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ABSTRACT
In this paper, the virtual holonomic 

constraint approach is initiatively applied for 
the trajectory planning and control design of 
a typical double link underactuated 
mechanical system, called the Pendubot. The 
goal is to create synchronous oscillations of 
both links. After modeling the system using 
Euler-Lagrangian equations of motion, the 

parameters of the model are identified with 
optimization techniques. Using this model, 
the trajectory planning is done via Virtual 
Holonomic Constraint approach on the basis 
of re-parameterization of the motion 
according to geometrical relations among the 
generalized coordinates of the system. 
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1. INTRODUCTION   

The problem of trajectory planning and 
control of underactuated mechanical systems have 
attracted vast interest during last decades [1]. This 
underactuation can increase the performance of 
these systems in terms of dexterity and energy 
efficiency and also lowers the weight of the 
system as well as manufacturing costs. There are 
many instances of applications of underactuated 
mechanical systems in real life. Underwater 
vehicles, water machines, helicopters, mobile 
robots and underactuated robot arms are some 
examples of engineering applications of 
underactuated robotics. 

Defining a required motion, planning a 
proper trajectory to perform the required motion 
and designing a control system which performs 
the motion are three steps of problem formulation 

in both fully actuated and underactuated 
manipulators. However, in case of fully actuated 
manipulators, with considering the dynamical 
constraints regarding velocity and acceleration, 
any timing along the defined path can be 
achieved. But in case of robotic manipulators with 
passive degrees of freedom, due to existence of 
underactuated and unstable internal dynamics, 
which are characterized by unbounded solutions 
of the dynamical equations, the problem of 
trajectory planning and control design, are more 
complex and need fundamental nonlinear 
approaches to be solved. 

In this paper, the virtual holonomic constraint 
approach is used to solve the problem of trajectory 
planning and control design of a two link 
underactuated robot, namely the Pendubot. The 
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idea of virtual holonomic constraints which has its 
roots in analytical mechanics, is to re-
parameterizing the motions according to 
geometrical relations among the generalized 
coordinates [2], and then imposing those 
constraints with feedback control. Having the 
knowledge about the constraints, it is possible to 
analytically find a linear approximation of the 
nonlinear system, in which asymptotic stability 
implies exponential orbital stability of periodic 
motions. The approach is completely analytical 
and can be generalizable to systems with arbitrary 
degree of underactuation [3]. 

The rest of this paper is organized as follows. 
The second section is dedicated to explanation 
about modeling and identification of the Pendubot 
system, and it continues by solving the problem of 
trajectory planning and control design for the 
Pendubot. In the next section the results of 
implementing virtual holonomic constraint 
approach on a Pendubot are presented. Finally, in 
section 4, a conclusion for the whole work is 
given. 

2. MODELLING PENDUBOT 
The dynamics of the Pendubot are described 

using Euler-Lagrange equations. Aiming this, 
Lagrangian is defined as the difference of kinetic 
energy and potential energy of the system [4], 

)(),(),( qPqqKqqL     (1) 

With the definition above, the equations of 
motion for a controlled mechanical system with 
several degrees of freedom can be written as: 

 (2) 

In which qi is the vector of generalized 

coordinates and iq  is vector of generalized 

velocities and u is vector of independent control 
inputs and (B(q)u)i denote generalized forces. 

We can also describe the dynamics of the 
controlled system in terms of inertia matrix 
denoted by M(q) and the matrix of Coriolis and 
centrifugal forces denoted by ),( qqC   and the 

vector of gravitational forces G(q), using a second 
order differential equation: 

 (3) 

On the basis of equations of motion for a 
dynamical system, we can present a mathematical 
definition for fully-actuated and underactuated 
mechanical systems which says: 

Assuming that the matrix B(q) has full rank, 
If the dimension of the vector of independent 
control inputs, u, is smaller than dimension of 
vector of generalized coordinates, the system is 
underactuated and if they have the same 
dimension, the system is fully actuated. 

Pendubot is a planar two link robot, in which 
first link is actuated with a DC motor that is 
equipped with a Harmonic drive, and the second 
link is passive. So in this robot we have the 
simplest case of underactuation which is of degree 
one. A picture of the Pendubot is depicted in 
Figure 1: 

 q1 

 q2 

 
Fig.1. The picture of the Pendubot [5], first link is 

actuated and second link is passive 
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Considering 1q  and 2q and 

following the equation (3), the dynamics of the 
Pendubot can be modelled as: 

   (4) 

with 

(5-7) 

Using this model, and after identifying the 
parameters of the model, the motion planning and 
control design of the Pendubot will be concerned. 

