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ABSTRACT:

The purpose of this paper is
simulating the crack propagation in steel
structures with isogeometry analysis
(IGA). In this method, CAD model is
integrated into the CAE model by using
non uniform rational B-Splines (NURBS)
function. Crack propagation in isotroptic
linear elastic material will be presented.
The numerical example is a rectangular
plate assumed to be plane strain
condition with an edge crack under
uniform shear loading. The obtained

results are investigated and compared
with analytical method and reference
solutions. Very good agreements on
the solutions are found. It is showed
that isogometry analysis is better than
standard finite element method in
modeling and simulating. Consequently,
isogometry analysis is an effective
numerical method in future, especially
when solving the crack propagation
problems.
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1. INTRODUCTION

In simulating the crack growth problems
with arbitrary paths, the FEM has encountered
many difficulties because the finite element mesh
must be re-meshing after each increment of
growthing cracks. To overcome these difficulties,
the extened finite element method (Moes et
al.1999) was developed to solve crack growth
problems. XFEM is developed based on Partition
of Unity Finite Element Method (PUFEM) [1].
Belytschko va Black (1999) [2] introduced a
minimal remeshing method for crack propagation
problems. Moés (1999) [3] improved this method.
Dolbow (1999) [4] applied XFEM to solve crack
problem in shell structures.

In recent years, Isogeometric Analysis —
IGA has been successfully developed by Hughes
at Institute for Computational Engineering and
Sciences [5, 6], The University of Texas (USA).
The main idea of this method is the use of
NURBS basis functions to build CAD geometry
for modeling, the concept is similar to the finite
element method (FEM). The difference is in
FEM, Lagrange shape functions is used while
IGA using NURBS shape functions to
approximate the problem domain.There are
several articles have demonstrated the
approximate model discontinuities by using
NURBS is better FEM shape function [7, 8]
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The combination XFEM and IGA opens a
modern approaching in the field of computational
fracture mechanics, that is Extended Isogeometric
Analysis - XIGA. XIGA inherited the advantages
of XFEM and IGA, fully capable of solving
some complex crack propagation problem
without re-meshing. On the other hand, the
complex geometry of objects can be modeled
with a few of elements, so the calculation time

can be reduced significantly.

2. FUNDAMENTALS OF NURBS AND
XIGA
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2.1. B-Spline basis functions

A knot vector, defined by E. B-Spline
basis functions, according to [9], are constructed
from a given knot vector. Generally, the B-
Spline basis functions of order p = 0 are defined
by:

1if&<E<é,
0 otherwise

Ni,o(f) :{ (1)

For p>1, the basis functions are defined by

Cox-de Boor recursion formula:.
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Figure 1. B-Spline basis functions of order p = 2

Figure 1 shows the B-Spline basis functions
of order p = 2 with open knot vector and

£={0,0,0,1,2,3,4,4,5,5,5} .

2.2. B-Spline curve

Given n basis functions corresponding to

the knot vector = = {fl,éz,K & and a set of

n+p+l}

control points {B,},i=1,2,...,n, the B-Spline

(a) The curve and control points

curve is given by:

C((s):gNi,p(f)Bi @)

with N; /(&) is the B-Spline basis functions of
order p, B, is ith control point. Figure 2 show

B-Spline curve of order p = 2 corresponding to
the knot vector £=1{0,0,0,1,2,3,4,4,5,5,5} .

(b) The curve and mesh created by knot points

Figure 2. B-Spline curve of order p = 2
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Figure 3. The control net and mesh for the biquadratic B-Spline surface

Given a set of control points, call a control
net {Bi’j},i=1,2,...,n,j=1,2,...,m, polynomial
orders

p and q, knot vectors

32{511521K1§n+p+1} Vé. H={§1’§2’K’§n+p+l}’
the B-Spline surface is thus defined by:

S(&m)=

n m
=1

Nip (E)M 4 (17)B;; (4)

i=1l j
Figure 3 depicts biquadratic B-Spline surface
with  knot vector =={0,0,0,05111} va

H=1{0,0,0111).

