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ABSTRACT:  
In this paper, prediction of failed 

evolution of anisotropic voided ductile 
materials will be developed based on 
Dung’s microscopic damage model. An 
isotropic and anisotropic formulation of 
the Dung’s damage model that using von 
Mises yield criterion and Hill’s quadratic 
anisotropic yield criterion (1948) 
integrated with isotropic hardening rules 
of matrix material used to simulate the 
deep drawing process of aluminum alloy 

sheets. The model is implemented as a 
vectorized user-defined material 
subroutine (VUMAT) in the 
ABAQUS/Explicit commercial finite 
element code. The predictions of ductile 
crack behavior in the specimens based 
on void nucleation, growth and 
coelescence are compared with Gurson 
– Tvergaard – Needleman (GTN) model 
and experiment results from reference.

Key words: Ductile fracture, Sheet forming, Dung’s model, Micro-crack mechanism, 
Anisotropy.

1. INTRODUCTION 
Recently, the aluminum alloy materials 

widely applied in automotive and aerospace 
industry since their light weight and excellent 
strength  characteristics. The sheet metals made 
from aluminum alloys by rolling process is 
usually induced anisotropy. Therefore, 
investigation of plastic fractured behavior of 
these materials play an important role in 
industrial applications. The plastic micro-crack 
mechanism in the metal materials are based on 
assuming that matrix material contain inclusions 
and second phase particles. During matrix 
material under deformation then micro-crack will 
appear because of void nucleation, growth and 
coalescences. Gurson [1] proposed a yield 
function that isotropic matrix material contains 

spherical voids that including a special damage 
parameter of void volume fraction (f). Tvergaard 
[2, 3] modified the Gurson model by adding two 
adjusted parameters to consider interaction of the 
voids and hardening by deformation. Needleman 
and Tvergaard [4] extended Gurson model to 
simulate rapid loss of loading carrying capacity in 
the void materials. Therefore, Gurson model is 
also known as Gurson – Tvergaard – Needleman 
(GTN) model. Base on McClintock [5] spheroidal 
void growth model, Dung NL [6] investigated the 
cylindrical and elipsoidal void growth and then 
proposed a yield function  similar to the yield 
function in GTN model but it has a hardening 
exponent (n). R. Schiffmann et al [7] used the 
Dung’s void growth model to predict failure 
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development at ductile fracture of steel, it 
exhibited good agreement with experiment 
results. To determine void volume fraction 
growth during matrix material under deformation, 
Chu and Needleman [8] supplied the criterions 
for void nucleation into Gurson model. There is 
limit to anisotropic material of original porous 
plastic material model. Therefore, in recent years, 
some reseachers extended original Gurson model 
to anisotropic materials. Liao et al [9] integrated 
Gurson model with the Hill quadratic and non-
quadratic anisotropic yield criteria to describe the 
matrix normal anisotropy and planar isotropy. 
Wang et el [10] formed a closed-form anisotropic 
Gurson yield criterion based on an average 
anisotropy parameter. Tanguy et al [11] 
developed a constitutive model based on Gurson 
model that integrating anisotropic behaviour and 
ductile damage for a X100 pipeline steel. Grange 
et al [12] predicted ductile fracture of Zircaloy-4 
sheets based on the Gurson–Tvergaard–
Needleman model which is extended to take into 
account plastic anisotropy and viscoplasticity. 
Chen and Dong [13] developed an implicit stress 
integration procedure to adapt the explicit 
dynamic solver for GTN model with equivalent 
stress is Hill’s quadratic anisotropic yield 
criterion (1948). Morgeneyer et al [14] 
investigated fracture mechanisms of AA2139 Al-
alloy sheet by experiments and GTN model to 
describe and predict deformation behaviour, 
crack propagation and toughness anisotropy.  

 

Kami et al [15] predicted plastic fractue of 
AA6016-T4  metallic sheet of deep-drawing by 
using GTN model and Hill’48 quadratic 
anisotropic yield function. 

In this paper, Dung’s model based on 
Hill’48 expression of the equivalent stress is 
implemented by a VUMAT subroutine in the  

finite element software (ABAQUS) to investigate  
ductile fracture process of deep drawing in 
aluminum alloy materials. The predictions of 
ductile crack behavior in the specimens based on 
void nucleation, growth and coelescence are 
compared with GTN model and experiment 
results from referenced documents.  

2. DUNG’S DAMAGE MODEL FOR 
ANISOTROPIC METAILLIC MATERIAL  

Since original Dung’s model constituted 
based on assume that matrix material is isotropy. 
Therefore, to apply the Dung’s model on 
anisotropic material then von Mises equivalent 
stress in yield funtion will be replaced by Hill’48 
quadratic anisotropic yield criterion. 

