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ABSTRACT
This paper investigates a novel forward 

adaptive neural model which is applied for 
modeling and implementing the supervisory 
controller of the hybrid wind microgrid 
system. The nonlinear features of the hybrid 
wind microgrid system are thoroughly 
modeled based on the adaptive identification 
process using experimental input-output 
training data. This paper proposes the novel 

use of a back propagation (BP) algorithm to 
generate the adaptive neural-based 
supervisory controller for the hybrid wind 
microgrid system. The simulation results 
show that the proposed adaptive neural-
based supervisory controller trained by Back 
Propagation learning algorithm yields 
outstanding performance and perfect 
accuracy. 

Keywords: hybrid wind microgrid system, back propagation learning algorithm (BP), adaptive 
neural-based supervisory controller, wind turbine, modeling and identification 

 

1. INTRODUCTION   
Hybrid renewable energy systems can be 

classified into two main types: grid-connected and 
standalone. The renewable energy sources can be 
PV or wind generators (or both), according to the 
availability of solar radiation or wind velocity (or 
both) at the system site. Batteries are often used as 
a backup source to supply the system when the 
renewable energy source is unavailable. Other 
backup sources can be used with or without 
batteries such as fuel cells (e.g. electrolysers, 
supercapacitors and flywheel energy storage). 
Diesel generators could be used as secondary 

sources of renewable energy. The standalone 
system might provide dc power, ac power, or both 
dc and ac power [1-3]. The grid-connected 
systems can work on standalone mode when the 
utility grid is unavailable. In grid-connected 
systems, the utility grid is a secondary source. For 
the most part, fuel cells and diesel generators are 
not used with such grid-connected systems. The 
supervisory controllers manage the power 
according to the type and different components of 
the system. The supervisory controllers could be 
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divided generally to two kinds; conventional-
based and artificial intelligence-based methods. 

A small-scale hybrid PV-Wind generation 
system with batteries works only in standalone 
mode as proposed in [6]. The power conditioning 
unit is limited to maximize the output power from 
both the wind and the PV generators to the 
batteries. The charging and discharging methods 
of batteries, over power ratings and load 
management, are not taken into account in this 
system. A design of a supervisory controller based 
on a sliding mode control is presented in reference 
[4]. The system is a standalone hybrid PV-Wind 
generation system. For the design of such a 
supervisory controller, the wind generator plays 
the role of the main generator while the solar 
generator is a secondary power source. The 
system has three modes of operation: in the first 
mode, the wind generator is regulated to supply 
the system while the PV generator is OFF. In the 
second mode, the wind power is maximized and 
the PV power is regulated. Both PV and wind are 
maximized in the last mode. In the proposed 
control strategy, the battery state of charge is not 
taken into account. Furthermore, the wind power 
regulation strategy is not explained. A wind 
generation system with storage batteries is 
controlled to work in both grid and standalone 
operation modes discussed in this chapter [1]. The 
supervisory controller in this system is designed 
to provide smooth transitions between the modes. 
Furthermore, it controls the inverter, providing 
fault ride through to limit the output current 
during utility grid side faults. This fault ride 
through strategy is explained in reference [5]. 

The supervisory controller of a standalone 
hybrid Wind-PV-fuel cell (FC) energy system is 
proposed in [7-9]. Every source is connected to 
the ac bus bar via an inverter to supply the load. 
The FC–electrolyzer combination is used as a 
backup and long-term storage system. The battery 
bank is used in the system as a short-time backup 

