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ASTRACT
In this paper we establish characterizations of
the containment of the set

{xeX: xeC,g(x) e—K}{xe X: f(x)=0},

where C is a closed convex subset of a locally
convex Hausdorff topological vector space, X, K is
a closed convex cone in another locally convex
Hausdorff ~ topological  vector space and
g:X =Y isa K- convex mapping, in a reverse
convex set, define by the proper, lower semi-
continuous, convex function. Here, no constraint
qualification condition or qualification condition

are assumed. The characterizations are often
called asymptotic Farkas-type results. The second
part of the paper was devoted to variant
Asymptotic Farkas-type results where the mapping
is a convex mapping with respect to an extended
sublinear function. It is also shown that under
some closedness conditions, these asymptotic
Farkas lemmas go back to non-asymptotic Farkas
lemmas or stable Farkas lemmas established
recently in the literature. The results can be used
to study the optimization

Keywords: Farkas lemma, sequential Farkas lemma, limit inferior, limit superior

INTRODUCTION AND PRELIMINARIES

Farkas-type results have been used as one of the
main tools in the theory of optimization [8]. Typical
Farkas lemma for cone-convex  systems
characterizes the containment of the set where is a
closed convex subset of a locally convex Hausdorff
topological vector space (brieftly, IcHtvs), is a
closed convex cone in another IcHtvs and is a -
convex mapping, in a reverse convex set, define by
the proper, lower semi-continuous, convex function.
If the characterization holds under some constraint
qualification condition or qualification condition
then it is called non-asymptotic Farkas-type result
(see [6], [10-12]). Otherwise (i.e., without any
qualification condition), such characterizations
often hold in the limit forms and they are called
asymptotic Farkas-type results (see [7, 5, 9, 13] and
references therein). In this paper, we mainly
established several forms of asymptotic Farkas-type

results for convex systems in the two means:
systems convex with respect to a convex cone
(called -convex systems) and systems convex w.r.t.
an extended sublinear function s (called S -convex
systems). The results can be used to establish the
optimality conditions and dulaity for optimization
problems where constraint qualification conditions
failed, such as classes of semidefinite programs, or
scalarized multi-objective programs, scalarized
vector optimization problems. We shoned also that
under some closedness conditions, these asymptotic
Farkas lemmas came back to non-asymptotic Farkas
lemmas or stable Farkas lemmas established
recently in the literature.

Let X and Y be IcHtvs, with their topological
dual spaces X* and Y', respectively. The only
topology we consider on X*, Y™ is the weak* -
topology. For a set Ac X", the closure of A w.r.t.
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the weak "-topology is denoted byclA. The
indicator function of A is denoted by i,, ie,
i,(x)=0 if xeAi,(x)=+0 if xeX\ALet
f:X > R U {to}. The effective domain of f is
the set domf:={xeX: f(x)<+oo}. The
function f is proper if dom f =& . The set of all
proper, lower semi-continuous (Isc in short) and
convex functions on X will be denoted by 77(X).
The epigraph of f is
epi f = {(x,a)eX X R: f(x) < a}

The Legendre-Fenchel conjugate of f is the
function f* :X* — R:= R U {4} defined by

f (x)=s;u§){<x X)=f (X)), WX e X"

It is clear that for any x" e X" and X € X, the
Young-Fenchel inequality always holds:

(X)) > (X, X) - f(X).

Moreover, for any L €R one has
(=B )=1T0)+5 foranl x e X"

Now let K be a closed convex cone in Y and
let <, be the partial order on Y generated by K,
ie, y<y, if andonly if y,—y ek

We add to Y a greatest element with respect to
<., denoted by oo, , which does not belong to Y,
and let Y* =Y U{eo, }.

Then one has Y <k % foreveryy Y. yy,
assume by convention: Y+ %% T+ YT % for
all Y and ®« T if 4>0. The dual
cone of K, denoted by K* is defined by
K :={y"eY":(y,y)=0, VyeK} A mapping
h: X —Y* iscalled K -convex if

X% € X, 4,16 >0, gg+ 14, =1
= h(uaX + 16%,) < 140(x) + £60(%,),

where " <, " is the binary relation (generated by
K') extended to Y* by setting y <, oo, forall y eY".
The domain of h, denoted by domh, is defined to
be the set domh:={x e X: h(x) eY}.

