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ABSTRACT

In this paper, the virtual holonomic
constraint approach is initiatively applied for
the trajectory planning and control design of
a typical double link underactuated
mechanical system, called the Pendubot. The
goal is to create synchronous oscillations of
both links. After modeling the system using
Euler-Lagrangian equations of motion, the

parameters of the model are identified with
optimization techniques. Using this model,
the trajectory planning is done via Virtual
Holonomic Constraint approach on the basis
of re-parameterization of the motion
according to geometrical relations among the
generalized coordinates of the system.

Keywords: pendubot, trajectory planning and control, virtual holonomic constraint approach,

2-DOF underactuated system.

1. INTRODUCTION

The problem of trajectory planning and
control of underactuated mechanical systems have
attracted vast interest during last decades [1]. This
underactuation can increase the performance of
these systems in terms of dexterity and energy
efficiency and also lowers the weight of the
system as well as manufacturing costs. There are
many instances of applications of underactuated
mechanical systems in real life. Underwater
vehicles, water machines, helicopters, mobile
robots and underactuated robot arms are some
examples of engineering applications of
underactuated robotics.

Defining a required motion, planning a
proper trajectory to perform the required motion
and designing a control system which performs
the motion are three steps of problem formulation

in both fully actuated and underactuated
manipulators. However, in case of fully actuated
manipulators, with considering the dynamical
constraints regarding velocity and acceleration,
any timing along the defined path can be
achieved. But in case of robotic manipulators with
passive degrees of freedom, due to existence of
underactuated and unstable internal dynamics,
which are characterized by unbounded solutions
of the dynamical equations, the problem of
trajectory planning and control design, are more
complex and need fundamental nonlinear
approaches to be solved.

In this paper, the virtual holonomic constraint
approach is used to solve the problem of trajectory
planning and control design of a two link
underactuated robot, namely the Pendubot. The
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idea of virtual holonomic constraints which has its
roots in analytical mechanics, is to re-
parameterizing the motions according to
geometrical relations among the generalized
coordinates [2], and then imposing those
constraints with feedback control. Having the
knowledge about the constraints, it is possible to
analytically find a linear approximation of the
nonlinear system, in which asymptotic stability
implies exponential orbital stability of periodic
motions. The approach is completely analytical
and can be generalizable to systems with arbitrary
degree of underactuation [3].

The rest of this paper is organized as follows.
The second section is dedicated to explanation
about modeling and identification of the Pendubot
system, and it continues by solving the problem of
trajectory planning and control design for the
Pendubot. In the next section the results of
implementing virtual holonomic constraint
approach on a Pendubot are presented. Finally, in
section 4, a conclusion for the whole work is
given.

2. MODELLING PENDUBOT

The dynamics of the Pendubot are described
using Euler-Lagrange equations. Aiming this,
Lagrangian is defined as the difference of kinetic
energy and potential energy of the system [4],

LG9 =K@ a9-PQ) @

With the definition above, the equations of
motion for a controlled mechanical system with
several degrees of freedom can be written as:

d (9L{q.q) dL{g.q) :
= ()~ = B@w,

)
In which g is the vector of generalized
coordinates and qi is vector of generalized

velocities and u is vector of independent control
inputs and (B(q)u)i denote generalized forces.

We can also describe the dynamics of the
controlled system in terms of inertia matrix
denoted by M(q) and the matrix of Coriolis and
centrifugal forces denoted by C(g,§) and the
vector of gravitational forces G(q), using a second
order differential equation:

M{q)j+Cla.4)q + Glq) = Blglu.  (3)

On the basis of equations of motion for a
dynamical system, we can present a mathematical
definition for fully-actuated and underactuated
mechanical systems which says:

Assuming that the matrix B(q) has full rank,
If the dimension of the vector of independent
control inputs, u, is smaller than dimension of
vector of generalized coordinates, the system is
underactuated and if they have the same
dimension, the system is fully actuated.

