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ASTRACT 

In this paper we establish characterizations of 

the containment of the set 
{ : , ( ) } { : ( ) 0},x X x C g x K x X f x     

where C is a closed convex subset of a locally 

convex Hausdorff topological vector space, X, K is 

a closed convex cone in another locally convex 

Hausdorff topological vector space and 

:g X Y  is a  K- convex mapping, in a reverse 

convex set, define by the proper, lower semi-

continuous, convex function. Here, no constraint 

qualification condition or qualification condition 

are assumed. The characterizations are often 

called asymptotic Farkas-type results. The second 

part of the paper was devoted to variant 

Asymptotic Farkas-type results where the mapping  

is a convex mapping with respect to an extended 

sublinear function. It is also shown that under 

some closedness conditions, these asymptotic 

Farkas lemmas go back to non-asymptotic Farkas 

lemmas or stable Farkas lemmas established 

recently in the literature. The results can be used 

to study the optimization  

Keywords: Farkas lemma, sequential Farkas lemma, limit inferior, limit superior 

INTRODUCTION AND PRELIMINARIES 

Farkas-type results have been used as one of the 

main tools in the theory of optimization [8]. Typical 

Farkas lemma for cone-convex systems 

characterizes the containment of the set where is a 

closed convex subset of a locally convex Hausdorff 

topological vector space (brieftly, lcHtvs), is a 

closed convex cone in another lcHtvs   and is a - 

convex mapping, in a reverse convex set, define by 

the proper, lower semi-continuous, convex function. 

If the characterization holds under some constraint 

qualification condition or qualification condition 

then it is called non-asymptotic Farkas-type result 

(see [6], [10-12]). Otherwise (i.e., without any 

qualification condition), such characterizations 

often hold in the limit forms and they are called 

asymptotic Farkas-type results (see [7, 5, 9, 13] and 

references therein). In this paper, we mainly 

established several forms of asymptotic Farkas-type 

results for convex systems in the two means: 

systems convex with respect to a convex cone 

(called  -convex systems) and systems convex w.r.t. 

an extended sublinear function S (called S -convex 

systems). The results can be used to establish the 

optimality conditions and dulaity for optimization 

problems where constraint qualification conditions 

failed, such as classes of semidefinite programs, or 

scalarized multi-objective programs, scalarized 

vector optimization problems. We shoned also that 

under some closedness conditions, these asymptotic 

Farkas lemmas came back to non-asymptotic Farkas 

lemmas or stable Farkas lemmas established 

recently in the literature. 

Let X  and Y  be lcHtvs, with their topological 

dual spaces X   and Y , respectively. The only 

topology we consider on *,X Y  is the weak* -

topology. For a set A X , the  closure of A  w.r.t. 
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the weak * -topology is denoted by cl .A  The  

indicator function of A  is denoted by 
Ai ,  i.e., 

  = 0Ai x  if ,x A   =Ai x   if  \ .x X A Let 

𝑓: 𝑋 → ℝ̅ ∪ {±∞}. The effective domain of f  is 

the set   dom := : <f x X f x  . The 

function f  is  proper  if dom f  . The set of all 

proper, lower semi-continuous (lsc in short) and 

convex functions on X  will be denoted by  .X  

The epigraph of f  is  

epi 𝑓 ≔ {(𝑥, 𝛼)𝜖𝑋 × ℝ̅: 𝑓(𝑥) ≤ 𝛼} 

The  Legendre-Fenchel conjugate  of f  is the 

function   𝑓
∗    : 𝑋∗   → ℝ̅ ≔ ℝ̅ ∪ {±∞}  defined by 

    = , , .sup
x X

f x x x f x x X    



    

It is clear that for any * *x X  and ,x X  the 

Young-Fenchel inequality always holds:  
* * *( ) , ( ).f x x x f x   

 

Moreover, for any 𝛽 ∈ ℝ one has 
* * * *( ) ( ) = ( )f x f x  

 for all * *.x X  

 Now let K  be a closed convex cone in Y  and 

let 
K  be the partial order on Y  generated by K , 

i.e., 
1 2 2 1if and only if .Ky y y y K    

We add to Y  a  greatest element with respect to 

K , denoted by 
K , which does not belong to Y , 

and let = { }KY Y   . 

Then one has 
forevery .K Ky y Y  

 We 

assume by convention: 
= =K K Ky y   

, for 

all 
,y Y

 and 
=K K  

 if 0  . The dual 

cone of ,K  denoted by ,K  is defined by 

:= { : , 0, }.K y Y y y y K        A mapping 

:h X Y  is called K -convex if 

1 2 1 2 1 2, , , > 0, =1x x X     
 

1 1 2 2 1 1 2 2( ) ( ) ( ),Kh x x h x h x      
  

where "
K " is the binary relation (generated by 

K ) extended to Y   by setting forall .K Ky y Y    

The  domain of h , denoted by dom ,h  is defined to 

be the set dom := { : ( ) }h x X h x Y  . 

