TAP CHi PHAT TRIEN KH&CN, TAP 18, SO K6- 2015

Implementation supervisory controller for
hybrid wind microgrid system using
adaptive neural MIMO model

= Ho Pham Huy Anh
= Nguyen Ngoc Son

Ho Chi Minh city University of Technology, VNU-HCM, Vietnam

=  Tran Thien Huan

Ho Chi Minh city University of Technology and Education, Vietnam

(Manuscript Received on July 15, 2015, Manuscript Revised August 30, 2015)

ABSTRACT

This paper investigates a novel forward
adaptive neural model which is applied for
modeling and implementing the supervisory
controller of the hybrid wind microgrid
system. The nonlinear features of the hybrid
wind microgrid system are thoroughly
modeled based on the adaptive identification
process using experimental input-output
training data. This paper proposes the novel

use of a back propagation (BP) algorithm to
generate  the adaptive neural-based
supervisory controller for the hybrid wind
microgrid system. The simulation results
show that the proposed adaptive neural-
based supervisory controller trained by Back
Propagation learning algorithm yields
outstanding performance and perfect
accuracy.

Keywords: hybrid wind microgrid system, back propagation learning algorithm (BP), adaptive
neural-based supervisory controller, wind turbine, modeling and identification

1. INTRODUCTION

Hybrid renewable energy systems can be
classified into two main types: grid-connected and
standalone. The renewable energy sources can be
PV or wind generators (or both), according to the
availability of solar radiation or wind velocity (or
both) at the system site. Batteries are often used as
a backup source to supply the system when the
renewable energy source is unavailable. Other
backup sources can be used with or without
batteries such as fuel cells (e.g. electrolysers,
supercapacitors and flywheel energy storage).
Diesel generators could be used as secondary

sources of renewable energy. The standalone
system might provide dc power, ac power, or both
dc and ac power [1-3]. The grid-connected
systems can work on standalone mode when the
utility grid is unavailable. In grid-connected
systems, the utility grid is a secondary source. For
the most part, fuel cells and diesel generators are
not used with such grid-connected systems. The
supervisory controllers manage the power
according to the type and different components of
the system. The supervisory controllers could be
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divided generally to two kinds; conventional-
based and artificial intelligence-based methods.

A small-scale hybrid PV-Wind generation
system with batteries works only in standalone
mode as proposed in [6]. The power conditioning
unit is limited to maximize the output power from
both the wind and the PV generators to the
batteries. The charging and discharging methods
of batteries, over power ratings and load
management, are not taken into account in this
system. A design of a supervisory controller based
on asliding mode control is presented in reference
[4]. The system is a standalone hybrid PV-Wind
generation system. For the design of such a
supervisory controller, the wind generator plays
the role of the main generator while the solar
generator is a secondary power source. The
system has three modes of operation: in the first
mode, the wind generator is regulated to supply
the system while the PV generator is OFF. In the
second mode, the wind power is maximized and
the PV power is regulated. Both PV and wind are
maximized in the last mode. In the proposed
control strategy, the battery state of charge is not
taken into account. Furthermore, the wind power
regulation strategy is not explained. A wind
generation system with storage batteries is
controlled to work in both grid and standalone
operation modes discussed in this chapter [1]. The
supervisory controller in this system is designed
to provide smooth transitions between the modes.
Furthermore, it controls the inverter, providing
fault ride through to limit the output current
during utility grid side faults. This fault ride
through strategy is explained in reference [5].

The supervisory controller of a standalone
hybrid Wind-PV-fuel cell (FC) energy system is
proposed in [7-9]. Every source is connected to
the ac bus bar via an inverter to supply the load.
The FC-electrolyzer combination is used as a
backup and long-term storage system. The battery
bank is used in the system as a short-time backup

to supply the transient power. At any given time,
the supervisory controller controls any excess
wind-PV-generated power to be supplied to the
electrolyser. The hydrogen, which is delivered to
the hydrogen storage tanks by a gas compressor,
is consequently generated. If the generated power
is less than the load demand, the FC stack begins
to produce energy for the load using hydrogen
from the storage tanks. A steady state model was
used in the papers with no dynamical results. This
study demonstrates that the low voltage
distribution network is supervised to optimize
energy flow and control power quality [10]. This
kind of system is supplied by renewable energy
sources, diesel generators, and energy storage
backups. The system is controlled, according to
international power quality standards. The
algorithm is universal and adapts its control
variables. This controller is concerned with the
utility grid not with controlling the local
generators. A power management program is
proposed in reference [11] for a grid-connected
wind-generated system with energy storage. The
energy storage is controlled to smooth the power
output of the energy generation system to the grid.
The average wind velocity is forecast for the next
hour and then the energy storage output is
managed according to the forecast value. A new
scheme of a standalone hybrid PV-Wind system
with batteries is proposed in [12]. The PV is
directly connected in parallel with the batteries to
supply the ac load through a three phase inverter
which is connected from the other side to a wind
generator. The power management strategy is
simplified in this configuration as the batteries act
as a constant voltage load line which charges both
ways by the PV and the wind generators. A dump
load can be switched on with batteries fully
charged but the batteries are later disconnected to
prevent overcharging. One of the drawbacks is
that there is no ability in this scheme to provide
PV or wind generators control. Furthermore, the
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atteries” charging and discharging is not fully
controlled.