3. PROPOSED VIRTUAL HOLONOMIC 
CONSTRAINTS METHOD FOR 
PENDUBOT 
3.1 System Identification 

The parameters p1 to p5 that were used in 
previous section are defined as: 

                (8 – 12) 

in which m1 and m2 denote the mass of first 
and second link, r1 and r2 represent the distance to 
the center of mass for the first and second link 
respectively, l1 and l2 denote the length of first link 
and second link, JC1 and JC2 denote the inertia o 
the first link and second link and g denotes 
gravitational constant. On the basis of the physical 
measurements over the system, some of the values 

of the physical parameters of the Pendubot setup 
were known. These values are shown in Table 1. 

Table 1: Known Parameters of the investigated 
Pendubot [6] 

 
Besides the known physical parameters of the 

setup which were given in Table 1, it was also 
required to identify inertia of the first link JC1, 
where a Harmonic drive is attached to the DC 
motor, and this Harmonic drive produces 
considerable friction which should be modelled, 
identified, and compensated with the controller. 

Here we consider the Coulomb friction and 
viscous friction present in the actuated link that 
can be expressed by the following equation: 

     (13) 

For identification of the friction, the second 
link was disconnected from the setup, and the 
remaining one link Pendulum was modelled with 
the following equation: 

     (14) 

In equation (14), JC1 denotes the inertia of the 
link, b is the coefficient of viscous friction, cn and 
cp are the coefficients of Coulomb friction, KDC is 
the torque constant of the DC motor (which is 
equipped with a Harmonic drive), q is the angular 
position of the link and u is the input signal. 

The system is identified in closed-loop 
scheme where a proportional gain controller with 
the gain Kp = 6 is used and the link is tracking a 
reference signal that is shown in Figure 2. The 
signal u is defined as: 
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  (15) 

 
Fig.2: Reference signal used for identification in 

closed-loop 

 
Fig.3: A map of the viscous and Coulomb 

friction for the actuated link 

After capturing data from the system, the 
nonlinear least squares method is applied for 
identifying the parameters JC1, b, cn , cp and KDC 
that are shown in Table 2. 

 

 

 

 

 

Table 2: Identified values of the model 
parameters 

 
Figure 3 shows the mapped friction for the 

actuated link. 

Validating data that was captured from the 
real system showed the precision of the estimated 
parameters. 

3.2 Pendubot Motion Planning via Virtual 
Holonomic Constraint 

For planning the desired motion for the 
system, virtual holonomic constraint approach is 
applied. The idea is to define some geometrical 
relations among the generalized coordinates of the 
system, and imposing those relations with 
feedback control. The term virtual is derived of 
the fact that these constraints are not physically 
present in the system and they are reproduced by 
means of feedback action. Defining constraint 
function )( , we can express generalized 

coordinates of the system as functions of θ: 

  
(16) 

On the basis of analytical mechanics, we can 
reduce the number of differential equations of 
Euler-Lagrange system (2) by substituting (16) in 
underactuated equation of motion (4) to obtain 
reduced-order dynamics of the system (2) in the 
form of the following second order differential 
equation: 

        (17) 
For deriving )( * , )( * , )( * , one can 

define )(  and its first and second derivatives 

as: 
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)(iiq  ,  (18) 

  )(' iiq  ,  (19) 

  )(')('' 2
iiiq  , (20) 

By substituting (18) to (20) into controlled 
Lagrangian system (21): 

    (21) 

Assuming that the control law makes (18) 
invariant and the initial conditions are consistent 
with (18) and (19), the dynamics in the reduced 
form can be rewritten as (22): 

     (22) 
Then )( , )( , )(  now can be written 

as, 

             (23-25) 

In which B  is a function with
0)()(  uqBqB . So the derivation of (17) is 

finished [7]. 

For checking the existence of periodic 
solutions for the equation of reduced dynamics 
(17), there is a sufficient condition. To check this 
condition, one needs to compute the equilibrium 
points of (17), which are given by solutions of 

0)( e , and the following number:  

                (26) 

If   is positive then the equilibrium of (17) 
is a center and if   is negative, then the 
equilibrium is a saddle. So if   is greater than 
zero, then there are periodic solutions for the 
equation of reduced dynamics.  

Last step in motion planning via virtual 
holonomic constraint, is computing the integral of 
reduced dynamics (17) which is always 
integrable, provided )( * i is not zero. 

Theorem1: Suppose that the function )(  

has only isolated zeros. If the solution 
)](),([ tt   of (17) with initial conditions

00 )0(,)0(    exists and is continuously 

differentiable, then along this solution the 
function: 

           
(27) 

preserves its zero value” [7]. 

Later we will use integral (27) as a part of 
transverse linearized system in which deriving 
this state together with the other two to zero will 
provide exponential orbital stability for the limit 
cycles. 