The yield function of Dung’s model [6] 
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 Where, the parameters q1, q2  are proposed by 
Tvergaard [4], n is hardening exponent of matrix 

material, hydrostatic stress 1
3m ij ij     , ij is 

Kronecker delta, σe equivalent stress.  

For von Mises yield criterion 

3
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ij   is deviatoric stress tensor 

For Hill’48 equivalent stress[16]. 
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ij  (i,j = 1, 2, 3) are Cartesian components of a 

Cauchy stress tensor. The parameters F, G, H, L, 
M and N are material constants. In the case of 
sheet metal material these parameters can be 
calculated by Lankford’s coefficients. 
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The Lankford’s coefficients r0, r45 and r90 
are determined by unaxial tensile tests at 0o, 45o 
and 90o in rolling direction. 

σf is the yield stress of matrix material. 
 p

f f    (4) 

The equivalent plastic strain rate of matrix 
material p  is dominated by equivalent plastic 
work: 

  1 :p p
f ij ijf      

  
(5) 

Where, p is equivalent plastic strain of 

matrix material, p
ij is plastic strain rate tensor. 

The void volume fraction growth is 
computed as follow: 

 g nf f f   
 

(6) 

Here, the void volume fraction growth of the 
presence voids in matrix material: 

  1 p
g ij ijf f    

 
(7) 

The nucleated volume void fraction growth 
during matrix material under deformation: 

 
p
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The number of nucleated voids  A  is a 
function of equivalent plastic strain of matrix 

material p : 
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Where, fn, sN, εN are the parameters relative 
to the void nucleation during matrix material 
under deformation. 

3. NUMERICAL IMPLEMENTATION 

A numerical algorithm based on the Euler 
backward method has been developed for a class 

of pressure-dependent plasticity models by 
Aravas [17] used to solve of the constitutive 
equations via a VUMAT subroutine in 
ABAQUS/Explicit software.  

The steps of implementation procedures as 
follow: 

Step1: Initialize the variables at initial 
time  

 p
t t t t t t, , f , ,        

Step 2: Calculate trial state of stresses 

Calculate stress tensor 

 
el
t t t t tD :       (10) 

The fourth order tensor D is the elastic 
stiffness matrix. Isotropic elasticity is assumed so 
that 
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Where,  K is the elastic bulk modulus, G is 
the shear modulus and  δij  is the Kronecker delta 

Calculate hydrostatic stress 

 1 :
3

el el
m t t I      (12) 

Here, I is second order unit tensor 

Calculate equivalent stress 

 3
2
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Step 3: Check for plastic yield 

  trial el el p
m e t t, , f ,       

If 0trial  go to step 5 and update elastic 
stress, el

t t t t      
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If 0trial  go to step 4 and calculate plastic 
correction. 

Step 4: Calculate plastic correction 

The plastic strain increment is divided into 
spherical and deviatoric parts: 

 1
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  is the plastic multiplier and 

 3 2ij e ijn /     is the flow direction.  

Eliminating λ from equations (15) and (16) 
leads to: 
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Using Newton-Raphson iterative method to 
solve the nonlinear system of equations (18) and 
(19), the consistency condition equation (20) 
must be met at the same time. 
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Here, f
p

d
H

d



  is current strain hardening 

of the matrix material. 

The algorithm stops iterations when the 
values of |E1| and |E2| are less than a specified 
tolerance    = 1E-08 

Step 5: Update of state variables 

 el
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 3el
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4. NUMERICAL ANALYSIS 
4.1. Tensile tests on single element 

 The subroutine is verified using a single 8-
node brick element (C3D8R) for hydrostatic 
tensile test and plane strain element (CPE4R) for 
unaxial tensile test. The boundary conditions and 
loading as shown in figure 1. The initial size of 
each element edge is 1 mm. The loading velocity 
for tension is set to 15 mm/s. 

The yield stress versus plastic strain rule: 

 
0 0 0

3
n

f f pG 


  
 

  
 

  (26) 

Where, σ0 initial yield stress of matrix 
material, σ0/E = 1/300, n = 0.1. The parameters of 
the porous plastic model: q1 = q2 = 1.5, initial 
void volume fraction f0 = 0 and f0 = 0.04 for strain 
plane and hydrostatic tension, respectively, εN = 
0.3, sN = 0.1, fN = 0.04. 

