield
criterion  (1948). Morgeneyer et al [14]
investigated fracture mechanisms of AA2139 Al-
alloy sheet by experiments and GTN model to
describe and predict deformation behaviour,
crack propagation and toughness anisotropy.

Kami et al [15] predicted plastic fractue of
AA6016-T4 metallic sheet of deep-drawing by
using GTN model and Hill’48 quadratic
anisotropic yield function.

In this paper, Dung’s model based on
Hill’48 expression of the equivalent stress is
implemented by a VUMAT subroutine in the

finite element software (ABAQUS) to investigate
ductile fracture process of deep drawing in
aluminum alloy materials. The predictions of
ductile crack behavior in the specimens based on
void nucleation, growth and coelescence are
compared with GTN model and experiment
results from referenced documents.

2. DUNG’S DAMAGE MODEL FOR
ANISOTROPIC METAILLIC MATERIAL

Since original Dung’s model constituted
based on assume that matrix material is isotropy.
Therefore, to apply the Dung’s model on
anisotropic material then von Mises equivalent
stress in yield funtion will be replaced by Hill’48
quadratic anisotropic yield criterion.

The yield function of Dung’s model [6]

Oy O

@ =[0‘~‘J2 +2fq, cosh{—x/g(l—n)a'“}—l—(qu ) =0 )

Where, the parameters g1, g2 are proposed by
Tvergaard [4], n is hardening exponent of matrix

. . 1 .
material, hydrostatic stress o, =--0,0; , J;Is
3
Kronecker delta, ce equivalent stress.

For von Mises yield criterion

o, = ‘/gcé Loy (2.1)

oy is deviatoric stress tensor
For Hill’48 equivalent stress[16].
o, = [F (022 -0 )2 +G (033 —011)2
+H (o, -0y )2 (2.2)

+ 2L0223 +2M 0321 + 2N0122 le

oy (i,j =1, 2, 3) are Cartesian components of a

Cauchy stress tensor. The parameters F, G, H, L,
M and N are material constants. In the case of
sheet metal material these parameters can be
calculated by Lankford’s coefficients.
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o h ,G=1,H= h
o (o +1) r,+1 r,+1 )
=(r0+r90)(1+2r45)
21, (1+1y)

The Lankford’s coefficients ro, rss and rgo
are determined by unaxial tensile tests at 0°, 45°
and 90° in rolling direction.

or is the vyield stress of matrix material.
o =0,(") @)

The equivalent plastic strain rate of matrix

material z° is dominated by equivalent plastic
work:

(1-f)o&’ =0, :¢] (%)

Where, z'is equivalent plastic strain of

matrix material, £ is plastic strain rate tensor.

The wvoid volume fraction growth is
computed as follow:

f=f +1 (6)

Here, the void volume fraction growth of the
presence voids in matrix material:

f,=(1-1)&rs; (7)

ij “ij
The nucleated volume void fraction growth
during matrix material under deformation:

L ®)

The number of nucleated voids A is a
function of equivalent plastic strain of matrix

material £°:

2
f zP-¢
A=—2N_exp|-0.5 N 9)
Sy N 2 [ [ Sy j ]
Where, f,, Sy, en are the parameters relative

to the void nucleation during matrix material
under deformation.

3. NUMERICAL IMPLEMENTATION

A numerical algorithm based on the Euler
backward method has been developed for a class

of pressure-dependent plasticity models by
Aravas [17] used to solve of the constitutive
equations via a VUMAT subroutine in
ABAQUS/Explicit software.

The steps of implementation procedures as
follow:

Stepl: Initialize the variables at initial
time

=P
O-I ’g'[ ! ft ’g'[ ’AE'HA'[

Step 2: Calculate trial state of stresses

Calculate stress tensor

el _
t+at T

o o,+D:A¢ (10)

t+at

The fourth order tensor D is the elastic
stiffness matrix. Isotropic elasticity is assumed so
that

0 =(K-26)(5,8,) 16 (a8, +08,) @1

Where, K is the elastic bulk modulus, G is
the shear modulus and ¢ is the Kronecker delta

Calculate hydrostatic stress

1
ol = —gaﬂm | (12)
Here, | is second order unit tensor
Calculate equivalent stress
ol = Eai; Lo} (13.1)
2
Or
2 2
Ueel =|:F(Uzz _033) +G(033 _(711)
+H (o, ~0,) (13.2)

+ 2L0223 +2M 0321 + 2N0122 le
Step 3: Check for plastic yield

(Dtrial - (G:]I ,UEI f g_tp)

ety

If " <0go to step 5 and update elastic

stress, o, , =00 4

t+At
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If @™ >0 go to step 4 and calculate plastic
correction.