Pendubot is a planar two link robot, in which
first link is actuated with a DC motor that is
equipped with a Harmonic drive, and the second
link is passive. So in this robot we have the
simplest case of underactuation which is of degree
one. A picture of the Pendubot is depicted in
Figure 1:

Fig.1. The picture of the Pendubot [5], first link is
actuated and second link is passive
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Considering

¢=0 and 6O=0,and

following the equation (3), the dynamics of the
Pendubot can be modelled as:

M@ [2]+ e 2]+ 6@ = [

(4)
with
M(q) = [PL +p2 + 2Zpzeos (gz) Pz + pscos (:qz)]
M Pz + pacos (gz) Pz .
o _ [Pzsin(gz)qz  —pssin (g2)(g1 +q2)
€@ = [ iin (o 0 '
y _ [Pasin{qy) + pgsin (q, + ‘?:J]
o = [ et )

(5-7)
Using this model, and after identifying the

parameters of the model, the motion planning and
control design of the Pendubot will be concerned.

3. PROPOSED VIRTUAL HOLONOMIC

CONSTRAINTS METHOD FOR
PENDUBOT

3.1 System Identification

The parameters p: to ps that were used in
previous section are defined as:

p, = myry + msli + /.
py = M1 e,

Py = Molira.

By = (myn +mgl, e

Pz = Maiag

(8-12)
in which m; and m; denote the mass of first
and second link, r1 and r, represent the distance to
the center of mass for the first and second link
respectively, I and I, denote the length of first link
and second link, Jc1 and Jc denote the inertia o
the first link and second link and g denotes
gravitational constant. On the basis of the physical
measurements over the system, some of the values

of the physical parameters of the Pendubot setup
were known. These values are shown in Table 1.

Table 1: Known Parameters of the investigated
Pendubot [6]

Parameter First Link Second Link
Mass my =0374kg my =0232kg
Distance to center of mass n=0198m r,=0172m
Length l;=025m l,=025m
Tnertia - Jop = 00023 kgm?
Gravitational constant g=981m/s? g =981m/s*

Besides the known physical parameters of the
setup which were given in Table 1, it was also
required to identify inertia of the first link Jci,
where a Harmonic drive is attached to the DC
motor, and this Harmonic drive produces
considerable friction which should be modelled,
identified, and compensated with the controller.

Here we consider the Coulomb friction and
viscous friction present in the actuated link that
can be expressed by the following equation:

froraifr[cr:on = fvisrnus_f:l':’crinn L fCo:;.'o:mi!fr:'criun

(13)

For identification of the friction, the second

link was disconnected from the setup, and the

remaining one link Pendulum was modelled with
the following equation:

- cn(lfq <0)

Je, G+ bg 4 = —m,gl,sin(q) + Kpcu.

c,(ifg20)
(14)
In equation (14), Jci denotes the inertia of the
link, b is the coefficient of viscous friction, c, and
cp are the coefficients of Coulomb friction, Kpc is
the torque constant of the DC motor (which is
equipped with a Harmonic drive), q is the angular
position of the link and u is the input signal.

The system is identified in closed-loop
scheme where a proportional gain controller with
the gain Kp = 6 is used and the link is tracking a
reference signal that is shown in Figure 2. The
signal u is defined as:
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u = Pl’p (qref&rei‘iﬂﬂ - Q) (15)
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Fig.2: Reference signal used for identification in

closed-loop
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Fig.3: A map of the viscous and Coulomb
friction for the actuated link

After capturing data from the system, the
nonlinear least squares method is applied for
identifying the parameters Jci, b, ¢n, ¢p and Kpc
that are shown in Table 2.

Table 2: Identified values of the model

parameters
Parameters Identified values
Kpe 11.743
J e 0.12164
Cn 1.3096
p 1.4749
bifiscouE 0.35098

Figure 3 shows the mapped friction for the
actuated link.

Validating data that was captured from the
real system showed the precision of the estimated
parameters.