The K -epigraph  of h is the set
epich={(x,y) e X xY: yeh(x)+K}.

space. Then, h™(—K) is closed (see [6]). It is worth
observing that if h is K -convex, then h™(-K) is
Moreover, for any

CONVex. y'eY" and

g: X —Y*, we define the composite function
y*og:X —= R U{+x}as follows

(V*og)(x):{w’g(x»’ ff xedomyg,

+00, else.
The function S:Y - R U{4+x} is called
(extended) sublinear if
S(y+Y) <S(y)+S(y).
and S(1y) = AS(y), WY,y €Y, VA>0
By convention, we set S(0,)=0 (this

convention is appropriate to the assumption that s
is Isc). Such a function S can be extended to Y* by
setting S(eo,) = +oo. An extended sublinear function
S:Y - R U{+w} allows us to introduce in Y* a
binary relation which is reflexive and transitive:

y1 Ss yZ if y1 SK yzl

where K ={yeY :S(-y)<0}

and y <, oo, forall yeY*. We consider also
the extension of Sas S:Y*—> R U {+x} By setting
S(oog) =+ -

Given an extended sublinear function S:Y —
R U {40} , we adapt the notion s —convex

( i.e., convex with respect to a sublinear
function) in [6] which generalized the one in [16].

It is clear that h is K -convex if and only if
epich is convex. In addition, h: X —Y* is said to
be K-epi closed if epich is a closed set in the
product A mapping h:X —Y"is said to be
S —convex if for all
X, % € X, a4, 44, >0, 44+ 41, =1, one has

h(eax + 16%) <5 140(%) + £60(%)-

It is worth observing that, as mentioned in [15,
Remark 1.10], " S — convex means different things

under different circumstances" such as, when

Y =R, if S(y)=lyl, S(y)=y, S(y):=y or
S(y) =0, respectively, then "s -convex" means

Trang 161



Science & Technology Development, Vol 19, No.T6-2016

"affine”, "convex", "concave" or
respectively.

Moreover, the equalities hold whenever one of the
nets is convergent.

"arbitrary",

It is clear that if N is S -convex then N is K -
convex with K:={yeY :S(-y)<0}. Conversely,
if N is K -convex with some convex cone K then
h'is S —convex with S =i, (see [6]).

Definition 1.1 [2, p.5] [1, p.32], [14, p.217]
Let (a),., be a net of extended real numbers
defined on a directed set (I,>) e define limit
inferior of the net (a),_, as follows

liminf g =liminfa; = supinf g,

iel iel j?i iel j?2i
Similarly, limit superior of the net (a)._, is
defined by

limsupa, = limsupa, =infsupa;.

iel iel  j? iel j?i

iel

We say that @)es converges to a € R denoted
by lima=a or g —a, if for any £>0, there
exist§ o €1 suchthat 13721<¢ forali » 4,

The following properties were given in [2, p.9]
and [14, p.221].

Lemma 1.1 Let (a)_ and (b)_, be nets of
extended real numbers. Then the following

statements hold:
(i)
limsup(—a) =—liminf & and limsupa > liminf &,

iel iel iel iel

(if) lima =ae; ifandonlyif
iel
liminf g =limsupa = a
iel iel

(iii) If 3 <Bb forall i, then
liminfa <liminf I and limsupa <limsupb.

iel iel iel iel
liminf (g +b) > liminf g, + liminfh,
| .

iel ie iel

and limsup(a +b) <limsupa, + limsuph,
iel iel iel

provide that the right side of the inequalities are

defined.

Approximate Farkas lemma for

systems

cone-convex

In this section we will establish one of the
main result of this paper: the asymptotic version of
Farkas lemma for convex systems, which holds
without any qualification condition.

Let X, Y IcHtvs, K be a closed convex
cone in Y, C be a nonempty closed convex
subset of X and f: X = R U {4} be a proper
Isc and convex function. Let further g: X —>Y*
be a K-convex and K -epi closed mapping. Let
A:=Cng'(-K) and assume that
domf)nA+D.