Step 4: Calculate plastic correction

The plastic strain increment is divided into
spherical and deviatoric parts:

Ag® =§A5pl +Ag N, (14)
oD

Ae, =—-A—— 15

b 2o (15)
oD

Ag, = A— 16

= e (16)

A is the plastic multiplier and

n; =(3/ 20,)o; is the flow direction.

Eliminating A from equations (15) and (16)
leads to:

4e, ((j—d’} +Ae, {a—‘DJ -0 (17)

o, do,

Using Newton-Raphson iterative method to
solve the nonlinear system of equations (18) and
(19), the consistency condition equation (20)
must be met at the same time.

) 0P
oo

E, = 4et0 92

(k+1
| P 29 +A.9q

0 (18)

e

E,=® (G(k+l) o) gp(ksd) g (ki) ) -0 (19)

m ™~e

m

U(fk+1) —HkeD) e (20)

do
Here, H =dT; is current strain hardening
g

of the matrix material.

The algorithm stops iterations when the
values of |Ei| and |E;| are less than a specified
tolerance § = 1E-08

Step 5: Update of state variables
o, =00+ K4e, (22)

o, =0, -3G4¢, (22)

o, =05 —Kde,| -2GAe,n; (23)
-0 As_ +0.A¢
AgP = _OnfEp T T8 (24)
(1-f)o
Af =(1- f)Ae, + Ade? (25)

4. NUMERICAL ANALYSIS
4.1. Tensile tests on single element

The subroutine is verified using a single 8-
node brick element (C3D8R) for hydrostatic
tensile test and plane strain element (CPE4R) for
unaxial tensile test. The boundary conditions and
loading as shown in figure 1. The initial size of
each element edge is 1 mm. The loading velocity
for tension is set to 15 mm/s.

The yield stress versus plastic strain rule:
o (e} "
_fz[_f+£§pJ (26)

Where, oo initial yield stress of matrix
material, oo/E = 1/300, n = 0.1. The parameters of
the porous plastic model: g1 = g, = 1.5, initial
void volume fraction f, = 0 and fo = 0.04 for strain
plane and hydrostatic tension, respectively, en =
0.3, sy =0.1, fy = 0.04.

\

\

b)

Figure 1. Single element and boudary conditions:
a) plane strain tension and b) hydrostatic tension
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Figure 2. Uniaxial stress versus logarithmic strain
in plane strain tension

Figure 2 shows ratio of stress (o22/00) versus
logarithmic strain ¢ =In(1+u/l,). Where, u is

the prescribed displacement and Iy is the initial
element length. In the case of isotropic material,
Dung’s model (Dung-Mises, Dung-Hill’48 with
fo = s = rgo = 1) concides with results of GTN
model in Abaqus (GTN-Mises) and Chen et al
[13] (GTN Hill’48 ro = ras = rgo = 1). In the case
of anisotropic material, Dung’s model (Dung-
Hill’48) presents very good agreement with result
of Chen [13] (GTN-Hill’48 — Chen et al).

For yield function without damage variable
(Hill’48 and von Mises), axial stress greater than
Dung’s model and GTN model due to damage
gradually accumulates by void volume fraction (f)
in porous plastic material model.

Figure 3 prensents void volume fraction
growth in deformation of matrix material. For
isotropic material Dung’s model (Dung-Mises,
Dung-Hill’48, ro = rss = rgo =1) concides with
GTN model in Abaqus. For anisotropic material,
void volume fraction of Dung’s model (Dung-
Hill’48) lower a little because of Lankford’s
coefficients.
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Figure 3. Void volume fraction versus
logarithmic strain in plane strain tension
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Figure 4. Hydrostatic stress versus logarithmic
volumetric strain in hydrostatic tension

In figure 4, the hydrostatic stress is plotted
as a function of logarithmic volumetric strain
&, =3In(1+u/l). Figure 5 shows void volume
fraction as a function of logarithmic volumetric
strain. The Dung’s model agree very well with
GTN model in Abaqus and excact solution of N.
Aravas [18]