Recently, there were many researches focus
on artificial intelligence-based methods applied to
supervisory control of hybrid microgrid systems.
A standalone system with hybrid PV-diesel power
generators and flywheel backup energy storage
system is proposed in [13]. A pump is used as an
auxiliary load to absorb the extra power from the
system. A fuzzy logic supervisory controller is
proposed to manage the power from the
generators to the load. According to the generated
PV power and the rotor speed of the flywheel, the
fuzzy controller adjusts the references for the
diesel generator output power and the pump
demand. A fuzzy logic supervisor is proposed also
in reference [14] for a grid-connected wind
generated system. The same system used in the
last reference is used in this reference [15] with
the exception that there is a flywheel controlled by
a fuzzy supervisor to smooth the output power of
the wind generator. A storage capacitor could be
used also in the same manner [16]. In a microgrid
system [17], the PV generators could be used to
remove frequency deviations using fuzzy
supervisory controller. In reference [18], the fuzzy
supervisor controls the pitch angle of a fixed
speed wind generator. Authors in [19] proposed a
neural-based supervisory controller manages the
power in a PV standalone system with batteries.
The drawback of all these supervisory controllers
relate to the lack of precision and performance in
their realtime operation.

This paper proposes the novel use of adaptive
neural MIMO model to generate the supervisory
controller for the hybrid wind microgrid systems.
The Back Propagation (BP) learning algorithm is
used to process the experimental input-output data
that is measured from the optimal desired
operation of the hybrid wind microgrid systems as
to optimize all nonlinear and dynamic features of
this system.

The rest of the paper is organized as follows.
Section Il introduces the implementation of
supervisory controller in hybrid wind microgrid
systems. Section |1l presents the novel adaptive
neural MIMO model using for the implementation
of supervisory controller in hybrid microgrid
systems. The results from the proposed adaptive
neural-based supervisory controller are presented
in Section 1V. Finally, Section V contains the
concluding remarks.

2. PROPOSED NEURAL
SUPERVISORY CONTROL OF THE
HYBRID MICROGRID SYSTEM

We consider an implementation a supervisory
controller for the hybrid microgrid systems
illustrated in fig.1. From this figure, the neural
NARX-based supervisory controller regulates the
power of the wind generator according to the
change of the wind turbine and load powers.

In figure 1, proposed neural NARX controller
plays the role of a supervisory monitor. Based on
the power of the wind energy system and the
consumed power of the load which were
considered as input values, the adaptive neural
supervisor will appropriately and auto-tuningly
switches the Sy, S; and Sz as to ensure the most
efficient operation for the hybrid microgrid
systems.
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Figure 1. Schematic of a supervisory controller
for the hybrid wind-turbine microgrid systems
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The BP algorithm optimally generates the
appropriate neural weightings to perfectly
characterize the features of the supervisory
controller for the hybrid wind microgrid systems.
These good obtained results are due to proposed
adaptive neural MIMO model combines the
extraordinary approximating capability of the
neural system with the powerful predictive and
adaptive potentiality of the nonlinear ARX
structure that is implied in the proposed adaptive
neural-based model. Consequently, the proposed
method of the generation of the adaptive
supervisory controller for the hybrid microgrid
systems has successfully modeled the nonlinear
features of the desired operation of the hybrid
wind microgrid system with good performance.

3. ADAPTIVE NEURAL MIMO MODEL
FOR SUPERVISORY CONTROL THE
HYBRID WIND MICROGRID SYSTEM

The adaptive forward Neural MIMO model
used in this paper is a combination between the
Multi-Layer  Perceptron  Neural — Networks
(MLPNN) structure and the Auto-Regressive with
eXogenous input (ARX) model. Due to this
combination, adaptive forward Neural MIMO
model possesses both of powerful universal
approximating feature from MLPNN structure
and strong predictive feature from nonlinear ARX
model.