 

 

 

 

 

 

 
 
 
 

Figure 1. Single element and boudary conditions: 
a) plane strain tension and b) hydrostatic tension 
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Figure 2. Uniaxial stress versus logarithmic strain 
in plane strain tension 

 Figure 2 shows ratio of stress (σ22/σ0) versus 

logarithmic strain  01ln u / l   . Where, u is 

the prescribed displacement and l0 is the initial 
element length. In the case of isotropic material, 
Dung’s model (Dung-Mises, Dung-Hill’48 with 
r0 = r45 = r90 = 1) concides with results of GTN 
model in Abaqus (GTN-Mises) and Chen et al 
[13] (GTN Hill’48 r0 = r45 = r90 = 1). In the case 
of anisotropic material, Dung’s model (Dung-
Hill’48) presents very good agreement with result 
of Chen [13] (GTN-Hill’48 – Chen et al). 

 For yield function without damage variable 
(Hill’48 and von Mises), axial stress greater than 
Dung’s model and GTN model due to damage 
gradually accumulates by void volume fraction (f) 
in porous plastic material model.  

 Figure 3 prensents void volume fraction 
growth in deformation of matrix material. For 
isotropic material Dung’s model (Dung-Mises, 
Dung-Hill’48, r0 = r45 = r90 =1) concides with 
GTN model in Abaqus. For anisotropic material, 
void volume fraction of Dung’s model (Dung-
Hill’48) lower a little because of Lankford’s 
coefficients. 

 

 

 

 

 

 

 

 

 

 
Figure 3. Void volume fraction versus 

logarithmic strain in plane strain tension 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Hydrostatic stress versus logarithmic 
volumetric strain in hydrostatic tension 

 In figure 4, the hydrostatic stress is plotted 
as a function of logarithmic volumetric strain 

 03 1v ln u / l   . Figure 5 shows void volume 

fraction as a function of logarithmic volumetric 
strain. The Dung’s model agree very well with 
GTN model in Abaqus and excact solution of N. 
Aravas [18] 
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Figure 5. Void volume fraction versus 
logarithmic volumetric strain in hydrostatic tension 

4.2. Deep drawing 

 In this section, cylindrical cup and square 
cup deep drawing process was be investigated. 
The forming behavior of Dung’s damage model 
was compared with GTN model in Abaqus and 
experiment results from refercences. 

4.2.1. Cylindrical cup deep drawing 

 The material of sheet is AA6111-T4 
aluminum alloy. The properties of porous 
material is refered to Chen et al [13] as table 1. 

Table 1. Damage parameters of AA6111-T4 
aluminum alloy for Dung’s model 

f0 εN fN sN fc q1 q2 

0.0 0.3 0.04 0.1 0.15 1.5 1.5 

The isotropic hardening rule of matrix material: 

  0 1
pb

f a e        (27) 

 Here, σf is the equivalent stress of matrix 

material, p  is the equivalent plastic strain, σ0 is 
the initial yield stress, a and b are the material 
constants. The material properties of AA6111-T4 
alloy in the unxiaxial tensile test as table 2. 
Figure 6 shows tooling setup for cylindrical cup 
drawing. The sheet thickness is 1 mm. The punch 
stroke is 50 mm. The blank holding force is 50 
kN.  Element type of blank is eight-node linear 
brick, reduced integration with hourglass control 
continuum element (C3D8R). The rigid element 
(R3D4) of tools is chosen. The friction coefficient 
has been set to a value of 0.0096 on all the 
contact surfaces. 

 
Table 2. The material properties of AA6111-T4 aluminum alloy [13] 

E(GPa) v σ0(MPa) r0 r45 r90 a(MPa) b 

70.5 0.342 180.8 0.894 0.611 0.66 274.64 6.79 
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Figure 6. Tooling setup for cylindrical cup 
drawing in NUMISHEET’2002 (unit: mm) 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Punch force versus punch displacement 

 In the figure 7, punch force is plotted as a 
function of punch displacement. The Dung-
Hill’48 anisotropic plastic damage model is a 
little smaller than that by GTN model in Abaqus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Distribution of void volume fraction: a) 
anisotropic plastic damage model (Dung-Hill’48) and 
b) isotropic plastic damage model (GTN in Abaqus) 

 Figure 8 shows comparison of distribution 
of void volume fraction between Dung-Hill’48 
model and GTN model in Abaqus at depth 45 
mm  of punch stroke. For Dung-Hill’48, material 
displays anisotropy strongly by earing 
phenomenon.  

4.2.2. Square cup deep drawing 

 The AA6016-T4 aluminum alloy sheet was 
used to predict plastic fracture in deep drawing 
process. The  parameters of damage model given 
in table 3. 