Theorem 2.1 [Asymptotic Farkas lemma 1]
The following statements are equivalent:
(IxeC, g e-K= f(x)=0,

(ii) there exist nets (y)_ K" and
(x5 %55, %55, €1) ier € X* X X* x X* x Rsuch
such that

&2 170g) + (¥, 09) 0G) +1c06), Viel

and (; + % + %5, 6) > (0,., 0),

(iii) there exist nets (y)),., « K and
(xi,&)ier © X* X R such that

&> (f+y og+i)(x) Viel

and

(X.5) = (0,..0)

(iv) there exists a net (y)),_, = K" such that
f(x)+ Iirrileilnf(yi*og)(x) >0, VxeC.

Proof. [(i) < (ii)] Assume that (i) holds. Observe

firstly that A is closed and convex. Secondly, (i) is
equivalent to

0= (f +i,)0,.),
or equivalently, ©,.,0)  epi(f +i,)"

Since we also have [4, p. 328]

epi(f +iy) = cl(epi f e+ Uepi(;tg)*+epii;}
2ekt
and so, (i) is equivalent to

0.0 ecl (epi f + Uepi(Ag) + epii;}
Aekt
and the equivalence between (i) and (ii) follows.
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[(ii) = (iii)] Assume that (ii) holds, i.e., there
exist nets (y)),., c K" and
(x5 %55, %55, €) ier € X x X* x X* x Rsuch
that & > £°0¢) + (¥, 00Y (6) +ic(%), Viel,(2.1)
and  (x; + X%, +%;,8) = (0., 0). (2.2)

By the definition of the conjugate function, (2.1)
implies that

&2 (% +%,+%, X —(f+y 0g+i)(X), VxeX,Viel.

Set X =X +X,+%; for all iel. Then the above
inequality gives rise to

> (f+y og+i)(X), Viel
and (2.2) becomes (x, &) — (0, ., 0).

[(iii) = (iv)] Assume that (iii) holds, i.e.,
there exist nets (y),, = K*
X* xR such that

&2 (f +y 0g+i)(X), Viel

and (x,€;)ier ©

iel

and
(X,5) —>(0,.,0).

Again by the definition of the conjugate function,
one has

&2, %) —(f+y og+i)(¥), VxeX, Viel,
or equivalently,

fX)+(y, 09)(X) =(X,X)—¢, VxeC,Viel,
(which still holds even in case xgdom f and
X ¢ dom g).

Taking liminf in both sides of the last
inequality, we get (iv).
[(iv) = (i)] Assume that (iv) holds, i.e., there exists

anet (y),, < K" such that

f(X) + Iiminf(yi*og)(x) >0, VxeC.

Observe Iethat if xeC suchthat g(x) e—K, then
(Yog)x)<0 for all iel. Thus, for
x € C such that g(x) € —K, one gets

fO)=>fF()+ Iimilnf(y.,* 0g)(x) = 0.

The proof is cor;plete.

Remark 2.1 The equivalence [(i) < (iv)] was

established in [5] involved the space Y (instead of
Y*), under the assumption that y“og e 7°(X) for

all y"e K", which is much stronger the S -epi
closedness of g used in Theorem 2.1.

We now set
D:=epi f"+ U epi(y 0g) +epii. and
y*eKJr
F:= Uepi(f +y og+i)-
yek™

From the proof of Theorem 2.1, we get

Corollary 2.1 [Farkas lemma for cone-convex
systems] Consider the following conditions:

(OX*,O) eclD = (OX*,O) eD, (2.3)

(OX*, O)eclF = (OX*,O) eF, (2.4)
and the following statements:
xeC,g¥)e-K = f(x=0,
(v) there exist y e K*, x e X" and x; € X" such
that

70 +ic(6) + (Y 09) (=X —%,) <0,
(vi) there exists y" e K* such that

f()+(y 0g)(x) =0, ¥xeC.
Then one has:

(a) (2.3) is equivalent to [(i) < (V)],

(b) (2.4) is equivalent to [(i) <> (vi)].

Proof. As in the proof of Theorem 2.1, one has (i) is
equivalent to (OX*, 0) ecID.

Moreover, it is easy to check that (v) is equivalent
to (OX*,O) e D. Thus we get (a).