to supply the transient power. At any given time, 
the supervisory controller controls any excess 
wind-PV-generated power to be supplied to the 
electrolyser. The hydrogen, which is delivered to 
the hydrogen storage tanks by a gas compressor, 
is consequently generated. If the generated power 
is less than the load demand, the FC stack begins 
to produce energy for the load using hydrogen 
from the storage tanks. A steady state model was 
used in the papers with no dynamical results. This 
study demonstrates that the low voltage 
distribution network is supervised to optimize 
energy flow and control power quality [10]. This 
kind of system is supplied by renewable energy 
sources, diesel generators, and energy storage 
backups. The system is controlled, according to 
international power quality standards. The 
algorithm is universal and adapts its control 
variables. This controller is concerned with the 
utility grid not with controlling the local 
generators. A power management program is 
proposed in reference [11] for a grid-connected 
wind-generated system with energy storage. The 
energy storage is controlled to smooth the power 
output of the energy generation system to the grid. 
The average wind velocity is forecast for the next 
hour and then the energy storage output is 
managed according to the forecast value. A new 
scheme of a standalone hybrid PV-Wind system 
with batteries is proposed in [12]. The PV is 
directly connected in parallel with the batteries to 
supply the ac load through a three phase inverter 
which is connected from the other side to a wind 
generator. The power management strategy is 
simplified in this configuration as the batteries act 
as a constant voltage load line which charges both 
ways by the PV and the wind generators. A dump 
load can be switched on with batteries fully 
charged but the batteries are later disconnected to 
prevent overcharging. One of the drawbacks is 
that there is no ability in this scheme to provide 
PV or wind generators control. Furthermore, the 
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atteries’ charging and discharging is not fully 
controlled.  

Recently, there were many researches focus 
on artificial intelligence-based methods applied to 
supervisory control of hybrid microgrid systems. 
A standalone system with hybrid PV-diesel power 
generators and flywheel backup energy storage 
system is proposed in [13]. A pump is used as an 
auxiliary load to absorb the extra power from the 
system. A fuzzy logic supervisory controller is 
proposed to manage the power from the 
generators to the load. According to the generated 
PV power and the rotor speed of the flywheel, the 
fuzzy controller adjusts the references for the 
diesel generator output power and the pump 
demand. A fuzzy logic supervisor is proposed also 
in reference [14] for a grid-connected wind 
generated system. The same system used in the 
last reference is used in this reference [15] with 
the exception that there is a flywheel controlled by 
a fuzzy supervisor to smooth the output power of 
the wind generator. A storage capacitor could be 
used also in the same manner [16]. In a microgrid 
system [17], the PV generators could be used to 
remove frequency deviations using fuzzy 
supervisory controller. In reference [18], the fuzzy 
supervisor controls the pitch angle of a fixed 
speed wind generator. Authors in [19] proposed a 
neural-based supervisory controller manages the 
power in a PV standalone system with batteries. 
The drawback of all these supervisory controllers 
relate to the lack of precision and performance in 
their realtime operation. 

This paper proposes the novel use of adaptive 
neural MIMO model to generate the supervisory 
controller for the hybrid wind microgrid systems. 
The Back Propagation (BP) learning algorithm is 
used to process the experimental input-output data 
that is measured from the optimal desired 
operation of the hybrid wind microgrid systems as 
to optimize all nonlinear and dynamic features of 
this system.  

The rest of the paper is organized as follows. 
Section II introduces the implementation of 
supervisory controller in hybrid wind microgrid 
systems. Section III presents the novel adaptive 
neural MIMO model using for the implementation 
of supervisory controller in hybrid microgrid 
systems. The results from the proposed adaptive 
neural-based supervisory controller are presented 
in Section IV. Finally, Section V contains the 
concluding remarks. 

2. PROPOSED NEURAL 
SUPERVISORY CONTROL OF THE 
HYBRID MICROGRID SYSTEM 

We consider an implementation a supervisory 
controller for the hybrid microgrid systems 
illustrated in fig.1. From this figure, the neural 
NARX-based supervisory controller regulates the 
power of the wind generator according to the 
change of the wind turbine and load powers. 

In figure 1, proposed neural NARX controller 
plays the role of a supervisory monitor. Based on 
the power of the wind energy system and the 
consumed power of the load which were 
considered as input values, the adaptive neural 
supervisor will appropriately and auto-tuningly 
switches the S1, S2 and S3 as to ensure the most 
efficient operation for the hybrid microgrid 
systems. 