Page 42



TAP CHi PHAT TRIEN KH&CN, TAP 18, SO K4- 2015

04 -
0.3
S
g
g 0.2
Q:: .
g ——GTN - Mises (Abaqus)
g o1 ——Dung- Mises
=
k3
” o Exact (Ref. Aravas)
0 T T T )
0 0.1 0.2 0.3 0.4
Logarithmic volumetric strain
Figure 5. Void volume fraction versus

logarithmic volumetric strain in hydrostatic tension

4.2. Deep drawing

In this section, cylindrical cup and square
cup deep drawing process was be investigated.
The forming behavior of Dung’s damage model
was compared with GTN model in Abaqus and
experiment results from refercences.

4.2.1. Cylindrical cup deep drawing

The material of sheet is AA6111-T4
aluminum alloy. The properties of porous
material is refered to Chen et al [13] as table 1.

Table 1. Damage parameters of AA6111-T4
aluminum alloy for Dung’s model

fo N iy SN fe (o[} 02

00 | 03 004 01 (015] 15 | 15

The isotropic hardening rule of matrix material:
o, =0, +a(1—e‘b5”) 27)

Here, o is the equivalent stress of matrix
material, £° is the equivalent plastic strain, oo is
the initial yield stress, a and b are the material
constants. The material properties of AA6111-T4
alloy in the unxiaxial tensile test as table 2.
Figure 6 shows tooling setup for cylindrical cup
drawing. The sheet thickness is 1 mm. The punch
stroke is 50 mm. The blank holding force is 50
kN. Element type of blank is eight-node linear
brick, reduced integration with hourglass control
continuum element (C3D8R). The rigid element
(R3D4) of tools is chosen. The friction coefficient
has been set to a value of 0.0096 on all the
contact surfaces.

Table 2. The material properties of AA6111-T4 aluminum alloy [13]

E(GPa) v oo(MPa) ro

a(MPa) b

a5 I'9o

70.5 0.342 180.8 0.894

0.611 0.66 274.64 6.79
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Figure 6. Tooling setup for cylindrical cup
drawing in NUMISHEET’2002 (unit: mm)
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Figure 7. Punch force versus punch displacement

In the figure 7, punch force is plotted as a
function of punch displacement. The Dung-
Hill’48 anisotropic plastic damage model is a
little smaller than that by GTN model in Abaqus.

crack positions

@

SDVE WWE
(Bvg: 75%) (wg: 75%)
+3.460e-01
gty
+14798-01 regnie s
+16926-01 e
1.ga2e-01 +2.307e-01
+1.5058 +2.018e-01
+1.318e-01 +1.730e-01
+1.131e-01 +1.442e-01
+09.438e-02 +1.153e-01
+7.5688-02 +8/6502-02
+5.6088-02 +5.7678-02
+3.8288-02 +2.383e-02
+1.959e-02 +0.000e+00
+8.871e-04
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Figure 8. Distribution of void volume fraction: a)
anisotropic plastic damage model (Dung-Hill’48) and
b) isotropic plastic damage model (GTN in Abaqus)

Figure 8 shows comparison of distribution
of void volume fraction between Dung-Hill’48
model and GTN model in Abaqus at depth 45
mm  of punch stroke. For Dung-Hill’48, material
displays anisotropy  strongly by
phenomenon.

earing

4.2.2. Square cup deep drawing

The AA6016-T4 aluminum alloy sheet was
used to predict plastic fracture in deep drawing
process. The parameters of damage model given
in table 3.
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Table 3. Damage parameters of AA6016-T4 aluminum alloy for Dung’s model [15]

fo EN fn SN

fe fr (o[} (o)

2.4e-4 0.3

0.041546 0.1

0.047674 0.2 1.5 1.5

The vyield stress versus plastic strain curve that fitting from experiment data in tensile test of
AA6016-T4 aluminum alloy by means of Swift’s hardening rule:

o, =A(g+8") (28)

The material properties as table 4

Table 4. The material properties of AA6016-T4 aluminum alloy [15]

E(GPa) Vv A(MPa) ro

&(MPa) n

a5 I'9o

70 0.33 525.77 0.5529

0.4091 0.5497 0.01125 0.27

The deep drawing tools was installed as
figure 9. The diameter of circular blank is 85
mm. The holding force is 10 kN. Punch stroke is

25 mm.
ﬂpmchmm'mm
83

424424

lw Bl 40’%40 lﬂﬁl

Figure 9. Diagram of the tooling setup in square
cup drawing (unit: mm) [19]

The rigid shell elements (R3D4) was used to
mesh punch, die and blank holder, while 8-node
hexahedral (C3D8R) solid elements have been
meshed blank. The size of initial length of

element is 0.5 mm. The friction coefficient has
been set to a value of 0.05 on all the contact
surfaces.