As shown in the proof of Theorem 2.1, (i) is
equivalentto (0 .,0) e epi(f +i,)"
As epi(f +i,) =cIF (see [3, Theorem 8.2]) we
have (i) is equivalent to (OX*,O) e clF. Moreover, it
is clear that (vi) is equivalent to (OX*, 0)eF.
Therefore, one also gets (b). The proof is complete.
Corollary 2.1 [Farkas lemma for cone-convex
systems] Consider the following conditions:
(OX*,O)ecID = (OX*,O)eD, (2.3
(OX*,O)ecIF = (OX*,O)eF, (2.4)

and the following statements:
(xeC,gX¥)e-K = f(x)=0,
(v) there exist y e K*, x e X and x, e X~ such
that
700 +100) + (¥ 09) (- —x) <0,
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(vi) there exists y" e K* such that
f()+(y 0g)(x) =0, vxeC.

Then one has:
(a) (2.3) is equivalent to [(i) < (V)],
(b) (2.4) is equivalent to [(i) < (vi)].

Proof. As in the proof of Theorem 2.1, one has (i) is
equivalent to (OX*, 0) eclID.

Moreover, it is easy to check that (v) is equivalent
to (OX*, 0) e D. Thus we get (a).

As shown in the proof of Theorem 2.1, (i) is
equivalentto (0 .,0) e epi(f +i,)"

As epi(f +i,) =cIF (see [3, Theorem 8.2]) we
have (i) is equivalent to (OX*,O) e clF. Moreover, it

is clear that (vi) is equivalent to (OX*,O) eF.
Therefore, one also gets (b). The proof is complete.

Corollary 2.2 [Stable Farkas lemma for cone-
convex systems] Consider the following conditions:

epi f*+ | epi(y og) +epii." is weak -closed
y'eK™
in X" €ER(25)

U epi(f +y og +i.) is weak”-closed in X"xj .
ekt
(2.6)

Then we have
(c) (2.5) holds if and only if for any x" e X* and
any f € R,

(xeC,g() e—K=f()-(X,x)2 A

c

@y eK',x e X" and X, € X" such that

00 +06) + (Y 00y (X =X ~ %) <-4).
(d) (2.6) holds if and only if for any x" e X" and
anyf € R,

(xeC, g e-K = f(x)—(X,x)> )
c

Iy e K : (%) —<x*, x> +(y 0g)(x) > B, VxeC.
Proof. The proof is similar to that of Theorem 2.1.

Remark 2.2 It is worth noting that (d) was given in
[6]. Moreover, if we replace (2.5) by
epi(f +i,) =epi f"+ |Jepi(y og) +epii,, and

y'eKJr

(2.6) by epi(f +i,) = |Jepi(f +y og+i.)" where
y*eK+
A:=C g '(-K), then the conclusion of Corollary

2.2 still holds, and the assumptions on the
closedness and the convexity of C, f, and g can

be removed.

Asymptotic Farkas lemma for sublinear-convex
systems

Let X, Y be IcHtvs, C be a nonempty closed
convex subset of X, S:Y — R U {+o0} be an Isc

sublinear functionand g: X —Y* bean S -convex
mapping such that the set
{0, y, ) EXXYXR:S(gx) —y) <A} (3.1)
is closed in the product space X x Y x R. Let us
consider f:X - RU {+w} and y: R - R U {4}
be proper convex Isc functions.
We now establish an asymptotic Farkas lemma
for systems that are convex w.r.t. the sublinear
function S:Y - R U {4},

Theorem 3.1  [Asymptotic Farkas lemma 2]
Assume that the following condition holds:
(domf){xeC:Jax edomy st (Sog)(X) <a}= <.