3.3 Control design 
Designing the controller for underactuated 

mechanical systems is a challenging control 
problem, which needs fundamental nonlinear 
approaches. For the case of periodic motions, the 
problem consists on designing feedback control 
that ensures orbital stability [7]. In this paper, a 
virtual holonomic constraints approach is applied 
for control of oscillations of the Pendubot. In the 
next section it is shown that how we use a novel 
analytical approach, called transverse 
linearization, for reducing the challenging 
problem which we mentioned above, to the 
simpler problem of designing the controller for 
asymptotically stabilizing a linear time variant 
system, that makes the nonlinear system 
exponentially orbital stable. 

3.3.1 Transverse Linearization 
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In this section, the aim is to find a linear 
approximation of non-linear dynamics which is 
called transverse linearization. The main idea is to 
construct the dynamics transverse to the orbit by 
an appropriate change of coordinate system [3]. 
Then we can linearize these transverse dynamics 
in a vicinity of the trajectory. The importance of 
this method is that we can analytically derive the 
coefficients of the linear time-periodic system (2-
28), in which asymptotic stability will ensure the 
exponential orbital stability of limit cycles of non-
linear system. 

)()( tBtA  with  TyyI ,,    (28) 

First we change the coordinates of the system 
to obtain a new set of coordinates which can be 
written as: 

)(iii qy 
  (29) 

where i = 1, 2, .. dim(q)-1 

The aim of control design is to exponentially 
drive these new coordinates together with the 
integral defined above, to zero so that feedback 
control action will enforce the defined constraint 
to remain invariant. After differentiating these 
new coordinates, we will find: 

  )(' iii qy                 
(30) 

])(')(''[ 2   iiii qy       (31) 

Now using this new set of coordinates, we 
can derive the dynamics of the system in terms of 

  ,,,,, iii yyy  and u, so we can rewrite the 
dynamics as: 








'22

11

uy
u







   (32) 

in which 

  ,,,,11   iyy  ,,,,12   iyy

 ,,,,11   iyy    ,,,12 iyy   

are functions and u is the signal that is used for 
feedback transformation, and a proper choice of 
this signal will lead us to the target that was input-
output linearization of non-linear dynamics: 

 2
2

1
 yu 


 (33) 

y  (34)    

Substituting (34) in (33) and then (33) into 
(32), we will find: 

     (35) 

From this new we can rewrite the equation of 
new reduced order dynamics as: 

     (36) 

Now considering the linearized dynamics for 
the scalar I: 

gygygIgI yyI  
               (37) 

with: 

 
(38) 

 

In (38) [8]  and   must be derived from 
the equation of reduced dynamics (17). 

The coefficients of the equation (28) will be 
defined as: 


















000
100)(

yyI ggg
tA



  (39) 
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
















1
0)(
g

tB    (40) 

Now the challenging problem of obtaining 
exponential orbital stability for the nonlinear 
dynamics (17) has reduced to simpler problem of 
asymptotically stabilizing the linear system of 
transverse dynamics (28). 

3.3.2 Designing the Controller 
For aiming the asymptotic stability of the 

transverse dynamics, the gain variant controller 
[K1 K2 K3] was used, in which the gains were 
defined as: 

  (41) 

The formula for the control law is defined as: 

 

















y
y
I

KKKu control



*321  (42) 

In equation (34), I, y and ydenote the 
transverse coordinates of the system which we 
showed how to compute them in the previous 
section. 

The goal of the feedback control is to drive 
the transverse coordinates I, y and yof the linear 
system asymptotically to zero, and this will ensure 
the exponential orbital stability for the nonlinear 
system. Aiming this, the gains of the controller are 
obtained with an optimization process in which 
the cost function (43) is defined as: 

2

22

2

2

t
y
y
I

C 


   (43) 

In equation (43), I, y and y  are the solution of 
differential equation (28) in an arbitrary range of 
time which is denoted by t (which is chosen as 10 
seconds in simulations). 

Another alternative for control design was to 
use the transition matrix of this periodic motion. 
The transition matrix can be obtained by solving 
the differential equation of transverse linearized 
system with the 3 by 3 identity matrix as the initial 
condition in exactly one time period of the desired 
periodic motion, so the matrix which contains the 
last points of the solution is called fundamental 
matrix. If the eigenvalues of this matrix are inside 
the unit circle, it implies that the controller is 
stabilizing with any initial condition. On this 
basis, the second norm of the vector of 
eigenvalues of the fundamental matrix was used 
as the cost function for the optimization process to 
find the gains of the controller. Equation (44) 
gives the mathematical expression for this 
alternative cost function: 

23

2

1





C     (44) 

In this equation i denotes ith eigenvalue of 
the transition matrix. 

4. SIMULATION AND 
EXPERIMENTAL RESULTS 

In this section, some of the results for three 
types of typical motions of a Pendubot were 
proposed. These motions are sorted as downward-
downward, downward-upward and upward-
upward motions for the first and second arms 
respectively. 