 
Figure 1. Schematic of a supervisory controller 

for the hybrid wind-turbine microgrid systems 
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The BP algorithm optimally generates the 
appropriate neural weightings to perfectly 
characterize the features of the supervisory 
controller for the hybrid wind microgrid systems. 
These good obtained results are due to proposed 
adaptive neural MIMO model combines the 
extraordinary approximating capability of the 
neural system with the powerful predictive and 
adaptive potentiality of the nonlinear ARX 
structure that is implied in the proposed adaptive 
neural-based model. Consequently, the proposed 
method of the generation of the adaptive 
supervisory controller for the hybrid microgrid 
systems has successfully modeled the nonlinear 
features of the desired operation of the hybrid 
wind microgrid system with good performance.     

3. ADAPTIVE NEURAL MIMO MODEL 
FOR SUPERVISORY CONTROL THE 
HYBRID WIND MICROGRID SYSTEM 

The adaptive forward Neural MIMO model 
used in this paper is a combination between the 
Multi-Layer Perceptron Neural Networks 
(MLPNN) structure and the Auto-Regressive with 
eXogenous input (ARX) model. Due to this 
combination, adaptive forward Neural MIMO 
model possesses both of powerful universal 
approximating feature from MLPNN structure 
and strong predictive feature from nonlinear ARX 
model. 

A fully connected 3-layer feed-forward MLP-
network with n inputs, q hidden units (also called 
“nodes” or “neurons”), and m outputs units is 
shown in Fig. 2. 

 
Figure 2. Structure of feed-forward MLPNN 

In Fig.2, w10,.., wq0 and W10,..,Wm0 are 
weighting values of Bias neurons of Input Layer 
and Hidden Layer respectively. 

Forwardly we consider an Auto-Regressive 
with eXogenous input (ARX) model with noisy 
input, which can be described as 
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respectively; q is the shift operator and T is the 
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From equation (1), not considering the noise 
component e(t), we have the general form of the 
discrete ARX model in z-domain  (with the time 
delay T=nk=1) 
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in which na and nb are the order of output y(z-1) 
and input u(z-1)  respectively. 

    We investigate the potentiality of various 
simple adaptive neural MIMO models in order to 
exploit them in modeling, identification and 
control as well. The adaptive neural-based 
supervisory controller of the hybrid wind 
microgrid system is investigated. Thus, by 
embedding a 3-layer MLPNN (with number of 
neurons of hidden layer equal 5) in a 1st order 
ARX model with its characteristic equation 
induced from Figure 1, as follows: 
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We will design the proposed adaptive neural–
based supervisory controller of the hybrid PV 
microgrid system (with na = 1, nb = 1, nk =1) with 
5 inputs (including two input values pw(k), pl(k) 
and three recurrent delayed output values s1(k-1), 
s2(k-1), s3(k-1)) and three output values s1hat(k), 
s2hat(k) and s3hat(k). We remember that two input 
values pw(k), pl(k), representing the two power 
inputs [MW] of the wind turbine and the load, 
respectively and the three output values s1hat(k), 
s2hat(k) and s3hat(k) representing the responding 
switching output of the adaptive neural–based 
supervisory controller.  Its structure is shown in 
Fig. 3. 

 
Fig.3. Model structure of the adaptive neural–

based supervisory controller of the hybrid wind-
turbine microgrid system 

By this way, the fifteen parameters a11, a12, 
a13, b11, b12, a21, a22, a23, b21, b22, a31, a32, a33, b31, 
b32 of the ARX structure of three switching output 
variables s1hat(t), s2hat(t) and s3hat(t), respectively, 
now become adaptively nonlinear and will be 
determined from the weighting values Wij and wjl 
of the proposed adaptive Neural MIMO NARX 
model.  

The prediction error approach, which is the 
strategy applied here, is based on the introduction 
of a measure of closeness in terms of a mean sum 
of square error (MSSE) criterion: 
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Based on the conventional error Back-
Propagation (BP) training algorithms, the 
weighting value is calculated as follows: 
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with k is kth iterative step of calculation and  
is learning rate which is often chosen as a small 
constant value. 