3.2
gI'heal the following statements are equivalent:
(@ xeC,aei,Sog)¥N<a= f(X)+w(x)=0
(b) there exist nets (y/,7)ie €Y xR, and
(x5, %5 %30 €) ier € XX X" x X* x R x R such
with v <xS onY forall i el such that
&2 170g) + (¥, 09) 06) +ic0G) +y (3 +7), Viel
and
(6 +%, +,7,8) = (0,.,0,0),
(c) there exist nets (y/,¥) i €Y xR, and
(X mo€) i € X XR xR with y' <xS onY
forall i1 such that
g2 (f+y og+ity () +w (3 +7), Viel (33)
and (X,7,&) —> (OX*, 0,0). 3.4
Proof. Let usset Y=Y xR, Y =Y" x
R,C=CxR andsetS:¥ - R U {+00} defined
by 8(y,2)=S(y)—4 forall (y,a) €Y Then C is
nonempty closed convex subset of X x R, S is an
Isc sublinear function. Let also X:=XxR
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Gg=Xx7 and f:X > RU {+o0} be mappings
defined by
gx,a):= (g(x), @), Ve X

and f(x,a) = f(x) + Y(x),V(x,a) € X

[(@) = (b)] Assume that (a) holds. Since f, y are
proper Isc, convex functions, so is f.Moreover, g
is § -convex as g is S -convex. Now let K be the
closed convex cone defined by
R:={(y,)eV:8y,-4)<0}. Then, § is K-
convex as well. The assumption (3.1) ensures that
g is K-epi closed while (3.2) guarantees
dom F)~ENG (R) £

We now try to apply Theorem 2.1 with X, ¥, €,
§ T.and K playing the roles of X, Y, C, g,
f,and K, respectively.

From (a) and the definition of ¥, §, €, K, we
have

xa)e€ gxa)=(@K),a)e-R = F(xa)=0,

which shows that (i) in Theorem 2.1 holds, and
hence, there exist nets ($© <R’ and

(x5, X, &) ier € X" X X" x X* x R such that

&= ¥ (&P (P65 &+ (%% viel. (35)
and

(%o %0 o) - (0,.,0). (3.6)

Sincer X =X"x;, there exist such
(X0 X %0 05, B Oy XX XX X x
such that (%R, = 06, )., (&R, = 06, A and
(&%, = (x,,3),.,. Thisand (3.6) imply that

X+ X + X —0.. and o +B+38—0.
3.7)
Moreover, since (%0, c K, by Lemma 3.5 in
[6], there exists a net (y;,¥;) s €Y  x R such
that e (.- 7 =0 and
y,<ySonY forall iel.

By the definition of the conjugate function, for any
iel,onehas ([17, p.76])

T ¢, a) = £0¢) +v' (@),
(3.8)

(P85, 4) = sup {060+ A= (5 09+ rir}

xeX,aej

= sup {06, 0 — (¥ 09)()} +sup {(4 + 1)z}

acj

_ {(y;‘og)(x;o it 5=-7,

+00 otherwise,
(3.9)
and
F063)= sup {06 %)+ S —ic(0)}
= sup {060 109} +sup{Ser
_ [ it 4=0,
+00 otherwise.
(3.10)

Combining (3.5), (3.8), (3.9), and (3.10) we get
(note that & e; forall icl):

&2 1704) +(y; 09) () +i(5) + (cr)
and B =-y4,6=0 for all iel, which together
with (3.7) gives

a+p+6=a—-y—0.
Set n:=a —y forall icl. Then  —0 and the
last inequality becomes
&= £70)+ (¥ 09y (5) +ic06) +v/ (3 + ), Viel.
Thus (b) is satisfied.
[(b) = (c)] The same as the proof of [(ii) = (iii)]
in Theorem 2.1.
[(c) = (a)] Assume that (c) holds, i.e., there exist
nets

Wi v) e €Y xR

and (x;,m;, &) e € X X R X R with y"<#S on
Y for all iel such that (3.3) and (3.4) hold. It
follows from (3.3 that
&2 000 —(F +y, 09)(X) + (7 + R)a —w(e),
V(x,a)eCxj, Viel,
or equivalently,
fO)+w(@) +(y; 09)(X) 2 (X, X —& +7a + e,

V(x,a)eCxj, Viel (3.11)
(which still holds even in case
xgdom g and « ¢ domy ).

X ¢ dom f,
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Since y,<yS on Y forall iel, if xec and
aej such  that (So0g)(¥) <a, then
(Y, 09)(X) < %(S09)(X) <y forall ie1 (note that
y,>0 forall iel). So, forany xeC and a e
with (Sog)(x) <, (3.11) gives
fX)+y(@+yra=(X,0—¢g+na+ya, Viel,
which means that if xeC and ae; with
(Sog)(X) < e, one has

fX)+w(@) > (X, X)—¢+na, Viel.