A fully connected 3-layer feed-forward MLP-
network with n inputs, q hidden units (also called
“nodes” or “neurons”), and m outputs units is
shown in Fig. 2.

Figure 2. Structure of feed-forward MLPNN

In Fig.2, Wio,.., Wgo and Whig,..,.Wno are
weighting values of Bias neurons of Input Layer
and Hidden Layer respectively.

Forwardly we consider an Auto-Regressive
with eXogenous input (ARX) model with noisy
input, which can be described as
A@ ™)y () =B(qut~T)+C(q e(t)

1)
with A(q?)=1+a,0* +a,q™>
B(qil) = b1 + bz(T1

C(q’l):c1 +c2q’1+c3q’2Where e(t) is the white
noise sequence with zero mean and unit variance;
u(t) and y(t) are input and output of system
respectively; q is the shift operator and T is the
time delay.

From equation (1), not considering the noise
component e(t), we have the general form of the

discrete ARX model in z-domain (with the time
delay T=n=1)

y(z?h) _
u(z') l+azt+az’+..+a, 7
2

in which n, and n, are the order of output y(z')
and input u(z) respectively.

Ny

~1 -2 —
bz +b,z" +..+b, z

Na

We investigate the potentiality of various
simple adaptive neural MIMO models in order to
exploit them in modeling, identification and
control as well. The adaptive neural-based
supervisory controller of the hybrid wind
microgrid system is investigated. Thus, by
embedding a 3-layer MLPNN (with number of
neurons of hidden layer equal 5) in a 1% order
ARX model with its characteristic equation
induced from Figure 1, as follows:

shet)=0pK Hpn K-ask-D-askD-askD

srM=bpK)+o-R K-askD-askD-askD

she®=t,R/K)+ooR K-ask-)-askD)-askD
©)
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We will design the proposed adaptive neural—
based supervisory controller of the hybrid PV
microgrid system (with na =1, n, = 1, ny =1) with
5 inputs (including two input values pw(k), pl(k)
and three recurrent delayed output values si(k-1),
sa(k-1), ss(k-1)) and three output values Sipa(k),
Sonat(K) and sspat(k). We remember that two input
values pw(k), pl(k), representing the two power
inputs [MW] of the wind turbine and the load,
respectively and the three output values Sihar(K),
Sonat(K) and sanat(k) representing the responding
switching output of the adaptive neural-based
supervisory controller. Its structure is shown in
Fig. 3.

pik)
pw(k)
s3(k-1)
pik)
pw(k)
s2(k-1)
pik)

pw(k)

si(k-1)

Fig.3. Model structure of the adaptive neural—
based supervisory controller of the hybrid wind-
turbine microgrid system

By this way, the fifteen parameters a1, a2,
a3, bu1, D12, @21, @22, @23, b2y, D22, @31, 832, as3, bay,
b3, of the ARX structure of three switching output
variables Sina(t), Sonar(t) and Sanar(t), respectively,
now become adaptively nonlinear and will be
determined from the weighting values Wi; and wj
of the proposed adaptive Neural MIMO NARX
model.

The prediction error approach, which is the
strategy applied here, is based on the introduction
of a measure of closeness in terms of a mean sum

of square error (MSSE) criterion:
N

Ey (e,zw)zletzl[y(t)—y(te)T v(t)-9o)] “

Based on the conventional error Back-
Propagation (BP) training algorithms, the
weighting value is calculated as follows:

W(k+1) =W(k) —/IL(W(k))

oW (k)
()

with k is k™ iterative step of calculation and A
is learning rate which is often chosen as a small
constant value.

Concretely, the weights W;; and w; of neural
MIMO NARX are then updated as:

Wy (k +1) =W, (k)+ AW, (k +1)

AW, (k +1)= 1.5, O,

6; = 9i(1_ 9i )(yi - 9|)

(6)

with 5i is search direction value of i neuron of
output layer (i=[1—> m]); O; is the output value
of j™ neuron of hidden layer (j=[1—> q]); yi and
Y, are truly real output and predicted output of i
neuron of output layer (i=[1—> m]), and

wy (k+1)=w;(k)+Aw, (k+1)

Aw; (k +1)= 1.5, ()

51’ :Oj(l_oj)z_l5iwij

in which 5J- is search direction value of j'" neuron
of hidden layer (j=[1—> q]); O; is the output
value of j" neuron of hidden layer (j=[1—q]); u
is input of 1™ neuron of input layer (I=[1—> n]).