Concretely, the weights Wij and wjl of neural 
MIMO NARX are then updated as: 
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with i  is search direction value of ith neuron of 
output layer (i=[1 m]); Oj is the output value 
of jth neuron of hidden layer (j=[1 q]); yi and 

iŷ are truly real output and predicted output of ith 
neuron of output layer (i=[1 m]), and 

     
 

 








m

i
ijijjj

ljjl

jljljl

WOO

ukw

kwkwkw

1

1

..1

11



  (7)    

in which j  is search direction value of jth neuron 
of hidden layer (j=[1 q]); Oj is the output 
value of jth neuron of hidden layer (j=[1 q]); ul 
is input of lth neuron of input layer (l=[1 n]). 

4. NEURAL MIMO MODEL FOR THE 
SUPERVISORY CONTROL OF THE 
HYBRID WIND MICROGRID SYSTEM 

In general, the procedure which must be 
executed when attempting to identify a dynamical 
system consists of four basic steps. 

 STEP 1 (Getting Training Data)  

 STEP 2 (Select Model Structure )  

 STEP 3 (Estimate Model)  

 STEP 4 (Validate Model) 
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In Step 1, the identification procedure is 
based on experimental input-output data values 
measured from the desired input-output of the 
adaptive neural–based supervisory controller of 
the hybrid wind-turbine microgrid system. The 
two input values pw(k), pl(k), representing the two 
power inputs [MW] of the wind turbine and the 
load and the three desired referential output values 
s1hat(k), s2hat(k) and s3hat(k) representing the 
responding switching output of the adaptive 
neural–based supervisory controller.  

 
Fig.4a Two power input signals pw(k), pl(k) of 

training data for identification process 

 
Fig.4b Three switching output signals of training data 

for identification process 

Figure 4a and Figure 4b presents the collected 
input-output data composes of the two input 
signals pw(k), pl(k) applied to the neural–based 
supervisory controller of the hybrid wind-turbine 
microgrid system and the referential output values 
s1hat(k), s2hat(k) and s3hat(k). 

Back Propagation (BP) learning algorithm 
based on the error between the (s1,s2,s3,s4,s5) 
reference switching outputs and the responding 
(s1hat, s2hat, s3hat, s4hat,  s5hat) switching outputs of 
adaptive neural MIMO NARX model to update 
the weights of proposed neural MIMO NARX 
supervisory controller. Fig.5 illustrates 
identification scheme of the neural MIMO NARX 
supervisory controller using proposed Neural 
MIMO NARX model for microgrid wind system. 

 

 
Fig.5 Identification scheme of the neural-based 

supervisory controller using proposed adaptive Neural 
MIMO NARX model 

The second step relates to selecting the model 
structure. The block diagram in Fig.5c illustrates 
the identification scheme of the proposed 
intelligent model. The proposed adaptive neural 
MIMO NARX model structure was attempted. Its 
model structure was presented in Fig. 3. 

The third step estimates values for the trained 
adaptive Neural NARX model. The optimal 
fitness value to use for the BP-based optimization 
and identification process is calculated. The 
estimation result is presented in Fig. 6. This figure 
represent the fitness convergence values of the 
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proposed forward kinematics of the industrial 
robot arm FNMN system which correspond to 
adaptive neural NARX identified and optimized 
with Back Propagation (BP) learning algorithm. 
The fitness value of the proposed adaptive neural-
based supervisory controller identification 
produces an excellent global optimal value (equal 
to 0.000036).  

These good results are due to how the 
proposed model combines the extraordinary 
approximating capability of the neural system 
with the powerful predictive and adaptive 
potentiality of the nonlinear NARX structure that 
is implied in the adaptive neural MIMO NARX 
model. Consequently, the BP-based forward 
kinematics of the industrial robot arm FNMN 
model addresses all of the nonlinear features of 
the forward kinematics of the industrial robot arm 
system that are implied in the five responding 
output switching signals (s1, s2, s3, s4, s5) from 
three power input values (pw(k), ps(k), pl(k)). 