The K -epigraph of h  is the set 

epi : {( , ) : ( ) }.Kh x y X Y y h x K      

space. Then, 1( )h K   is closed (see [6]). It is worth 

observing that if h  is K -convex, then 1( )h K   is 

convex. Moreover, for any y Y   and 

: ,g X Y  we define the composite function  

𝑦∗𝑜 g ∶ 𝑋 → ℝ ∪ {+∞} as follows 

 
, ( ) , dom ,

( )
, else.

y g x if x g
y g x




 

 


o

 

The function 𝑆: 𝑌 → ℝ ∪ {+∞} is called  

(extended) sublinear if  

( ) ( ) ( ),S y y S y S y   
 

and ( ) = ( ), , , > 0S y S y y y Y    
 

By convention, we set (0 ) = 0YS  (this 

convention is appropriate to the assumption that S  

is lsc). Such a function S  can be extended to Y   by 

setting ( ) = .KS    An extended sublinear function 

𝑆: 𝑌 → ℝ ∪ {+∞}  allows us to introduce in Y   a  

binary relation which is reflexive and transitive:  

1 2Sy y
 if 1 2Ky y

,  

where 
 : ( ) 0K y Y S y   

 

and 
S Ky    for all .y Y   We consider also 

the extension of S as  𝑆: 𝑌 → ℝ ∪ {+∞}  By setting 

( ) =KS   . 

Given an extended sublinear function
 
𝑆: 𝑌 →

ℝ ∪ {+∞}  , we adapt the notion S  convex 

( i.e., convex with respect to a sublinear 

function) in [6] which generalized the one in [16]. 

It is clear that h  is K -convex if and only if 

epiKh  is convex. In addition, :h X Y  is said to 

be K -epi closed if epiKh  is a closed set in the 

product   A mapping :h X Y  is said to be 

convexS   if for all 

1 2 1 2 1 2, , , > 0, =1x x X      , one has 

 1 1 2 2 1 1 2 2( ) ( ) ( ).Sh x x h x h x     
 

It is worth observing that, as mentioned in [15, 

Remark 1.10], " S  convex means different things 

under different circumstances" such as, when 

𝑌 = ℝ, if ( ) :=| |S y y , ( ) :=S y y ,  ( ) : =S y y , or 

( ) = 0S y , respectively, then " S -convex" means 
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"affine", "convex", "concave" or "arbitrary", 

respectively. 

Moreover, the equalities hold whenever one of the 

nets is convergent.  

It is clear that if h  is S -convex then h  is K -

convex with := { : ( ) 0}K y Y S y   . Conversely, 

if h  is K -convex with some convex cone K  then 
h  is S  convex with = KS i  (see [6]). 

Definition 1.1 [2, p.5] [1, p.32], [14, p.217] 

Let ( )i i Ia 
 be a net of extended real numbers 

defined on a directed set ( Ι,≫) e define limit 

inferior of the net ( )i i Ia 
 as follows  

: =liminf liminf sup infi j j
i I i I j i i I j i

a a a
  


? ?

  
 

Similarly, limit superior of the net ( )i i Ia 
 is 

defined by  

 : .limsup limsup inf supi j j
i I i I j i I j i

a a a
  

 
? ?

 

We say that 
( )i i Ia   converges to 𝑎 ∈ ℝ denoted 

by lim i
i I

a a


  or ,ia a  if for any > 0,  there 

exists 0i I
 such that 

| |<ia a 
 for all 𝑖 ≫ 𝑖0 

The following properties were given in [2, p.9] 

and [14, p.221]. 

Lemma 1.1  Let ( )i i Ia 
 and ( )i i Ib 

 be nets of 

extended real numbers. Then the following 

 statements hold: 

(i)    

( ) and .liminf liminflimsup limsupi i i i
i I i Ii I i I

a a a a
  

   

 

(ii) lim i
i I

a a


  ¡  if and only if   

.liminf limsupi i
i Ii I

a a a


   

(iii) If 
i ia b  for all ,i I  then  

and .liminf liminf limsup limsupi i i i
i I i I i I i I

a b a b
   

   

    ( ) ,liminf liminf liminfi i i i
i I i I i I

a b a b
  

     

and ( ) ,limsup limsup limsupi i i i
i I i I i I

a b a b
  

  
 

provide that the right side of the inequalities are 

defined.  

