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ABSTRACT:  
The purpose of this paper is 

simulating the crack propagation in steel 
structures with isogeometry analysis 
(IGA). In this method, CAD model is 
integrated into the CAE model by using  
non uniform rational B-Splines (NURBS) 
function. Crack propagation in isotroptic 
linear elastic material will be presented. 
The numerical example is a rectangular 
plate assumed to be plane strain 
condition with an edge crack under 
uniform shear loading. The  obtained  

results  are  investigated  and compared  
with analytical method and reference  
solutions. Very  good  agreements  on  
the  solutions  are  found. It is showed 
that isogometry analysis is better than 
standard finite element method in 
modeling and simulating. Consequently, 
isogometry analysis is an effective 
numerical method in future, especially 
when solving the crack propagation 
problems. 
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1. INTRODUCTION 

 In simulating the crack growth problems 
with arbitrary paths, the FEM has encountered 
many difficulties because the finite element mesh 
must be re-meshing after each increment of 
growthing cracks. To overcome these difficulties, 
the extened finite element method (Moes et 
al.1999) was developed to solve crack growth 
problems. XFEM is developed based on Partition 
of Unity Finite Element Method (PUFEM) [1]. 
Belytschko và Black (1999) [2] introduced a 
minimal remeshing method for crack propagation 
problems. Moës (1999) [3] improved this method. 
Dolbow (1999) [4] applied XFEM to solve crack 
problem in shell structures. 

 In recent years, Isogeometric Analysis – 
IGA has been successfully developed by Hughes 
at Institute for Computational Engineering and 
Sciences [5, 6], The University of Texas (USA). 
The main idea of this method is the use of 
NURBS basis functions to build CAD geometry 
for modeling, the concept is similar to the finite 
element method (FEM). The difference is in 
FEM, Lagrange shape functions is used while 
IGA using NURBS shape functions to 
approximate the problem domain.There are 
several articles have demonstrated the 
approximate model discontinuities by using 
NURBS is better FEM shape function [7, 8] 
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 The combination XFEM and IGA opens a 
modern approaching in the field of computational 
fracture mechanics, that is Extended Isogeometric 
Analysis - XIGA. XIGA inherited the advantages 
of XFEM  and IGA, fully capable of solving 
some complex crack propagation problem 
without re-meshing. On the other hand, the 
complex geometry of objects can be modeled 
with a few of elements, so the calculation time  

can be reduced significantly. 

2.  FUNDAMENTALS OF NURBS AND 
XIGA 

 
2.1.  B-Spline basis functions 

 A  knot  vector, defined  by Ξ . B-Spline  
basis  functions, according to [9], are  constructed 
from  a  given knot  vector. Generally, the B-
Spline basis functions of order p = 0 are defined 
by: 
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Figure 1. B-Spline basis functions of order p = 2 

 Figure 1 shows  the B-Spline basis functions 
of order p = 2 with open knot vector and 

 0,0,0,1,2,3,4,4,5,5,5Ξ . 

2.2.  B-Spline curve 

 Given  n basis  functions corresponding to 

the knot vector  1 2 1, , , n p    Ξ K  and a set of 

control points { }, 1,2,...,i i nB , the B-Spline  

curve is given by: 
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1

n

i p i
i

N 

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with , ( )i pN  is the B-Spline basis functions of 

order p , iB  is i th control point. Figure 2 show 

B-Spline curve of order p = 2 corresponding to 

the knot vector  0,0,0,1,2,3,4,4,5,5,5Ξ . 

                   
                    (a) The curve and control points                       (b) The curve and mesh created by knot points 

Figure 2. B-Spline curve of order p = 2 
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Figure 3. The control net and mesh for the biquadratic B-Spline surface 

 Given a set of control points, call a control 
net ,{ }, 1, 2,..., , 1,2,...,i j i n j m B , polynomial  

orders  p and  q,  knot  vectors  

 1 2 1, , , n p    Ξ K  và  1 2 1, , , n p    Η K , 

the B-Spline surface is thus defined by: 
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 Figure 3 depicts biquadratic B-Spline surface 

with knot vector  0,0,0,0.5,1,1,1Ξ  và 

 0,0,0,1,1,1Η . 

2.3.  NURBS geometry 

 NURBS basis is then given as follows: 
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with ,i pN  the B-Spline basis functions and iw  is 

ith weight function. 

 The NURBS curve is then defined as in the 
same manner as the B-spline curves: 
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The NURBS surfaces are defined as: 
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Where ,
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Figure 4. Example of a NURBS curve for constructing a quarter of a circle 

2.4.  Finite e lement analysis with 
NURBS 

 Most often IGA input involves knot vectors 
and control points data The physical domain is 

denoted by   and the parametric domain by ̂ . 