 
Fig.6 Fitness convergence of proposed adaptive 

neural-based supervisory controller identification  

The last step relates to validating the resulting 
nonlinear adaptive models. Applying the same 
training diagram in Fig. 5, a good validating result 

demonstrates the performance of the resulting 
forward Neural MIMO NARX (FNMN) model 
which are presented in Fig.7. The error which is 
optimized nearly zero between the real hybrid 
wind-turbine supervisory control system 
responding reference output signals (x,y) and the 
forward Neural MIMO NARX model responding 
output signals (xhat, yhat)  asserts the very good 
performance of proposed FNMN model. 
Forwardly, the error shown in Fig.7 consolidates 
again the quality of proposed Neural MIMO 
NARX model. 

     Finally, Fig.8 illustrates the auto-tuning 
variation of adaptive ARX parameters of 
proposed forward Neural MIMO NARX Model of 
the hybrid wind-turbine supervisory control. 
Concretely, the fifteen parameters a11, a12, a13, b11, 
b12, a21, a22, a23, b21, b22 and  a31, a32, a33, b31, b32 

of the two 1st order ARX structure integrated in 
proposed FNMN model were adaptively auto-
tuning as illustrated in Fig. 8. These results show 
that the parameters of the ARX structure 
integrated in proposed FNMN models now 
become adaptively nonlinear and will be 
adaptively determined from the optimized 
weighting values Wij and wjl of the forward Neural 
MIMO NARX model. This feature once more 
proves the proposed adaptive forward Neural 
MIMO NARX (FNMN) model is very powerful 
and adaptive in identification and in model-based 
advanced control as well. 

      In summary, Table 1 tabulates the 
optimized weighting values of the proposed 
forward Neural MIMO NARX model. The final 
structures of forward Neural MIMO NARX 
models respectively which are identified and 
optimized by BP learning algorithm are shown in 
Fig. 3. 
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Fig.7 Validation of the proposed forward Neural MIMO NARX (FNMN) controller 

 

 
Fig. 8: Adaptive NARX parameters' auto-tuning of proposed neural MIMO NARX model 
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Table 1 Optimized weights of proposed forward NEURAL MIMO-NARX – Total Number of weighting values = 68 

 
 

5. CONCLUSION 
This paper investigates the novel use of 

proposed adaptive neural MIMO model in order 
to generate the supervisory controller for the 
hybrid wind microgrid systems. The Back 
Propagation (BP) learning algorithm is applied to 
process the experimental input-output data that is 
measured from the optimal desired operation of 

the hybrid wind microgrid systems and then to 
successfully optimize all nonlinear and dynamic 
features of this hybrid microgrid system. 
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Thiết kế bộ điều khiển giám sát hệ vi lưới 
hỗn hợp nguồn gió ứng dụng mô hình nơ 
rôn MIMO NARX thích nghi 
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TÓM TẮT 
Bài báo khảo sát mô hình mờ nơ rôn 

MIMO NARX thích nghi được dùng để nhận 
dạng và cài đặt bộ điều khiển giám sát hệ vi 
lưới hỗn hợp nguồn gió. Các yếu tố phi tuyến 
của hệ vi lưới hỗn hợp nguồn gió sẽ được 
nhận dạng đầy đủ dựa trên quá trình nhận 
dạng thích nghi thông qua dữ liệu huấn luyện 
lấy từ thực nghiệm. Bài báo cũng trình bày 

cách khai thác thuật toán lan truyền ngược 
(Back-Propagation algorithm - BP) để tối ưu 
bộ điều khiển giám sát dùng mô hình nơ rôn 
NARX thích nghi. Kết quả mô phỏng cho thấy 
bộ điều khiển giám sát dung mô hình nơ rôn 
MIMO NARX thích nghi được tối ưu bởi thuật 
toán lan truyền ngược BP (MPSO) cho tính 
năng và độ chính xác vượt trội. 

Từ khóa: Hệ vi lưới hỗn hợp nguồn gió, thuật toán huấn luyện lan truyền ngược (BP), bộ điều 
khiển giám sát nơ rôn MIMO NARX thích nghi, nguồn tua-bin gió, mô hình và nhận dạng. 
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