2.3. NURBS geometry

NURBS basis is then given as follows:

Ni,p (‘f)wl

with N; = the B-Spline basis functions and w; is

ith weight function.

The NURBS curve is then defined as in the
same manner as the B-spline curves:

q@:im@mi (6)
The NURBS surfaces are defined as:
S(&m)= R (Em)B, )

Where R"%(&,n) are given by:

Figure 4. Example of a NURBS curve for constructing a quarter of a circle

Rip(é):n (5)
2.4. Finite element analysis with
NURBS

Most often IGA input involves knot vectors
and control points data The physical domain is

denoted by Q and the parametric domain by Q.

The mapping from the parametric domain Q to
the physical domain Q is given by:

x=3 N8 ©

Where N.(&) refers to either the univariate

NURBS basis function if Q is a curve or the
bivariate NURBS basis function in case Q is a
surface.

In an isoparametric formulation, the
displacement field is approximated by the same

shape functions:
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U= Y N (10)

where u;, denotes the value of the

displacement field at the control point B, .

2.5. Extended
(XIGA)

isogometry analysis

General form of the XFEM for modeling the
crack is given by

"(x)=D Ny + D bNIS(x)+

iel jed

+ZN Z(Ck )

keK

(11)

where u"(x) is the approximated function of the
displacement field; N is the shape function
computed at the control points; u, b, c
respectively, are the unknown degrees of
freedom corresponding to the sets named as I, J
and K. | is the set of total nodes in the problem
domain, whereas J is the set of nodes enriched by
the sign function S(x)

| 1for y(xt)>0 (12)
S(X)_{—lfor w(xt)<0

wherw P (x,t) is the level set function

Set K is the set of nodes enriched by the tip
enrichments, also known as branch functions in
many literatures.

Fl(r,9)=x/Fsm(
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N
;/
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F(1,0) =T eas| § i )

where (r,0) are the local polar coordinates
defined at the crack tip.

In NURBS-based XFEM, the sets I, J and K
are also associated with
correspondingly.

control  points,

2.6. The level set method

According to [10, 11], the level set method
is use to detect the discontinuous surfaces. As
sketched in Figure 5, the crack is considered to be
the zero level set of .

Figure 5. Construction of initial level set functions

where both @1 < 0 and ¢, < 0 in case of an
interior crack or where @1 < 0 in case of an edge
crack. In cases that more than one crack tip
exists, it is convenient todefine a single function
@(x,t) to unify all the functions o;

o(x.t)=max(g,) (14)

Within the framework of crack growth
problems, the level set must be updated
appropriately, but only nodes locally close to the
crack are updated. In addition, it is assumed that
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once a part of a crack has formed, that part will
be fixed (Stolarska et al. (2001) [5]).

The evolution of the crack is modeled
by appropriately updating the functions level
set y and ¢ then reconstructing the ¢ function. In
each step, the incremental length and the
angle of the propagating direction, 6. are known.
The displacement of the crack tip is given by the
vector

F = (F E )= X_tip,n+1 _ Xitip,n (15)

X1y i

where x"™1 is the current crack tip (step
n+1) and X" = (x;, yi) is the crack tip at step n.
Let the values of y and ¢ at step n be y" va ¢".
The updated values of y and ¢, y"** and ¢"** n+1
are determined by the following algorithm [5]:

(1) @i"* is updated at each step.

(2) F is not necessarily orthogonal to the zero
level set oi". Thus ¢ is rotated to become q;, S0

that F is orthogonal

- F
@iz(x_xi)i_'_(y_yi)_y (16)
] adl

(3) The crack is extended by computing
new values of y™* only where ¢, >0

(4) Once all ¢i"* corresponding to a crack are
updated, ¢"* is updated using (14)
For the XIGA, the values at control points are
also stored. The values at other points within a
given element are approximated from the values
of the control points that support the given
element as follows:

W(X)ziNiu/i (17)

where N, is the number of control points
which support the element. The other level
set functions are also approximated by using the
same form of (17).