Approximate Farkas lemma for cone-convex 

systems 

In this section we will establish one of the 

main result of this paper: the asymptotic version of 

Farkas lemma for convex systems, which holds 

without any qualification condition. 

Let ,X Y  lcHtvs, K  be a closed convex 

cone in Y , C  be a nonempty closed convex 

subset of X  and 𝑓: 𝑋 → ℝ ∪ {+∞}  be a proper 

lsc and convex function. Let further :g X Y   

be a K -convex and K -epi closed mapping. Let 
1:= ( )A C g K   and assume that 

(dom ) =f A   . 

Theorem 2.1 [Asymptotic Farkas lemma 1] 

The following statements are equivalent:   

(i) , ( ) ( ) 0x C g x K f x    ,  

(ii)  there exist nets *( )i i Iy K

   and   

 (𝑥𝑙𝑖
∗ , 𝑥2𝑖

∗ , 𝑥3𝑖
∗ , 𝜀𝑖) 𝑖∈𝛪 ⊂  𝑋

∗
× 𝑋∗ × 𝑋∗ × ℝ such 

such that 
* * * * * * *

1 2 3( ) ( ) ( ) ( ),i i i i C if x y g x i x i I     o  

and * * *

1 2 3 *( , ) (0 ,0),i i i i X
x x x     

(iii) there exist nets *( )i i Iy K

   and 
 

 (𝑥𝑖
∗
 
, 𝜀𝑖,)𝑖∈𝛪 ⊂ 𝑋

∗ × ℝ  such that  
* * *( ) ( ),i i C if y g i x i I     o  

 and  
*

*( , ) (0 ,0),i i X
x    

(iv)  there exists a net *( )i i Iy K

   such that  

( ) liminf( )( ) 0, .ii I
f x y g x x C


   o  

 

Proof.
 

[(i) (ii)]  Assume that (i) holds. Observe 

firstly that A  is closed and convex. Secondly, (i) is 

equivalent to  
*

*0 ( ) (0 ),A X
f i   

or equivalently, *

*(0 ,0) epi( ) .AX
f i   

 

 Since we also have [4, p. 328]  

* * * *epi( ) = cl epi epi( ) epi ,A C

K

f i f g i





 
    

 
U  

and so, (i) is equivalent to  

* * *

*(0 ,0) cl epi epi( ) epi ,CX
K

f g i





 
    

 
U  

and the equivalence between (i) and (ii) follows. 
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 [(ii) (iii)]  Assume that (ii) holds, i.e., there 

exist nets *( )i i Iy K

   and 
 

  (𝑥𝑙𝑖
∗ , 𝑥2𝑖

∗ , 𝑥3𝑖
∗ , 𝜀𝑖) 𝑖∈𝛪 ⊂  𝑋

∗
× 𝑋∗ × 𝑋∗ × ℝ such 

that * * * * * * *

1 2 3( ) ( ) ( ) ( ), ,i i i i C if x y g x i x i I     o (2.1) 

 and 
 

* * *

1 2 3 *( , ) (0 ,0).i i i i X
x x x            (2.2) 

By the definition of the conjugate function, (2.1) 

implies that  
* * * *

1 2 3 , ( )( ), , .i i i i i Cx x x x f y g i x x X i I            o

Set * * * *

1 2 3:=i i i ix x x x   for all i I . Then the above 

inequality gives rise to  
* * *( ) ( ),i i C if y g i x i I     o  

 and (2.2) becomes *

*( , ) (0 ,0).i i X
x    

[(iii) (iv)]  Assume that (iii) holds, i.e., 

there exist nets *( )i i Iy K

   and (𝑥𝑖
∗
 
, 𝜀𝑖,)𝑖∈𝛪 ⊂

 𝑋∗ × ℝ  such that 
 
* * *( ) ( ),i i C if y g i x i I     o  

 and  
*

*( , ) (0 ,0).i i X
x    

Again by the definition of the conjugate function, 

one has  
* *, ( )( ), , ,i i i Cx x f y g i x x X i I          o  

or equivalently,  
* *( ) ( )( ) , , , ,i i if x y g x x x x C i I        o  

(which still holds even in case domx f  and 

domx g ). 

Taking liminf in both sides of the last 

inequality, we get (iv). 

[(iv) (i)]  Assume that (iv) holds, i.e., there exists 

a net *( )i i Iy K

   such that  

*( ) ( )( ) 0, .liminf i
i I

f x y g x x C


   o  

 Observe that if such that ( ) ,x C g x K   then 

*( )( ) 0iy g x o  for all .i I  Thus, for 

such that ( ) ,x C g x K   one gets  

*( ) ( ) ( )( ) 0.liminf i
i I

f x f x y g x


  o  

 The proof is complete.    