On the basis of explanations presented in 
previous section, first the constraint function was 
chosen, which represents the geometrical relation 
among the generalized coordinates of the 
pendubot. These functions can be chosen 
analytically in most of the cases. Here a linear 
constraint function is applied in the form of: 
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  00  k     (45) 

In equation (45), 0  and 0  are 
equilibriums for the first and second link 
respectively, and   and  denotes the angel of the 
first and the second link. Considering the 
constraint function (45), we can plan different 
trajectories for the Pendubot by choosing different 
equilibriums and different values for parameter k, 
which should be selected by considering the 
sufficient condition for existence of periodic 
solutions for the equation of reduced dynamics. 
The figures below show the results of simulations 
for three types of planned motions. 

 

 
Fig.4. Results of closed-loop simulations for 

downward-downward motions with 
and0,0 00   k = -2: (a) phase plot of the 

motion of under-actuated link; (b) how the angle of 
first link changes during a 10 second period of time; 
(c) how the angle of second link changes during a 10 

second period of time; (d), (e), (f) the states of 
transverse linearized system are deriving to zero to 

guarantee the orbital stability of limit cycles. 
 

 

 

 
Fig.5. Results of closed-loop simulations for 

downward-upward motions with 

and
2

,0 00
  k = -1,7: (a) phase plot of the 

motion of under-actuated link; (b) how the angle of 
first link changes during a 10 second period of time; 
(c) how the angle of second link changes during a 10 

second period of time; (d), (e), (f) the states of 
transverse linearized system are deriving to zero to 

guarantee the orbital stability of limit cycles. 
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Fig.6. Results of closed-loop simulations for upward-

upward motions with and
2

,
2 00

  k = -0,5: 

(a) phase plot of the motion of under-actuated link; (b) 
how the angle of first link changes during a 10 second 

period of time; (c) how the angle of second link 
changes during a 10 second period of time; (d), (e), (f) 
the states of transverse linearized system are deriving 

to zero to guarantee the orbital stability of limit cycles. 

 

 

5. CONCLUSION 
This paper introduced a novel virtual 

holonomic constraint approach initially applied 
for trajectory planning and control design for a 
Pendubot. First the system was modeled using 
Euler-Lagrange equations of motion and 
unknown parameters of the model were identified 
by a nonlinear least square method, using the real 
data which were captured from the system. For 
trajectory planning, a virtual geometrical relation 
among the generalized coordinates of the first and 
second link was defined and then the equation of 
reduced dynamics was derived. Then the 
sufficient condition for the existence of periodic 
solutions for this equation was analyzed. In the 
last step of trajectory planning part, the integral of 
the motion was computed.  

For the control design, a linear approximation 
of nonlinear dynamics was computed via 
transverse linearization, and using different 
methods of optimization, we found the controllers 
which made the transverse linearized system 
asymptotically stable, and this guaranteed the 
exponential orbital stability of limit cycles. 
Results were presented, and approved the 
precision of the performance of Pendubot motions 
with this proposed method. 
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Hoạch định quỹ đạo và điều khiển hệ con 
lắc ngược Pendubot ứng dụng hướng tiếp 
cận ràng buộc Holonomic Ảo 
 Hồ Phạm Huy Ánh 
 Cao Văn Kiên 

Trường Đại học Bách Khoa, ĐHQG-HCM, Việt Nam 
 

TÓM TẮT 
Bài báo khảo sát hướng tiếp cận ràng 

buộc Holonomic Ảo dùng để hoạch định quỹ 
đạo và điều khiển hệ con lắc ngược kép 
Pendubot. Mục tiêu nhằm tạo ra các dao 
động đồng bộ ở cả hai khớp của hệ 
Pendubot. Sau khi mô hình hệ con lắc ngược 
bằng các phương trình chuyển động Euler-
Lagrange, ta dùng kỹ thuật tối ưu để nhận 
dạng các thông số của mô hình này. Dựa trên 

mô hình đã được nhận dạng đầy đủ, bài toán 
hoạch định quỹ đạo và điều khiển quăng hệ 
con lắc ngược kép sẽ được hoàn tất thông 
qua hướng tiếp cận ràng buộc Holonomic Ảo. 
Cốt lõi nằm ở ưu thế của khả năng tái thông 
số hóa quy luật chuyển động của hệ 
Pendubot thông qua tương quan tọa độ hình 
học mà hướng tiếp cận Holonomic Ảo có 
được.

Từ khóa: hệ con lắc ngược kép Pendubot, hoạch định quỹ đạo và điều khiển hệ Pendubot, 
hướng tiếp cận Ràng buộc Holonomic Ảo, hệ truyền động underactuated 2 bậc tự do. 
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