Figure 10 compares fracture shape of
specimens between simulated results and
experiment of Kami et al [15]. The image show
the failed path and position of Dung’s model that
based on equivalent stress of Hill (1948) is smilar
to experiment.

SDVE

(Avg: 75%)
+1,965e-01
+1.802e-01
+1.638e-01
+1.474e-01
+1.310e-01
+1,147e-01
+9,828e-02
+8.190e-02
+6.552e-02
+4,914e-02
+3.276e-02
+1.638e-02
+2.334e-06

Figure 10. Failed specimens: a) Dung-Hill’48 and
b) experiment [15].
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Figure 11. Comparion of forming forces for blank
holder of 10 kN

Figure 11 shows comparison of punch force
versus displacement curve between Dung’s
model and experiment of Kami et al [15]. The
maximum values of punch force are 35.28 kN
and 34.24 kN for Dung’s model and experiment
result, respectively. The punch force towards zero
at 20.03 mm of depth is predicted by Dung’s
model, while that experiment data is 18.7 mm, it
is acceptable.

5. CONCLUSIONS

In this paper, the Dung’s model is
implemented using the commercial code
Abaqus/Explicit with the user-difined material
subroutine (VUMAT).

The subroutine is verified via the simple
finite element models of plane strain and
hydrostatic tension. The analysis results based on
Dung’s model have been compared to the GTN
model in Abaqus and the results from literature. It
is shown that the Dung’s model is capacable of
predicting damage localization of metallic
material.

The two deep drawing processes of the
cylindrical cup and square cup have been
simulated. For the first case, fracture positions of
Dung’s model is similar to the GTN model in
Abaqus, but it includes a little earing
phenomenon and forming force is smaller. In the
case of square cup deep drawing, comparison
with the experimentally indicated very identical
crack path. It is shown that the forming force and
the deep displacement of punch that the punch
force toward zero of Dung’s model are higher
than that by experiment result with an acceptable
accuracy.
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Ung dung mé hinh cta Diing dé dy doan
pha hay déo cua tam hop kim nhédm trong

gua trinh dap sau

e Nguyén Hiru Hao *
e Trung N. Nguyen 2
e ViiCdédng Hoa'

I Trwdng Dai hoc Bach Khoa, PHQG-HCM
2Trworng Co khi, Pai hoc Purdue, West Lafayette, IN 47.907, USA

TOM TAT:

Bai bao trinh bay sw dw doan qua
trinh pha hay déo trong vat liéu kim loai
bat ddng huéng dua trén moé hinh phéa
hdy vi mé cda Nguyén Luong Diing. M6
hinh phéa hdy cda Diing sé duoc két hop
VGi tiéu chudn chady cho vét liéu dang
huéng von Mises va tiéu chuén chdy cho
véat liéu bét dang huéng Hill’48 cung véi
cac ham bién cing dang huéng cua vt
liéu dé duw doén nit déo trong qué trinh
dép séu tdm hop kim nhém. M6 hinh

duoc lap trinh bdng mét chuong trinh vat
liéu do nguwoi dung tw dinh nghia
(VUMAT) trong g6i phan mém phén to
hiru han Abaqus/Explicit. Cac dw doan
(g xtr nit déo trong cac méu duwa vao
cac tham sé tao mam, tdng truéng va
lién két 16 héng vi mé trong vét liéu mang
sé dwoc so sanh véi mé hinh Gurson-
Tvergaard-Needleman (GTN) trong
Abaqus va cac két qua thi nghiém tham
khéo ttr cac céng bd quéc té.

Tur khéa: Nt déo, Gia céng tdm, M6 hinh cda Ding, Co ché nirt vi mé, Bat ddng huéng.
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