Remark 2.1  The equivalence [( ) ( )]i iv  was 

established in [5] involved the space Y  (instead of 

Y  ), under the assumption that * ( )y g Xo  for 

all ,y K   which is much stronger the S -epi 

closedness of g  used in Theorem 2.1.  

 

 We now set 
* * * *:= epi epi( ) epi C

y K

f y g i
 

 oUD  and 

* *:= epi( ) .C

y K

f y g i
 

 oUF   

From the proof of Theorem 2.1, we get 

 

Corollary 2.1 [Farkas lemma for cone-convex 

systems] Consider the following conditions:  

              
* *(0 ,0) cl (0 ,0) ,

X X
  D D 

       
(2.3) 

* *(0 ,0) cl (0 ,0) ,
X X

  F F        (2.4) 

 and the following statements:   

(i) , ( ) ( ) 0x C g x K f x    ,  

(v)  there exist * ,y K * *

1x X  and * *

2x X  such 

that  
* * * * * * * *

1 2 1 2( ) ( ) ( ) ( ) 0,Cf x i x y g x x    o  

(vi)  there exists *y K  such that  

*( ) ( )( ) 0, .f x y g x x C   o  

 Then one has:  

(a)  (2.3) is equivalent to [(i) (v)],  

(b)  (2.4) is equivalent to [(i) (vi)].  

 

Proof. As in the proof of Theorem 2.1, one has (i) is 

equivalent to *(0 ,0) cl .
X

 D  

Moreover, it is easy to check that (v) is equivalent 

to 
*(0 ,0)

X
D.

 
Thus we get (a). 

As shown in the proof of Theorem 2.1, (i) is 

equivalent to *

*(0 ,0) epi( ) .AX
f i    

As *epi( ) = clAf i F  (see [3, Theorem 8.2]) we 

have (i) is equivalent to *(0 ,0) cl .
X

 F Moreover, it 

is clear that (vi) is equivalent to 
*(0 ,0) .

X
F   

Therefore, one also gets (b). The proof is complete.    

 

Corollary 2.1 [Farkas lemma for cone-convex 

systems] Consider the following conditions:  

              
* *(0 ,0) cl (0 ,0) ,

X X
  D D 

       
(2.3) 

* *(0 ,0) cl (0 ,0) ,
X X

  F F        (2.4) 

 and the following statements:   

(i) , ( ) ( ) 0x C g x K f x    ,  

(v)  there exist * ,y K * *

1x X  and * *

2x X  such 

that  
* * * * * * * *

1 2 1 2( ) ( ) ( ) ( ) 0,Cf x i x y g x x    o  
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(vi)  there exists *y K  such that  

*( ) ( )( ) 0, .f x y g x x C   o  

 Then one has:  

(a)  (2.3) is equivalent to [(i) (v)],  

(b)  (2.4) is equivalent to [(i) (vi)].  

 

Proof. As in the proof of Theorem 2.1, one has (i) is 

equivalent to 
*(0 ,0) cl .

X
 D  

Moreover, it is easy to check that (v) is equivalent 

to 
*(0 ,0)

X
D.

 
Thus we get (a). 

As shown in the proof of Theorem 2.1, (i) is 

equivalent to *

*(0 ,0) epi( ) .AX
f i    

As *epi( ) = clAf i F  (see [3, Theorem 8.2]) we 

have (i) is equivalent to 
*(0 ,0) cl .

X
 F Moreover, it 

is clear that (vi) is equivalent to 
*(0 ,0) .

X
F   

Therefore, one also gets (b). The proof is complete.    

 

Corollary 2.2 [Stable Farkas lemma for cone-

convex systems] Consider the following conditions: 
* * *epi epi( ) epi -C

y K

f y g i is weak closed


 



 oU
 

    

 in       𝑋∗ ∈ ℝ (2.5)                                  
* * * *epi( ) - .C

y K

f y g i is weak closed in X
 

  o ¡U
 

                                                                         

(2.6)  

 Then we have   

(c)  (2.5) holds if and only if for any x X   and 

any  𝛽 ∈ ℝ, 

* * * * *

1 2

* * * * * * * * *

1 2 1 2

( , ( ) ( ) , )

( ,

( ) ( ) ( ) ( ) ).C

x C g x K f x x x

y K x X and x X such that

f x i x y g x x x









    

   

     

c

o

 

(d)  (2.6) holds if and only if for any x X   and 

any 𝛽 ∈ ℝ, 

* *

( , ( ) ( ) , )

: ( ) , ( )( ) , .

x C g x K f x x x

y K f x x x y g x x C







 

    

      

c

o

 

Proof. The proof is similar to that of Theorem 2.1.    