4. NEURAL MIMO MODEL FOR THE
SUPERVISORY CONTROL OF THE
HYBRID WIND MICROGRID SYSTEM

In general, the procedure which must be
executed when attempting to identify a dynamical
system consists of four basic steps.

e STEP 1 (Getting Training Data)
e STEP 2 (Select Model Structure )
e STEP 3 (Estimate Model)

e STEP 4 (Validate Model)
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In Step 1, the identification procedure is
based on experimental input-output data values
measured from the desired input-output of the
adaptive neural-based supervisory controller of
the hybrid wind-turbine microgrid system. The
two input values pw(k), pl(k), representing the two
power inputs [MW] of the wind turbine and the
load and the three desired referential output values
Sthat(K), Sonat(K) and  ssnat(k) representing the
responding switching output of the adaptive

neural-based supervisory controller.
TWO DAILY POWER INPUT VALUES OF TRAINING DATA
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Fig.4a Two power input signals pw(k), pl(k) of
training data for identification process
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Fig.4b Three switching output signals of training data
for identification process

Figure 4a and Figure 4b presents the collected
input-output data composes of the two input
signals pw(k), pl(k) applied to the neural-based
supervisory controller of the hybrid wind-turbine
microgrid system and the referential output values
Sthat(K), Sznat(K) and Sanai(k).

Back Propagation (BP) learning algorithm
based on the error between the (S1,52,53,54,55)
reference switching outputs and the responding
(Sthat, Szhaty Sahat, Sanat, Sshat) SWitching outputs of
adaptive neural MIMO NARX model to update
the weights of proposed neural MIMO NARX
supervisory  controller.  Fig.5 illustrates
identification scheme of the neural MIMO NARX
supervisory controller using proposed Neural
MIMO NARX model for microgrid wind system.

Microgrid 3k
Petl Wind Sysiem
Flk} Supervisory Sk
Conireller
510k
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FIk) - *
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Neural s |- T
) —
NARX ShEk) - +
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Fig.5 Identification scheme of the neural-based
supervisory controller using proposed adaptive Neural
MIMO NARX model

The second step relates to selecting the model
structure. The block diagram in Fig.5c illustrates
the identification scheme of the proposed
intelligent model. The proposed adaptive neural
MIMO NARX model structure was attempted. Its
model structure was presented in Fig. 3.

The third step estimates values for the trained
adaptive Neural NARX model. The optimal
fitness value to use for the BP-based optimization
and identification process is calculated. The
estimation result is presented in Fig. 6. This figure
represent the fitness convergence values of the
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proposed forward kinematics of the industrial
robot arm FNMN system which correspond to
adaptive neural NARX identified and optimized
with Back Propagation (BP) learning algorithm.
The fitness value of the proposed adaptive neural-
based supervisory controller identification
produces an excellent global optimal value (equal
to 0.000036).

These good results are due to how the
proposed model combines the extraordinary
approximating capability of the neural system
with the powerful predictive and adaptive
potentiality of the nonlinear NARX structure that
is implied in the adaptive neural MIMO NARX
model. Consequently, the BP-based forward
kinematics of the industrial robot arm FNMN
model addresses all of the nonlinear features of
the forward kinematics of the industrial robot arm
system that are implied in the five responding
output switching signals (s1, s2, s3, s4, s5) from
three power input values (pw(k), ps(k), pl(k)).

o FITNESS CONVERGENCE OF ADAPTIVE NEURAL MIMO NARX MODEL IDENTIFICATION

ERROR

e

\_—+

0 100 200 300 400 500 600 700 800 900
ITERATIONS

Fig.6 Fitness convergence of proposed adaptive
neural-based supervisory controller identification

The last step relates to validating the resulting
nonlinear adaptive models. Applying the same
training diagram in Fig. 5, a good validating result

demonstrates the performance of the resulting
forward Neural MIMO NARX (FNMN) model
which are presented in Fig.7. The error which is
optimized nearly zero between the real hybrid
wind-turbine  supervisory  control  system
responding reference output signals (x,y) and the
forward Neural MIMO NARX model responding
output signals (xhat, yhat) asserts the very good
performance of proposed FNMN model.
Forwardly, the error shown in Fig.7 consolidates
again the quality of proposed Neural MIMO
NARX model.