The mapping from the parametric domain ̂  to 
the physical domain   is given by: 

1
( )

n

i i
i

N 


x B                 (9) 

 Where ( )iN   refers to either the univariate 

NURBS basis function if Ω is a curve or the 
bivariate NURBS basis function in case Ω is a 
surface. 

 In an isoparametric formulation, the 
displacement field is approximated by the same 
shape functions: 
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 where iu  denotes the value of the 

displacement field at the control point iB . 

2.5.  Extended isogometry analysis 
(XIGA) 

 General form of the XFEM for modeling the 
crack is given by 
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where uh(x) is  the  approximated  function of  the  
displacement  field; N is  the  shape  function 
computed  at  the  control  points; u, b, c 
respectively,  are  the  unknown  degrees  of  
freedom corresponding to the sets named as I, J 
and K. I is the set of total nodes in the problem 
domain, whereas J is the set of nodes enriched by 
the sign function S(x) 

  (12) 

 

 

wherw (x,t) is the level set function 

Set K is the set of nodes enriched by the tip 
enrichments, also known as branch functions in 
many literatures. 
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where (r,) are the local polar coordinates 
defined at the crack tip. 

In NURBS-based XFEM,  the  sets  I,  J  and  K  
are  also  associated  with  control  points, 
correspondingly. 

2.6.  The level set method 

 According to [10, 11], the level set method 
is use to detect the discontinuous surfaces. As 
sketched in Figure 5, the crack is considered to be 
the zero level set of . 

 

 

 

 

 

 

 

 

Figure 5. Construction of initial level set functions 
 where both 1 < 0 and 2 < 0 in case of an 
interior crack or where 1 < 0 in case of an edge 
crack. In cases that more than one crack tip 
exists, it is convenient todefine a single function 
(x,t) to unify all the functions i 

   , max it x  (14) 

Within the framework of crack growth 
problems, the level set must be updated 
appropriately, but only nodes locally close to the 
crack are updated.  In addition, it is assumed that 
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once a part of a crack has formed, that part will 
be fixed (Stolarska et al. (2001) [5]). 

 The  evolution  of  the  crack  is  modeled  
by  appropriately  updating  the  functions level 
set  and  then reconstructing  the  function. In  
each  step,  the  incremental  length  and the  
angle  of  the propagating direction, c are known. 
The displacement of the crack tip is given by the 
vector 

  , 1 ,n, tip n tip
x y i iF F   F x x  (15) 

 where xi
tip,n+1 is the current crack tip (step  

n+1) and xi
tip,n = (xi, yi) is the crack tip at step  n. 

Let the values of  and  at step n be n và n. 
The updated values of  and , n+1 and n+at n+1 
are determined by the following algorithm [5]: 

    (1) i
n+1 is updated at each step. 

    (2) F is not necessarily orthogonal to the zero 

level set i
n. Thus n

i  is rotated to become i  so 

that F is orthogonal 

  (16) 

 

(3) The  crack  is  extended  by  computing  
new  values  of n+1 only  where 0i    

(4) Once all i
n+1 corresponding to a crack are 

updated, n+1 is updated using (14) 

For the XIGA, the values at control points are 
also stored. The values at other points within a 
given element are approximated from the values 
of the control points that support the given 
element as follows: 
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 where Ncp is  the  number  of  control  points  
which  support  the  element.  The  other  level  
set functions are also approximated by using the 
same form of (17). 

 For  the  NURBS-based  XFEM,  an  
element  is  determined  to  be  split element, i.e. 
discontinuous-enriched, or tip element, i.e. tip-
enriched, from the nodal values of  and . The 
enrichment has to be chosen for the control 
points. The values of enrichment function in (11) 
are  computed  at  the  control  points.   

2.7.  Maximum circumferential  stress 
criterion 

  The maximum circumferential stress 
criterion states that the crack will propagate from 
its tip in a direction assigning by an angle c 
where the circumferential stress  is maximum 
[3, 5] 
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 The stress intensity factors are computed 
using the interaction integral [3]. 

2.9.  Interaction integral 

Interaction integral for states 1 and 2 is given as 
follow 

 

     (19) 

 

 

 With W(1,2) is the interaction strain energy 

3. NUMERICAL EXAMPLES 
3.1.  Edge crack under uniform shear 

 A rectangular plate assumed to be plane 
strain condition with an edge crack under uniform 
shear loading  = 1 N/cm2 as depicted in figure 6. 
The geometrical parameters are chosen as 
follows:: a/W = 0.5; h/W = 0.5; L/W = 16/7, W = 
7 cm. while the material parameters involve 
Young’s modulus E = 3x107 N/cm2 and Poisson’s 
ratio  = 0.25. 
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Figure 6. A rectangular plate with an edge crack 
under uniform shear loading 

 The reference values of mixed-mode stress 
intensity factors are given by [3] as follow: 

234 / .IK N cm cm                 (20) 
24.55 / .IIK N cm cm                 (21) 

 

Relative error is given by: 

Error
num exact

exact

K K
K


                 (22) 

 The mixed mode stress intensity factors 
computed for the first-, second- and third-order 
NURBSbased XFEM are presented in Table 1 
with a uniform mesh of 21x4. 