 

Remark 2.2 It is worth noting that (d) was given in 

[6]. Moreover, if we replace (2.5) by 
* * * * *epi( ) = epi epi( ) epi ,A C

y K

f i f y g i
 

  oU  and 

(2.6) by 
* * *epi( ) = epi( )A C

y K

f i f y g i
 

  oU  where 

1:= ( ),A C g K   then the conclusion of Corollary 

2.2 still holds, and the assumptions on the 

closedness and the convexity of C , f , and g  can 

be removed.  

 

Asymptotic Farkas lemma for sublinear-convex 

systems 

 

Let ,X Y  be lcHtvs, C  be a nonempty closed 

convex subset of ,X  𝑆: 𝑌 → ℝ ∪ {+∞} be an lsc 

sublinear function and :g X Y  be an S -convex 

mapping such that the set  

 
 {(𝑥, 𝑦, 𝜆) ∈ 𝑋 × 𝑌 × ℝ ∶ 𝑆(𝑔(𝑥) − 𝑦) ≤ 𝜆}   (3.1) 

is closed in the product space X × Y × ℝ. Let us 

consider  𝑓: 𝑋 → ℝ ∪ {+∞}  and  𝜓:ℝ → ℝ ∪ {+∞} 

be proper convex lsc functions. 

We now establish an asymptotic Farkas lemma 

for systems that are convex w.r.t. the sublinear 

function 𝑆: 𝑌 → ℝ ∪ {+∞}. 

Theorem 3.1  [Asymptotic Farkas lemma 2]  

Assume that the following condition holds: 

(dom ) { : dom s. . ( )( ) } .f x C t S g x       o

                                                                               

(3.2)  

Then the following statements are equivalent: 

(a) , , ( )( ) ( ) ( ) 0x C S g x f x        ¡ o   

(b) there exist nets (𝑦𝑖
∗, 𝛾𝑖) 𝑖∈𝛪 ⊂ 𝑌

∗
× ℝ+ and   

(𝑥𝑙𝑖
∗ , 𝑥2𝑖

∗ , 𝑥3𝑖
∗ , 𝜀𝑖) 𝑖∈𝛪 ⊂ 𝑋

∗
× 𝑋∗ × 𝑋∗ × ℝ × ℝ  such 

with *

i iy S  on Y  for all i I  such that  

* * * * * * * *

1 2 3( ) ( ) ( ) ( ) ( ),i i i i C i i if x y g x i x i I         o  

 and  
* * *

1 2 3 *( , , ) (0 ,0,0),i i i i i X
x x x      

(c)  there exist nets (𝑦𝑖
∗, 𝛾𝑖) 𝑖∈𝛪 ⊂ 𝑌

∗
× ℝ+ and 

(𝑥𝑙𝑖
∗ , 𝜂𝑖, 𝜀𝑖) 𝑖∈𝛪 ⊂ 𝑋

∗
× ℝ × ℝ

 
 with *

i iy S  on Y  

for all i I  such that  
* * * *( ) ( ) ( ),i i C i i if y g i x i I         o     (3.3) 

 and *

*( , , ) (0 ,0,0).i i i X
x                                     (3.4) 

Proof. Let us set  �̃� = 𝑌 × ℝ,  �̃� = 𝑌 ×

 ℝ, �̃� = 𝐶 × ℝ  and set �̃�: �̃� → ℝ ∪ {+∞}  defined 

by  °( , ) = ( )S y S y   for all (𝛾, 𝛼) ∈ �̃� Then  �̃� is 

nonempty closed convex subset of 𝑋 × ℝ, �̃� is an 

lsc sublinear function. Let also 𝑋:̃= 𝑋 × ℝ  
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�̃� = �̃� ×  �̃� and 𝑓: �̃� → ℝ ∪ {+∞} be mappings 

defined by  

�̃�(𝑥, 𝛼): = (𝑔(𝑥), 𝛼), ∀∈  �̃�
 

 
 𝑎𝑛𝑑 𝑓(𝑥, 𝛼) = 𝑓(𝑥) + 𝜓(𝑥), ∀(𝑥, 𝛼) ∈  �̃�

 
 

[(a) (b)]  Assume that (a) holds. Since ,f   are 

proper lsc, convex functions, so is °.f Moreover, °g  

is °S -convex as g  is S -convex. Now let °K  be the 

closed convex cone defined by 

° ° °:= {( , ) : ( , ) 0}K y Y S y     . Then, °g  is °K -

convex as well. The assumption (3.1) ensures that 

°g  is °K -epi closed while (3.2) guarantees 

° ° ° °1

(dom ) ( ) = .f C g K


   
 

We now try to apply Theorem 2.1 with °X , °Y , °C , 

°,g  °f , and °K  playing the roles of X , Y , C , ,g  

,f and K , respectively. 