3.2 Pendubot Motion Planning via Virtual
Holonomic Constraint

For planning the desired motion for the
system, virtual holonomic constraint approach is
applied. The idea is to define some geometrical
relations among the generalized coordinates of the
system, and imposing those relations with
feedback control. The term virtual is derived of
the fact that these constraints are not physically
present in the system and they are reproduced by
means of feedback action. Defining constraint
functiong(0), we can express generalized

coordinates of the system as functions of 6:

a1 = ¢1(8),q9: = ¢2(8),
(16)

On the basis of analytical mechanics, we can
reduce the number of differential equations of
Euler-Lagrange system (2) by substituting (16) in
underactuated equation of motion (4) to obtain
reduced-order dynamics of the system (2) in the
form of the following second order differential
equation:

a;(8,)8, + B.(6,)67 +v:(8.) =0 (3

For deriving «(0.), B@.), y(6.), one can
define ¢(09) and its first and second derivatives

vn = 8.

as:
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g = ¢i (9) : (18)

4, =¢"(0)0 (19)
q, = ¢, (0)6% +¢', ()6, (20
By substituting (18) to (20) into controlled
Lagrangian system (21):
M(@)g+ Cla.q)q + Glg) = Bladu, 5y

Assuming that the control law makes (18)
invariant and the initial conditions are consistent
with (18) and (19), the dynamics in the reduced
form can be rewritten as (22):

M($(8))[¢" ()62 + ¢' (8)8] + C((8).4'(8))[#'(6)6]
+6G(0(8)) = B(¢(6))u,
(22)

Then a(0), B(6), y(6) now can be written
as,

a(8) = B*(M($(8))¢'(6).

B(8) = B+[c(9(6).¢'(6))e'(8) + M(p(8))0" (8)].

(23-25)

In which B* is a function with
B (q)B(q)u = 0. So the derivation of (17) is
finished [7].

For checking the existence of periodic
solutions for the equation of reduced dynamics
(17), there is a sufficient condition. To check this
condition, one needs to compute the equilibrium
points of (17), which are given by solutions of

}/(Qe):(] and the following number:

s = [st -;-:E‘_-]
‘ a6 aigy] 870 (26)
If (U is positive then the equilibrium of (17)
is a center and if W is negative, then the
equilibrium is a saddle. So if @ is greater than

zero, then there are periodic solutions for the
equation of reduced dynamics.

Last step in motion planning via virtual
holonomic constraint, is computing the integral of
reduced dynamics (17) which is always
integrable, provided ¢, (6.) is not zero.

Theoreml: Suppose that the function «(6)
has only isolated zeros. If the solution
[0(t),6(t)of (17) with initial conditions
6(0)=6,,6(0)=6, exists and is continuously
differentiable, then along this solution the
function:

9 .
1(8,,8,,8,) = éz—exp[—zj A@ dr}ég
g

, i (v)
8 8
+ J exp {—Z.J
Ba 5

B"(r'}dr] 2}’1_(9.} s,
a, (1)

(1)

27)
preserves its zero value™ [7].

Later we will use integral (27) as a part of
transverse linearized system in which deriving
this state together with the other two to zero will
provide exponential orbital stability for the limit
cycles.

3.3 Control design

Designing the controller for underactuated
mechanical systems is a challenging control
problem, which needs fundamental nonlinear
approaches. For the case of periodic motions, the
problem consists on designing feedback control
that ensures orbital stability [7]. In this paper, a
virtual holonomic constraints approach is applied
for control of oscillations of the Pendubot. In the
next section it is shown that how we use a novel
analytical approach, called  transverse
linearization, for reducing the challenging
problem which we mentioned above, to the
simpler problem of designing the controller for
asymptotically stabilizing a linear time variant
system, that makes the nonlinear system
exponentially orbital stable.

3.3.1 Transverse Linearization
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In this section, the aim is to find a linear
approximation of non-linear dynamics which is
called transverse linearization. The main idea is to
construct the dynamics transverse to the orbit by
an appropriate change of coordinate system [3].
Then we can linearize these transverse dynamics
in a vicinity of the trajectory. The importance of
this method is that we can analytically derive the
coefficients of the linear time-periodic system (2-
28), in which asymptotic stability will ensure the
exponential orbital stability of limit cycles of non-
linear system.