For the NURBS-based XFEM, an
element is determined to be split element, i.e.
discontinuous-enriched, or tip element, i.e. tip-
enriched, from the nodal values of y and ¢. The
enrichment has to be chosen for the control
points. The values of enrichment function in (11)
are computed at the control points.

2.7. Maximum circumferential stress
criterion

The maximum circumferential  stress
criterion states that the crack will propagate from
its tip in a direction assigning by an angle 6
where the circumferential stress coee iS maximum
3, 5]

2
6, = 2arctan 1 ﬁi [ﬁj +8 (18)
4] K, "

The stress intensity factors are computed
using the interaction integral [3].

2.9. Interaction integral

Interaction integral for states 1 and 2 is given as

follow
(2)
16— [| W, — o o(u”)
. ] ] axl
(19)
o(u?
o ( )nde

With W2 is the interaction strain energy

3. NUMERICAL EXAMPLES
3.1. Edge crack under uniform shear

A rectangular plate assumed to be plane
strain condition with an edge crack under uniform
shear loading T = 1 N/cm? as depicted in figure 6.
The geometrical parameters are chosen as
follows:: a/W = 0.5; h/W = 0.5; L/W = 16/7, W =
7 cm. while the material parameters involve
Young’s modulus E = 3x107 N/cm? and Poisson’s
ratio v = 0.25.
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=
S

K, =34N /cm*4/cm
K, =4.55N /cm?.A/cm

Figure 6. A rectangular plate with an edge crack
under uniform shear loading

The reference values of mixed-mode stress
intensity factors are given by [3] as follow:

(20)
(21)

Relative error is given by:

num Kexact

Error =—— (22)

K exact

The mixed mode stress intensity factors
computed for the first-, second- and third-order
NURBSbased XFEM are presented in Table 1
with a uniform mesh of 21x4.

As observed in Table 1, the stress intensity
factors of mode | are more accurate when the
order of the NURBS functions gets higher,
but this behavior does not apply for mode-II.
The computational time is increased rapidly
when the order of the NURBS functions
In practice, the order of the NURBS
functions may be chosen in a way dependent on
the problems of interest, but second-order could
yield a good solution.

increases.

Table 1. Mixed mode SIFs computed with 1st, 2nd and 3rd order
NURBS-based XFEM

Stress intensity
factor Relative -
( N /cm?+/em ) error (%) Time (s
Ki=32.977 -3.01
15t order NURBS 20.59
Ki=4.491 -1.29
Ki =34.401 1.17
2" order NURBS 33.69
Ki = 4.567 0.37
Ki =34.151 0.44
3 order NURBS 88.68
Kn =4.600 1.10
Stress plot, - Y Stress plot, Oy
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Figure 7. Stress fields of the horizontal edge crack specimen (31 x61 elements, 2" order NURBS)
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3.2. Edge crack propagation under

uniform shear

A rectangular plate assumed to be plane
strain condition with an edge crack under uniform
shear loading t = 1 N/m? The geometrical
parameters are chosen as depicted in Fig. 8. The
unit of length is the metre (m) while the material
parameters involve Young’s modulus E = 30x10°
N/m? and Poisson’s ratio v = 0.25.

We check the accuracy of the XIGA by
comparing the obtained solutions with those given
in previous work [12] (Scale boundary finite
element method — SBFEM). The compared results
show a good agreement between two methods.
Additionally, The crack paths obtained by two

XIGA

method are shown in Figs. 9, respectively, which
shows a good agreement as expected.

T=1
—— - -

L

E=30=10°
v=0.25
Plane strain
5
W
A 35

Figure 8. A rectangular plate with an edge crack
under uniform shear loading

SBFEM

Figure 9. Comparison of crack path.