From (a) and the definition of °f , °g , °C , °K , we 

have  
° ° ° °( , ) , ( , ) = ( ( ), ) ( , ) 0,x C g x g x K f x      

 

which shows that (i) in Theorem 2.1 holds, and 

hence, there exist nets % °*

( )i Iiy K


   and 

(𝑥𝑙𝑖
∗̃ , 𝑥2𝑖

∗̃ , 𝑥3𝑖
∗̃ , 𝜀𝑖) 𝑖∈𝛪 ⊂ 𝑋

∗̃
× 𝑋∗̃ × �̃�∗ × ℝ   such that  

 

° % %° %
°
%* * * * ** *

1 2 3( ) ( ) ( ) ( ), .i i ii i C
f x y g x i x i I     o      (3.5) 

 and  

                 
% % %* * *

1 2 3 *( , ) (0 ,0).i i i i X
x x x                   (3.6) 

 Since °* *= ,X X  ¡  there exist such 
* * * * * *

1 2 3( , , , , , )i i i i i i i Ix x x X X X         ¡ ¡ ¡  

such that %* *
1 1( ) = ( , ) ,i i I i i i Ix x  

%* *
2 2( ) = ( , )i i I i i i Ix x    and 

%* *
3 3( ) = ( , ) .i i I i i i Ix x    This and (3.6) imply that  

            

* * *

1 2 3 *0i i i X
x x x    and 0.i i i       

(3.7) 

 Moreover, since % °*

( )i Iiy K


  , by Lemma 3.5 in 

[6], there exists a net (𝑦𝑖
∗, 𝛾𝑖) 𝑖∈𝛪 ⊂ 𝑌

∗
×  ℝ

 
such 

that %* *= ( , ),i iiy y  0i   and 

* on for all .i iy S Y i I   

By the definition of the conjugate function, for any 

i I , one has ([17, p.76])  

 °* * * * *

1 1( , ) = ( ) ( ),i i i if x f x         

(3.8) 

%°  
* * * * *

2 2
,

( ) ( , ) = , ( )( )supi i i i i ii
x X

y g x x x y g x


  
 

    
¡

o o

                 

   * *

2= , ( )( ) ( )sup supi i i i
x X

x x y g x


  
 

    
¡

o  

                 

*

2( )( ) if = ,
=

otherwise,

i i i iy g x   



o

                 
(3.9) 

and  

 * * *

3 3
,

( , ) = , ( )supi i i i C
x XC

i x x x i x


 
 

   
° ¡

 

                *

3= , ( )sup supi C i
x X

x x i x



 

   
¡

 

 
* *

3( ) if = 0,
=

otherwise.

C i ii x 



            

(3.10) 

Combining (3.5), (3.8), (3.9), and (3.10) we get 

(note that 
i  ¡  for all i I ):  

* * * * * * * *

1 2 3( ) ( ) ( ) ( ) ( )i i i i C i if x y g x i x     o  

and = , = 0i i i    for all ,i I  which together 

with (3.7) gives  

= 0.i i i i i         

Set :=i i i    for all .i I  Then 0i   and the 

last inequality becomes  
* * * * * * * *

1 2 3( ) ( ) ( ) ( ) ( ), .i i i i C i i if x y g x i x i I         o  

 Thus (b) is satisfied. 

[(b) (c)]  The same as the proof of [(ii) (iii)]  

in Theorem 2.1. 

[(c) (a)]  Assume that (c) holds, i.e., there exist 

nets 

(𝑦𝑖
∗, 𝛾𝑖) 𝑖∈𝛪 ⊂ 𝑌

∗
× ℝ

 
and (𝑥𝑖

∗, 𝜂𝑖 , 𝜀𝑖) 𝑖∈𝛪 ⊂ 𝑋
∗
× ℝ × ℝ

 
 with *

i iy S  on 

Y  for all i I  such that (3.3) and (3.4) hold. It 

follows from (3.3) that 
* *, ( )( ) ( ) ( ),i i i i ix x f y g x            o  

( , ) , ,x C i I    ¡   

or equivalently, 
* *( ) ( ) ( )( ) , ,i i i i if x y g x x x           o   

                ( , ) ,x C i I    ¡
   

(3.11) 

 (which still holds even in case dom ,x f

domx g  and dom  ). 
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Since *

i iy S  on Y  for all ,i I  if x C  and 

  ¡  such that ( )( ) ,S g x o  then 

*( )( ) ( )( )i i iy g x S g x  o o  for all i I  (note that 

0i   for all i I ). So, for any x C  and   ¡  

with ( )( ) ,S g x o  (3.11) gives  

*( ) ( ) , , ,i i i i if x x x i I                

which means that if x C  and   ¡  with 

( )( ) ,S g x o  one has  

*( ) ( ) , , .i i if x x x i I            

Passing to the limit both sides of the last 

inequality and taking the fact that (3.4) into 

account, we get (a). The proof is complete.    