5:A(t)5+B(t)vwith s=0y vy (2

First we change the coordinates of the system
to obtain a new set of coordinates which can be
written as:

% =4 4@ 9
wherei =1, 2, .. dim(g)-1

The aim of control design is to exponentially
drive these new coordinates together with the
integral defined above, to zero so that feedback
control action will enforce the defined constraint
to remain invariant. After differentiating these
new coordinates, we will find:

yi=d; - ¢'(0)6
(30)
Vio=d, [ (0)0% + ¢, (0)0] (31)

Now using this new set of coordinates, we

can derive the dynamics of the system in terms of

Yii Vi ¥:,0.0.0 and u, so we can rewrite the

dynamics as:
{9 =N, +g,u (32)
y=N,+S&U
in which
Ny, v,,0,6)%,(y,,y,,6.,6)
&y, v,.0.6)¢&,(y,,y,,0,6)

are functions and u is the signal that is used for
feedback transformation, and a proper choice of
this signal will lead us to the target that was input-
output linearization of non-linear dynamics:

1,.

u=—(y-N,) (33)
&

y=uv (34)

Substituting (34) in (33) and then (33) into
(32), we will find:

B = M, +E((v ~ N3)) = G(6,6,.5,v)

(35)

From this v« we can rewrite the equation of
new reduced order dynamics as:

9(6,6,3,3.v) = a(8)8,,, + B(8)6* + y(6)
(36)

Now considering the linearized dynamics for
the scalar I

I =g,1+9,y+0,y+0,0 (37)

with:
28 | _ 284
g =—Fly=0 . gy=—5 ly=0 ,
¥=0 ©oy=0
v=i v=0
(38)
26 3g 2085
9p = =5 =00 0y = =5 b=
Ty y=0
w=0 v=0

In (38) [8] & and ﬂ must be derived from
the equation of reduced dynamics (17).

The coefficients of the equation (28) will be
defined as:

g9, 9y, 0y
At)={0 0 1 (39)
0 0 O
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9,
B(t)=| 0 (40)
1

Now the challenging problem of obtaining
exponential orbital stability for the nonlinear
dynamics (17) has reduced to simpler problem of
asymptotically stabilizing the linear system of
transverse dynamics (28).

3.3.2 Designing the Controller

For aiming the asymptotic stability of the
transverse dynamics, the gain variant controller
[K1 K2 K3] was used, in which the gains were
defined as:

K, =ky, +k,0+k.0

f':z = .Il'll':l + kgzﬂ + lifzgg

Kz = kag + k320 + k330 (41)

The formula for the control law is defined as:
|

o = [Ks Ko K[y @
y

In equation (34), I, y and ydenote the

transverse coordinates of the system which we

showed how to compute them in the previous
section.

u

The goal of the feedback control is to drive
the transverse coordinates I, y and yof the linear
system asymptotically to zero, and this will ensure
the exponential orbital stability for the nonlinear
system. Aiming this, the gains of the controller are
obtained with an optimization process in which
the cost function (43) is defined as:

It

c =[lyl,| +t @
I,

In equation (43), I, yand y are the solution of
differential equation (28) in an arbitrary range of
time which is denoted by t (which is chosen as 10
seconds in simulations).

Another alternative for control design was to
use the transition matrix of this periodic motion.
The transition matrix can be obtained by solving
the differential equation of transverse linearized
system with the 3 by 3 identity matrix as the initial
condition in exactly one time period of the desired
periodic motion, so the matrix which contains the
last points of the solution is called fundamental
matrix. If the eigenvalues of this matrix are inside
the unit circle, it implies that the controller is
stabilizing with any initial condition. On this
basis, the second norm of the wvector of
eigenvalues of the fundamental matrix was used
as the cost function for the optimization process to
find the gains of the controller. Equation (44)
gives the mathematical expression for this
alternative cost function:

4
C=|4, (44)
PR

In this equation ﬂr, denotes i" eigenvalue of
the transition matrix.

4. SIMULATION
EXPERIMENTAL RESULTS

In this section, some of the results for three
types of typical motions of a Pendubot were
proposed. These motions are sorted as downward-
downward, downward-upward and upward-
upward motions for the first and second arms
respectively.

AND

On the basis of explanations presented in
previous section, first the constraint function was
chosen, which represents the geometrical relation
among the generalized coordinates of the
pendubot. These functions can be chosen
analytically in most of the cases. Here a linear
constraint function is applied in the form of:
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$=k(0—0,)+¢, (45)

In  equation (45), ¢0 and 90 are
equilibriums for the first and second link
respectively, and ¢ and 6 denotes the angel of the
first and the second link. Considering the
constraint function (45), we can plan different
trajectories for the Pendubot by choosing different
equilibriums and different values for parameter k,
which should be selected by considering the
sufficient condition for existence of periodic
solutions for the equation of reduced dynamics.
The figures below show the results of simulations
for three types of planned motions.