 As observed in Table 1, the stress intensity 
factors of mode I are more accurate when the 
order of  the  NURBS  functions  gets  higher,  
but  this  behavior  does  not  apply  for  mode-II.  
The computational time is increased  rapidly 
when the order of the NURBS functions 
increases.  In practice, the order of the NURBS 
functions may be chosen in a way dependent on 
the problems of interest, but second-order could 
yield a good solution. 

Table 1. Mixed mode SIFs computed with 1st, 2nd and 3rd order 
NURBS-based XFEM 

 

Stress intensity 
factor 

 2/ .N cm cm  

Relative 
error (%) Time (s) 

1st order NURBS  
KI = 32.977 -3.01 

20.59 
KII = 4.491 -1.29 

2nd order NURBS 
KI = 34.401 1.17 

33.69 
KII = 4.567 0.37 

3rd order NURBS 
KI = 34.151 0.44 

88.68 
KII = 4.600 1.10 

 

 

 

 

 

 

Figure 7. Stress fields of the horizontal edge crack specimen (31 x61 elements, 2nd order NURBS) 
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3.2.  Edge crack propagation under 
uniform shear 

 A rectangular plate assumed to be plane 
strain condition with an edge crack under uniform 
shear loading  = 1 N/m2. The geometrical 
parameters are chosen as depicted in Fig. 8. The 
unit of length is the metre (m) while the material 
parameters involve Young’s modulus E = 30x106 
N/m2 and Poisson’s ratio  = 0.25. 

We check the accuracy of the XIGA by 
comparing the obtained solutions with those given 
in previous work [12] (Scale boundary finite 
element method – SBFEM). The compared results 
show a good agreement between two methods. 
Additionally, The crack paths obtained by two 

method are shown in Figs. 9, respectively, which 
shows a good agreement as expected. 

 

 

 

 

 

 

 

 

Figure 8. A rectangular plate with an edge crack 
under uniform shear loading 

 

 

 

 

 

 

XIGA                                                            SBFEM 
Figure 9. Comparison of crack path. 

4. CONCLUSIONS 

We have applied the XIGA to solve the crack 
propagation problems. Several numerical 
examples are considered. The  obtained  results  in  
stress intensity factor and crack path  are  
investigated  and compared  with other numerical 
methods such as XFEM and scale boundary finite 

element method. Very  good  agreements  on  the  
solutions  are  found. It is showed that the XIGA 
is suitable for solving complex crack propagation 
problems. Consequently, isogometry analysis is 
an effective numerical method in future. 
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Mô phỏng sự lan truyền vết nứt bằng phân 
tích đẳng hình học mở rộng 

 Trương Tích Thiện 
 Trần Kim Bằng 
 Nguyễn Duy Khương 
 Nguyễn Ngọc Minh 
 Nguyễn Thanh Nhã 

Trường Đại học Bách khoa, ĐHQG-HCM 

TÓM TẮT: 
Bài báo sử dụng phân tích đẳng hình 

học mở rộng để mô phỏng quá trình lan 
truyền vết nứt. Ý tưởng chính là dùng 
các hàm cơ sở “non uniform rational B-
Splines (NURBS)” cho cả việc mô hình 
hình học lẫn đưa vào lời giải phân tích 
số. Bài báo này xét đến sự lan truyền vết 
nứt trong kết cấu có vật liệu đẳng hướng 
như là kim loại. Dạng bài toán được đề 
cập trong đây là bài toán tấm hình chữ 
nhật có vết nứt ở cạnh và tấm hình chữ 
L có vết nứt tại góc. Kết quả số thu được 

đem so sánh với lời giải giải tích và một 
vài công bố khác. Bài báo có thể chứng 
minh được những ưu điểm của phân tích 
đẳng hình học mở rộng trong việc mô 
hình và tính toán số nếu so với phương 
pháp truyền thống thông dụng là phương 
pháp phần tử hữu hạn. Vì thế, phân tích 
đẳng hình học là một công cụ hữu hiệu 
dùng để tính toán số trong tương lai, đặc 
biệt là bài toán lan truyền vết nứt trong 
kim loại. 

        
Từ khóa: nứt, lan truyền nứt, phân tích đẳng hình học, mở rộng, NURBS 
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