Theorem 3.2  [Asymptotic Farkas lemma 3] 

Assume that (3.2) holds. Then the following 

statements are equivalent:   

(a)

, , ( )( ) ( ) ( ) 0x C S g x f x        ¡ o

,  

(d) there exists a net * *( , , )i i i i Iy Y     ¡ ¡  with 

*

i iy S  on Y  for all i I  such that 0,i 

*( ) domi i i I     and  

* *( ) (( )( ) ( )) 0, .liminf i i i
i I

f x y g x x C  


     o
 

                                                                             
(3.12) 

Proof.
 
[(a) (d)]  Assume that (a) holds. It follows 

from Theorem 3.1 that (c) holds. i.e., there exist 

nets * *( , )i i i Iy Y    ¡  and 

* *( , , )i i i i Ix X     ¡ ¡  with *

i iy S  on Y  for all 

i I  and such that 

     * * * *( ) ( ) ( ), ,i i C i i if y g i x i I         o  

(3.13) 

[(c) (a)]  Assume that (c) holds, i.e., there 

exist nets
* *( , )i i i Iy Y   ¡ and 

* *( , , )i i i i Ix X     ¡ ¡  with 
*
i iy S  on 

Y  for all i I  such that (3.3) and (3.4) hold. It 

follows from (3.3) that and 
                *

*( , , ) (0 ,0,0).i i i X
x   

               
(3.14) 

By the definition of the conjugate function, (3.13) 

gives rise to 
* * *, ( )( ) ( ), , .i i i C i ix x f y g i x x X i I              o

                                                                          (3.15) 

Moreover, *( ) dom ,i i i I     i.e., *( )i i    

attains finite value for all i I . So (3.15) is 

equivalent to  
* * *( ) ( )( ) ( ) , , , .i i i i if x y g x x x x C i I             o

 Taking the liminf in both sides of the last 

inequality (note also that (3.14) holds), we get 

 * *( ) (( )( ) ( )) 0, .liminf i i i
i I

f x y g x x C  


     o  

 This means that (d) holds. 

[(d) (a)] . Assume that (d) holds, i.e., 

there exists a net * *( , , )i i i i Iy Y     ¡ ¡  with 

*

i iy S  on Y  for all i I  such that 0,i 

*( ) domi i i I     and (3.12) holds. Then from the 

definition of the conjugate function and (3.12), one 

gets  
*( ) (( )( ) ( ) ( )) 0, , ,liminf i i i

i I
f x y g x x C     


        o ¡

 which implies 
*( ) ( ) (( )( ) ) 0,liminf i i i

i I

f x y g x   


    o
 

                                                   

, dom .x C       (3.16) 

 According to Lemma 1.1 (iv) and the fact that 

0,i   we have  

*(( )( ) )liminf i i i
i I

y g x  


 o  

*= (( )( ) ) ( )liminf liminfi i i
i I i I

y g x  
 

  o  

*= (( )( ) ), , .liminf i i
i I

y g x x C 


    o ¡  

 Combining this and (3.16), one gets
*( ) ( ) (( )( ) ) 0, ,liminf i i

i I
f x y g x x C  


     o

 
                                                            

dom .  
 

(Note that the last inequality still holds even 

dom  ).  

Hence, 
*( ) ( ) (( )( ) ) 0, , .liminf i i

i I

f x y g x x C   


       o ¡

  (3.17) 

On the other hand, as *

i iy S  on Y  for all ,i I  it 

follows that if x C  and   ¡  such that 

( )( ) ,S g x o  then  

*( )( ) ( )( ) , ,i i iy g x S g x i I    o o  

and hence, *( )( ) 0, .i iy g x i I   o  
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So, for any x C  and   ¡  with ( )( ) ,S g x o  

we obtain from (3.17)  
*( ) ( ) ( ) ( ) (( )( ) ) 0,liminf i i

i I

f x f x y g x    


     o

which is (a) and the proof is complete.    