Finally, Fig.8 illustrates the auto-tuning
variation of adaptive ARX parameters of
proposed forward Neural MIMO NARX Model of
the hybrid wind-turbine supervisory control.
Concretely, the fifteen parameters a1, ai2, ais, by,
D12, @21, @22, @23, D21, b22 @nd &s1, &3z, @33, a1, bs2
of the two 1% order ARX structure integrated in
proposed FNMN model were adaptively auto-
tuning as illustrated in Fig. 8. These results show
that the parameters of the ARX structure
integrated in proposed FNMN models now
become adaptively nonlinear and will be
adaptively determined from the optimized
weighting values Wij and w of the forward Neural
MIMO NARX model. This feature once more
proves the proposed adaptive forward Neural
MIMO NARX (FNMN) model is very powerful
and adaptive in identification and in model-based
advanced control as well.

In summary, Table 1 tabulates the
optimized weighting values of the proposed
forward Neural MIMO NARX model. The final
structures of forward Neural MIMO NARX
models respectively which are identified and
optimized by BP learning algorithm are shown in
Fig. 3.
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VALIDATION RESULTS OF ADAPTIVE NEURAL-BASED SUPERVISORY CONTROLLER IMPLEMENTATION
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Fig.7 Validation of the proposed forward Neural MIMO NARX (FNMN) controller

ADAPTIVE NARX PARAMETERS' AUTO-TUNING OF NEURAL MIMO NARX MODEL

ADAPTIVE NARX PARAMETERS' VALUES
o

0 5 10 15 20 25 30 35 40 45
time (samples X 30 minutes)

Fig. 8: Adaptive NARX parameters' auto-tuning of proposed neural MIMO NARX model
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Table 1 Optimized weights of proposed forward NEURAL MIMO-NARX — Total Number of weighting values = 68

Wi —weights of Input Layer W‘zlgt:ts “‘:rélh_s “ui@;_ w‘fét_s “1':‘;@;_ w‘f)rglh_s “Vi@;
of Biss of of Biins of of Bine of of Bins
e Toyer | BT | ger | LT |y [ Twper
: 1 2 3 4 - & T g 9 0 = =] k=
I
1| -0.003L | -10561 1.0231 0.0£16 -1.0563 1.013 -0.167 -0600 [ 04019 [ 00160 01660 153 -1 1
2| 00196 | 01474 00057 | 000911 | 014680 | -0.004% 00027 | 00386 | -0.037 | 0.0033% | 0.0075 -1 86 -51.63
3| 00036 | -02834 | 031051 | 00196 -0.2834 | 031085 | 002635 | DOLEZ | O.0FTE | 00048 | 00251 41.01% 3473
4 | -0.027 001427 | -0.1092 | 000462 | 0.0136 01004 | -0.0043 | 00342 | 00016 | -00L05 | -0.003 -5.783 -31.64
£ | 0.00593 | -D.3565 | 0.3XET5 | -0.0193 | -0.356F | 032937 | -000115 | -0017 | -D.01E | 000306 | -0.0F5 -45 1% -MEBS
1] -5.13 -12 9 -6.11

5. CONCLUSION

This paper investigates the novel use of
proposed adaptive neural MIMO model in order
to generate the supervisory controller for the
hybrid wind microgrid systems. The Back
Propagation (BP) learning algorithm is applied to
process the experimental input-output data that is
measured from the optimal desired operation of

the hybrid wind microgrid systems and then to
successfully optimize all nonlinear and dynamic
features of this hybrid microgrid system.
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Thiét ke bo dieu khién giam sat hé vi lwéi
hon hgp ngudn gié ’ng dung moé hinh no
ron MIMO NARX thich nghi
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TOM TAT

Bai bao khdo sat mdé hinh mo no rén
MIMO NARX thich nghi dwoc dung dé nhan
dang va cai dat bé diéu khién giam sét hé vi
Iwéi hén hop ngudn gid. Cac yéu té phi tuyén
cda hé vi luéi hén hop ngudn gié sé duoc
nhan dang dédy di dwa trén qué trinh nhan
dang thich nghi théng qua dé liéu huén luyén
ldy tcr thue nghiém. Bai bao cing tinh bay

cach khai thac thuat toan lan truyén nguoc
(Back-Propagation algorithm - BP) dé téi uu
bé diéu khién giam séat dung mé hinh no' rén
NARX thich nghi. Két qué mé phéng cho thay
bé diéu khién giam sat dung mé hinh no rén
MIMO NARX thich nghi dwoc téi vu béi thuat
toan lan truyén nguoc BP (MPSO) cho tinh
nang va dé chinh xac vuwot tréi.

Terkhéa: Hé vi lwéi hén hop ngudn gid, thuat toan huén luyén lan truyén nguoc (BP), bé diéu
khién giam séat no rén MIMO NARX thich nghi, nguén tua-bin gié, mé hinh va nhan dang.
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