 
 
 

 
 
 

 

a) 
b) 

crack positions 
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Table 3. Damage parameters of AA6016-T4 aluminum alloy for Dung’s model [15] 
 

f0 εN fN sN fc fF q1 q2 

2.4e-4 0.3 0.041546 0.1 0.047674 0.2 1.5 1.5 

 The yield stress versus plastic strain curve that fitting from experiment data in tensile test of 
AA6016-T4 aluminum alloy by means of Swift’s hardening rule: 

  0

np
f A      (28) 

 The material properties as table 4 

Table 4. The material properties of AA6016-T4 aluminum alloy [15] 

E(GPa) v A(MPa) r0 r45 r90 ε0(MPa) n 

70 0.33 525.77 0.5529 0.4091 0.5497 0.01125 0.27 

 The deep drawing tools was installed as 
figure 9. The diameter of circular  blank  is 85  
mm. The holding force is 10 kN. Punch stroke is 
25 mm. 

 

 

 

 

 

 

 

 

 

Figure 9. Diagram of the tooling setup in square 
cup drawing (unit: mm) [19] 

 The rigid shell elements (R3D4) was used to 
mesh punch, die and blank holder, while 8-node 
hexahedral (C3D8R) solid elements have been 
meshed blank. The size of initial length of  

 

element is 0.5 mm. The friction coefficient has 
been set to a value of 0.05 on all the contact 
surfaces. 

 Figure 10 compares fracture shape of 
specimens between simulated results and 
experiment of Kami et al [15]. The image show 
the failed path and position of Dung’s model that 
based on equivalent stress of Hill (1948) is smilar 
to experiment.  

 

 

 

 

 

 

 

 

 
 

Figure 10. Failed specimens: a) Dung-Hill’48 and 
b) experiment [15]. 

 

b) 

a) 
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Figure 11. Comparion of forming forces for blank 
holder of 10 kN 

 Figure 11 shows comparison of punch force 
versus displacement curve between Dung’s 
model and experiment of Kami et al [15]. The 
maximum values of punch force are 35.28 kN 
and 34.24 kN for Dung’s model and experiment 
result, respectively. The punch force towards zero 
at 20.03 mm of depth is predicted by Dung’s 
model, while that experiment data is 18.7 mm, it 
is acceptable. 

5. CONCLUSIONS 

 In this paper, the Dung’s model is 
implemented using the commercial code 
Abaqus/Explicit with the user-difined material 
subroutine (VUMAT). 

 The subroutine is verified via the simple 
finite element models of plane strain and 
hydrostatic tension. The analysis results based on 
Dung’s model have been compared to the GTN 
model in Abaqus and the results from literature. It 
is shown that the Dung’s model is capacable of 
predicting damage localization of metallic 
material. 

 The two deep drawing processes of the 
cylindrical cup and square cup have been 
simulated. For the first case, fracture positions of 
Dung’s model is similar to the GTN model in 
Abaqus, but it includes a little earing 
phenomenon and forming force is smaller. In the 
case of square cup deep drawing, comparison 
with the experimentally indicated very identical 
crack path. It is shown that the forming force and 
the deep displacement of punch that the punch 
force toward zero of  Dung’s model are higher 
than that by experiment result with an acceptable 
accuracy. 
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Ứng dụng mô hình của Dũng để dự đoán 
phá hủy dẻo của tấm hợp kim nhôm trong 
quá trình dập sâu 

 Nguyễn Hữu Hào 1 
 Trung N. Nguyen 2 
 Vũ Công Hòa 1 

1 Trường Đại học Bách Khoa, ĐHQG-HCM 
2 Trường Cơ khí, Đại học Purdue, West Lafayette, IN 47.907, USA 

 

TÓM TẮT: 
Bài báo trình bày sự dự đoán quá 

trình phá hủy dẻo trong vật liệu kim loại 
bất đẳng hướng dựa trên mô hình phá 
hủy vi mô của Nguyễn Lương Dũng. Mô 
hình phá hủy của Dũng sẽ được kết hợp 
với tiêu chuẩn chảy cho vật liệu đẳng 
hướng von Mises và tiêu chuẩn chảy cho 
vật liệu bất đẳng hướng Hill’48 cùng với 
các hàm biến cứng đẳng hướng của vật 
liệu để dự đoán nứt dẻo trong  quá trình 
dập sâu  tấm hợp kim nhôm. Mô hình 

được lập trình bằng một chương trình vật 
liệu do người dùng tự định nghĩa 
(VUMAT) trong gói phần mềm phần tử 
hữu hạn Abaqus/Explicit. Các dự đoán 
ứng xử nứt dẻo trong các mẫu dựa vào 
các tham số tạo mầm, tăng trưởng và 
liên kết lỗ hổng vi mô trong vật liệu mạng 
sẽ được so sánh với mô hình Gurson-
Tvergaard-Needleman (GTN) trong 
Abaqus và các kết quả thí nghiệm tham 
khảo từ các công bố quốc tế. 

Từ khóa: Nứt dẻo, Gia công tấm, Mô hình của Dũng, Cơ chế nứt vi mô, Bất đẳng hướng.  
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