Passing to the limit both sides of the last
inequality and taking the fact that (3.4) into
account, we get (a). The proof is complete.

Theorem 3.2 [Asymptotic Farkas lemma 3]
Assume that (3.2) holds. Then the following
statements are equivalent:

(@)

xeC,aeji, Sog)¥<a = fX¥W+w(x)=0

(d) there exists a net (y,,7,7)., <Y xj ,xj with
y,<xS on Y for all iel such that 7 —0,
(1, + 7% < domy” and

f(x)+ liminf((y; 09)(x) =y (3, + %)) =0, ¥xeC.

(3.12)
Proof. [(a) = (d)] Assume that (a) holds. It follows

from Theorem 3.1 that (c) holds. i.e., there exist
nets (A =22 and
(X, 7,8) = X xj xj with yy<xS onY forall
i e 1 and such that

&2 (f+y og+i) (X)+y @ +7), Viel,
(3.13)
[(c)=(a)] Assume that (c) holds, i.e., there

exist nets (Y, , 7 )i Y X _ and

(% 7% &) © X X x| with Y; <%S on
Y for all iel such that (3.3) and (3.4) hold. It
follows from (3.3) that and
X.7.&) = (0 .,0,0). (3.14)

By the definition of the conjugate function, (3.13)

gives rise to
&2, —(f +y 0g+i)X)+yw (7 +7),Vxe X,Viel.
(3.15)

Moreover, (i +7),., cdomy’, e, w(g+y)

attains finite value for all iel. So (3.15) is
equivalent to

fX)+(Y, 09)(X) —w (17 +7) = (X, X —¢,VxeC,Viel.
Taking the liminf in both sides of the last
inequality (note also that (3.14) holds), we get

f(x)+ Iir_nilnf((y.,* 09)(X)—y (7 +7)) =0, VxeC.
This mea:s that (d) holds.
[(d)= (a)] . Assume that (d) holds, i.e.,
there exists a net (Y, 7).,
y,<yS on Y for all iel such that 7 —0,
(1 + 7)., = domy” and (3.12) holds. Then from the

definition of the conjugate function and (3.12), one
gets

f(X)+Iirin€ilnf((yi*og)(x)—(77i+yi)a+gy(a))20, vxeC, Vaej,
which implies
f(¥) + (@) + liminf((y; 09)(X) — 3 —y,@) > 0,

cY'xi ,xj with

vx eC, Va e domy. (3.16)

According to Lemma 1.1 (iv) and the fact that
7, — 0, we have

liminf ((y; 09)(x) —7¢ — 7,2)
= liminf((y; 0g)(X) — %) + liminf(-7)
= Iiminf((yi*og)(x)—yia), vxeC, Vaej.

Combining this and (3.16), one gets
£09+ () +liminf (¥, 09)(¥) ~ %) 2 0, Vx € C,

Yo e domy.
(Note that the last inequality still holds even
a ¢gdomy ).
Hence,
f(X)+y(a)+ Iimilnf((y-fog)(x) —-70)20,VxeC,Vaej.

(3.17)
On the other hand, as y; <#S on Y forall iel, it
follows that if xeC and «e; such that
(S00)(X) <, then
(% 09)(¥) < 4(S0g)(x) < ya, Viel,
and hence, (y,09)(X)—ya <0, Viel.
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So, forany xeC and aej
we obtain from (3.17)

with (Sog)(X) < «,

)+ (@) = T(X) + (@) + liminf((y; 09)(x) - %a) =0,

which is (a) and the proof is complete.
Set

Proof. Set X, Y, €, §, T,and K as in the proof
of Theorem 3.1. The conclusion follows from
Corollary 2.1 with X, Y, €, §, T, and K
playing the roles of X, Y, c, g, f and K,
respectively.