4. CONCLUSIONS

We have applied the XIGA to solve the crack
propagation  problems.  Several  numerical
examples are considered. The obtained results in
stress intensity factor and crack path are
investigated and compared with other numerical
methods such as XFEM and scale boundary finite

element method. Very good agreements on the
solutions are found. It is showed that the XIGA
is suitable for solving complex crack propagation
problems. Consequently, isogometry analysis is
an effective numerical method in future.
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TOM TAT:

Bai bao st dung phén tich ddng hinh
hoc mé réng dé mé phdng qua trinh lan
truyén vét nit. Y tudng chinh /A ding
cac ham co sé “non uniform rational B-
Splines (NURBS)” cho ca viéc mé hinh
hinh hoc lan dua vao 10i gidi phén tich
s6. Bai béo nay xét dén s lan truyén vét
nut trong két cu cé vét lidu ding huéng
nhw 1A kim loai. Dang bai toan duoc dé
cép trong day /a bai toan tdm hinh ch
nhat c6 vét nit & canh va tdm hinh chi
L c6 vét niit tai géc. Két qua sé thu duoc

dem so sanh voi loi giai giai tich va mét
vai cdng bd khéc. Bai bao co thé ching
minh duoc nhing wu diém cida phén tich
dang hinh hoc mé réng trong viéc mé
hinh va tinh toan sé néu so véi phuong
phap truyén théng théng dung la phuong
phap phén t& hitu han. Vi thé, phan tich
dang hinh hoc /a mét céng cu hitu hiéu
dung dé tinh toan sé trong tuong lai, dac
biét 1a bai toan lan truyén vét nut trong
kim loai.

Tor khéa: nirt, lan truyén nit, phén tich dang hinh hoc, mé rong, NURBS

REFERENCES

[1]. Melenk, J.M. and I. Babuska, The Partition
of Unity Finite Element Method: Basic
Theory and Applications. Seminar fur
Angewandte Mathematik, Eidgenossische
Technische Hochschule. Research Report
No. 96-01, 1996.

[2]. Belytschko, T. and T. Black, Elastic crack
growth in finite elements with minimal
remeshing. Computer Methods in Applied
Mechanics and Engineering, 45(5): p. 601-
620, 1999.

[3]. Moes, N., J. Dolbow, and T. Belytschko, A
finite element method for crack growth
without remeshing. Journal for Numerical

Methods in Engineering, 46(1): p. 131-150,
1999.

[4]. Dolbow, J.E., An Extended Finite Element
Method with Discontinuous Enrichment for
Applied Mechanics, in Theoretical and
Applied Mechanics, Northwestern
University: American, 1999.

[5]. Hughes, T.J.R., J.A. Cottrell, and Y.

Bazilevs, Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh
refinement. Computer Methods in Applied
Mechanics and Engineering, 194(39-41): p.
4135-4195, 2005.

Page 83



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K4- 2015

[6].

[7]1.

[8].

[9].

[10].

Cottrell J. Austin, T.J.R.H., Bazilevs Yuri,
Isogeometric Analysis: Toward Integration
of CAD and FEA, Wiley, 20009.

Verhoosel, C.V., et al., An isogeometric
analysis approach to gradient damage
models. International Journal for Numerical
Methods in Engineering, 86(1): p. 115-134,
2011.

Luycker, E.D., et al, X-FEM in
isogeometric analysis for linear fracture
mechanics.  International ~ Journal  for
Numerical Methods in Engineering, 87(6):
p. 541-565, 2011.

Piegl, L. and W. Tiller, The NURBS Book,
Springer, 1997.

Ventura, G., J.X. Xu, and T. Belytschko, A
vector level set method and new

[11].

[12].

discontinuity approximations for crack
growth by EFG. International Journal for
Numerical Methods in Engineering, 54: p.
923-944, 2002.

Ventura, G., E. Budyn, and T. Belytschko,
Vector level sets for description of
propagating cracks in finite elements.
International ~ Journal ~ for  Numerical
Methods in Engineering, 58: p. 1571-1592,
2003.

Yang Z.J., Wang X.F., Yin D.S., Zhang Ch,
A non-matching finite element-scaled
boundary finite element coupledmethod for
linear elastic crack propagation modelling.
Computers and Structures 153 p. 126-136,
2015.

Page 84