Set 
* *:= {( ,0, ) : ( , ) epi } {(0 , , ) : ( , ) epi }

X
x r x r f r r   

  M

 
, 0

( , , ) : ( , ) epi( )
y Y

y S

x r x r y g




   

  


   oU  

* *{( ,0, ) : ( , ) epi }Cx r x r i   

:= {(0 , , ) : ( , ) epi }
X

r r   

 N  

, 0

{( , , ) : ( , ) epi( ) }.C

y Y

y S

x r x r f y g i




   

  


    oU  

Corollary 3.1  [Farkas lemma for sublinear-convex 

systems] Assume that (3.2) holds. Consider the 

following conditions:  

* *(0 ,0,0) cl (0 ,0,0) ,
X X

  M M  (3.18) 

* *(0 ,0,0) cl (0 ,0,0) ,
X X

  N N  (3.19) 

 and the following statements:   

(a) , , ( )( ) ( ) ( ) 0x C S g x f x        ¡ o  

(b)  there exist * *( , )y Y   ¡  and 

* * * *

1 2( , )x x X X   with *y S  on Y  such that  

* * * * * * * * *

1 2 1 20 ( ) ( ) ( ) ( ) ( ),Cf x i x y g x x       o  

(c)  there exist * *( , )y Y   ¡  with *y S  on Y  

such that  * *( ) ( )( ) ( ), .f x y g x x C    o  

 Then one gets  

(i)  (3.18) is equivalent to [( ) ( )],a b  

(ii)  (3.19) is equivalent to [( ) ( )].a c  

Proof. Set °X , °Y , °C , °g , °f , and °K  as in the proof 

of Theorem 3.1. The conclusion follows from 

Corollary 2.1 with °X , °Y , °C , °g , °f , and °K  

playing the roles of X , Y , C , g , f  and ,K  

respectively.     

Similar to Corollary 2.2, we get the following 

result. 

Corollary 3.2  [Stable Farkas lemma for 

sublinear-convex systems] Assume that (3.2) holds. 

Consider the following statements:   

(d) M  is *weak -closed in *X  ¡ ¡ .  

(e) N  is *weak -closed in *X  ¡ ¡ .  

(f)  For any % *= ( , )x x X
   ¡  and any ,  ¡  

* * * * * * *

1 2

* * * * * * * * * *

1 2 1 2

( , , ( )( ) ( ) ( ) , )

( ( , ) , and such that  on

and ( ) ( ) ( ) ( ) ( ) ).C

x C S g x f x x x

y Y x X x X y S Y

f x i x y g x x x

     

 

   





       

     

       

¡ o

c

¡

o

(g)  For any % *= ( , )x x X
   ¡  and any ,  ¡  

* * *

* *

( , , ( )( ) ( ) ( ) , )

( ( , ) such that  on and

( ) , ( )( ) ( ) , ).

x C S g x f x x x

y Y y S Y

f x x x y g x x C

     

 

   







       

   

      

¡ o

c

¡

o

 

Then we have [(d) (f)]  and [(e) (g)].  

Remark  3.1 It is worth noting that [(e) (g)]  was 

given in [6].  

Các bổ đề Farkas dạng tiệm cận cho các hệ 

lồi 
 Nguyễn Định 
 Trường Đại học Quốc tế, ĐHQG-HCM  

 Trần Hồng Mơ 
Trường Đại học Tiền Giang  

TÓM TẮT 

Trong bài báo này chúng tôi thiết lập các điều 

kiện tương đương (gọi là các đặc trưng) của bao 

hàm thức 

{ : , ( ) } { : ( ) 0},x X x C g x K x X f x       

trong đó C là tập con lồi, đóng của không gian lồi 

địa phương (kgldp) X, K là nón lồi đóng trong 
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kgldp Y, và :g X Y  là ánh xạ K- lồi, còn tập 

lồi đảo bên phải bao hàm thức trên được xác định 

bởi một hàm lồi, nửa liên tục dưới  f. Các đặc 

trưng này được thiết lập mà không có bất kỳ điều 

kiện chính quy nào và thường được gọi là các kết 

quả dạng Farkas tiệm cận (hay dạng xấp xỉ). Phần 

thứ hai của bài báo dành cho thiết lập các biến thể 

khác của bổ đề Farkas dạng tiệm cận cho ánh xạ g 

là lồi theo một hàm dưới tuyến tính mở rộng S 

(thay vì lồi theo nón K như trên). Chúng tôi cũng 

chứng minh rằng, dưới một số điều kiện chính quy 

thích hợp, các kết quả đạt được ở trên cho lại các 

kết quả dạng Farkas hoặc dạng ổn định Farkas 

(stable Farkas lemmas) được thiết lập bởi nhiều 

tác giả trong những năm gần đây, hoặc cho các 

phiên bản mới của các định lý này. Các kết quả đạt 

được có thể được sử dụng để nghiên cứu các bài 

toán tối ưu mà ở đó các điều kiện chính quy không 

thỏa mãn.  

Từ khóa: Bổ đề Farkas, Bổ đề Farkas theo dãy, giới hạn trên, giới hạn dưới. 
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