/ ‘\ AN ;/\\ “ﬂ.‘ noop
AR AR AR
1

(@ ®)
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w0z|
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Fig.4. Results of closed-loop simulations for
downward-downward motions with
#, =0,0, =0 and k=-2:(a) phase plot of the
motion of under-actuated link; (b) how the angle of
first link changes during a 10 second period of time;
(c) how the angle of second link changes during a 10
second period of time; (d), (e), (f) the states of
transverse linearized system are deriving to zero to
guarantee the orbital stability of limit cycles.

———
—
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(e) (d)

(e) [63]
Fig.5. Results of closed-loop simulations for
downward-upward motions with

¢, =0,0, = % and k=-1,7: (a) phase plot of the

motion of under-actuated link; (b) how the angle of
first link changes during a 10 second period of time;
(c) how the angle of second link changes during a 10
second period of time; (d), (e), (f) the states of
transverse linearized system are deriving to zero to
guarantee the orbital stability of limit cycles.
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Fig.6. Results of closed-loop simulations for upward-

upward motions with ¢ :%,90 :% and k=-0,5:
(a) phase plot of the motion of under-actuated link; (b)
how the angle of first link changes during a 10 second
period of time; (c) how the angle of second link
changes during a 10 second period of time; (d), (e), ()
the states of transverse linearized system are deriving
to zero to guarantee the orbital stability of limit cycles.

5. CONCLUSION

This paper introduced a novel virtual
holonomic constraint approach initially applied
for trajectory planning and control design for a
Pendubot. First the system was modeled using
Euler-Lagrange equations of motion and
unknown parameters of the model were identified
by a nonlinear least square method, using the real
data which were captured from the system. For
trajectory planning, a virtual geometrical relation
among the generalized coordinates of the first and
second link was defined and then the equation of
reduced dynamics was derived. Then the
sufficient condition for the existence of periodic
solutions for this equation was analyzed. In the
last step of trajectory planning part, the integral of
the motion was computed.

For the control design, a linear approximation
of nonlinear dynamics was computed via
transverse linearization, and using different
methods of optimization, we found the controllers
which made the transverse linearized system
asymptotically stable, and this guaranteed the
exponential orbital stability of limit cycles.
Results were presented, and approved the
precision of the performance of Pendubot motions
with this proposed method.
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Hoach dinh quy dao va diéu khién hé con
lac ngwoc Pendubot trng dung hwong tiep
can rang buéc Holonomic Ao

= Ho Pham Huy Anh
= Cao Van Kién

Trwdng Dai hoc Bach Khoa, PHQG-HCM, Viét Nam

TOM TAT

Bai b&o khdo sat hudéng tiép can rang
budc Holonomic Ao dung dé hoach dinh quy
dao va diéu khién hé con 3¢ nguoc kép
Pendubot. Muc tiéu nham tao ra cac dao
doéng déng bd & cd hai khép cda hé
Pendubot. Sau khi mé hinh hé con I¢ nguoc
bdng céc phuong trinh chuyén déng Euler-
Lagrange, ta dung ky thuat t6i wu dé nhan
dang céc thdng sé cda md hinh nay. Dua trén

mo hinh da dwoc nhan dang day dd, bai toan
hoach dinh quy dao va diéu khién quang hé
con l&c nguoc kép sé duwoc hoan tat thong
qua huéng tiép can rang budc Holonomic Ao.
Cot 18i ndm & wu thé cua kha néng téi théng
sé héa quy luat chuyén dong cida hé
Pendubot théng qua twong quan toa dé hinh
hoc ma hwéng tiép can Holonomic Ao co
duoc.

Ter khba: hé con 1c nguwoc kép Pendubot, hoach dinh quy dao va diéu khién hé Pendubot,
huéng tiép can Rang buéc Holonomic Ao, hé truyén dong underactuated 2 b4c tw do.
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