M:={(x.0.n: (x.n) cepi T3+{(0,..7.1): (1) €PIY} gimijar 1o Corollary 2.2, we get the following

+ U {¢,=n: (X,r) eepi(y 0g)}
y*eY*,yZO
y*S}/S

+{(xX,0,r): (X,r) eepii}
N:={0,..7.r) : (7.r) sepiy}
+ U {1 1 (1) eepi(f +y 0g+i)T

y*eY*,;/ZO
y'<rS

Corollary 3.1 [Farkas lemma for sublinear-convex
systems] Assume that (3.2) holds. Consider the
following conditions:

(OX*, 0,0)ecIM = (OX*,O,O) eM,
(OX*, 0,0)ecIN = (OX*,O,O) eN,
and the following statements:

@ xeC,aei, Sog)¥N<a = f(X)+w(@)=0
(o) there (Y, eY'x;, and
(X, %) e X"x X" with y"<»S on Y such that

0> () +ig(0) +(y 09) (=% %)+ (7),

(c) there exist (y,»)eY x; , with y <yS onY
such that f(X)+(y 0g)(X) >y (»), VxeC.

Then one gets

(i) (3.18) is equivalent to [(a) <> (b)],

(ii) (3.19) is equivalent to [(a) < (0)].

exist

result.

Corollary 3.2  [Stable Farkas lemma for
sublinear-convex systems] Assume that (3.2) holds.
Consider the following statements:

(d) M is weak” -closed in X" x| xj .

(e) N is weak -closed in X"xj xj .

(f) Forany %@ (xX,n)e X"x; andany Be;,

(xeCaei,(Sog)(X) <a= f(X)+y(@)—(X,X)~na = p)
c

(.18) Ay, ) eY'x; ., X e X"and X, € X" such that y" < S on Y
(3.19)

and () +i () +(y 09) (X =X = %)+ (y +17) < -p).
(g) Forany 2@ (X,n)e X"x; andany Be;,
(xeCaei ,(Sog)(¥) <a= f(X)+y@)—(X,X)-na>p)

C
(A(y,7)eY xj ,suchthat y <ySonY and
F0) = (X', x)+ (¥ 0g)(x) 0> y'(y + 1) + B, VxC).

Then we have [(d) < (f)] and [(e) < (9)]-
Remark 3.1 It is worth noting that [(e) < (g)] was
given in [6].

Céac bo dé Farkas dang tiém céan cho cac hé

A L]
101
e Nguyén Pinh
Truong Pai hoc Qubc té, PHQG-HCM

e Tran Hong Mo
Truong Dai hoc Tién Giang

TOM TAT
Trong bai bdo nay chiing t6i thiét lgp cdc diéu
kién twong dwong (goi la cac ddc trung) cua bao

ham thvre

{xe X: xeC,g(x) e—K}={xe X: f(x) =0},

trong dé C la tdp con 16, dong ciia khéng gian 16i
dia phiong (kgldp) X, K la nén loi déng trong
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kgldp Y, va o:> —~ [4 dnh xa K- 16i, con tdp
16i dao bén phdi bao ham thirc trén dwoc xdc dinh
béi mét ham 16i, nika lién tuc dudi f. Cac dac
trung nay dwoc thiét lgp ma khong cé bat ky diéu
kién chinh quy nao va thuong dwoc goi la cdc két
qua dang Farkas tiém cdn (hay dang xdp xi). Phdn
thit hai ciia bai bdo danh cho thiét lgp cdc bién thé
khdc cia b6 dé Farkas dang tiém cdn cho anh xa g
la 16i theo mot ham duwdi tuyén tinh mé réng S
(thay vi 16i theo noén K nhw trén). Chiing téi ciing

chitng minh rcing, dudi mot s6 diéu kién chinh quy
thich hop, cac két qua dat duoc o trén cho lai cdac
két qua dang Farkas hodc dang én dinh Farkas
(stable Farkas lemmas) dwoc thiét ldp boi nhiéu
tac gia trong nhitng nam gan day, hodc cho cdc
phién ban méi cia cdc dinh Iy nay. Cdc két qua dat
dwoc ¢6 thé duwoc siv dung dé nghién curu cdc bai
todn t6i wu ma ¢ dé cac diéu kién chinh quy khong
thoa man.

Tir khéa: Bé dé Farkas, Bé dé Farkas theo day, gioi han trén, gioi han duoi.
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