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ABSTRACT

In this paper, we proved a new extended
version of the Hahn-Banach-Lagrange theorem
that is valid in the absence of a qualification
condition and is called an approximate Hahn-
Banach-Lagrange theorem. This result, in special
cases, gives rise to approximate sandwich and
approximate Hahn-Banach theorems. These results
extend the Hahn-Banach-Lagrange theorem, the
sandwich theorem in [18], and the celebrated
Hahn-Banach theorem. The mentioned results
extend the original ones into two features: Firstly,
they extend the original versions to the case with
extended sublinear functions (i.e., the sublinear
INTRODUCTION AND PRELIMINARY

It is well-known that the Farkas lemma for
convex systems is equivalent to the celebrated
Hahn-Banach theorem [16]. In the last decades,
many generalized versions of the Farkas lemma
have been developed (see [3, 5, 4, 9, 11, 15, 17],
and, in particular, the recent survey [7]). For the
generalizations of non-asymptotic Farkas lemma,
i.e., the versions of Farkas-type results were hold
under some qualification condition. It was shown
in [5] that these versions are equivalent to some
extended versions of the Hahn-Banach theorem. A
natural question arises: Are there any similar
results for generalized asymptoic/sequential Farkas
lemmas and certain types of extended Hahn-
Banach theorems? This paper is aimed to answer
this question. Fortunately, the answer is
affirmative, and so the result in this paper can be
considered as a counter part of [5] concerning

functions that possibly possess extended real
values). Secondly, they are topological versions
which held without any qualification condition.
Next, we showed that our approximate Hahn-
Banach-Lagrange theorem was actually equivalent
to the asymptotic Farkas-type results that were
established recently [10]. This result, together with
the results [5, 16], give us a general picture on the
equivalence of the Farkas lemma and the Hahn-
Banach theorem, from the original version to their
corresponding extensions and in either non-
asymptotic or asymptotic forms.

versions of sequential Farkas lemmas and the so-
called approximate Hahn-Banach-Lagrange
theorems (which are extended versions of the
Hahn-Banach theorem).

In this paper, we establish a new extended
version of Hahn-Banach-Lagrange theorem which
extends the original one in [5, 18], and it is valid in
the absence of a regularity condition. It is called
the approximate Hahn-Banach-Lagrange theorem.
The results then gives rise to an approximate
sandwich theorem and an approximate Hahn-
Banach theorem in the manner as in [5]. The
generalization of these reults in comparison with
[5, 18] is twofold: firstly, they extend the original
version to the case with extended sublinear
functions (i.e., the sublinear functions which
possibly possess extended real values); secondly,
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in contrast to [5], they are topological versions
which hold without any qualification condition.
The paper can be considered as a continuation of
the previous ones (of the authors and their co-
authors) [5, 10, 12]. Some tools and some ideas of
generalizations to Hahn-Banach-Lagrange theorem
and to real-extended sublinear functions are
modifications of the one in [5] to adapt to the case
where no qualification condition is assumed.

Let X and Y be locally convex Hausdorff
topological vector spaces (IcHtvs in short), with
their topological dual spaces X* and Y,
respectively. The only topology we consider on
X*, Y is the w'-topology. For a set Ac X*, the
closure of A w.r.t. the weak”™ -topology is denoted
by clA. The indicator function of A is denoted
by iy, ie, i,(x)=0 if xeAi(x)=+00 if
xe X\A. Let B, C be two subsets of some
locally convex Hausdorff topological vector space.
We say that B is closed regardingC if
(cIBynC=BnC (see[1], [5]).

Let f:X —; U{tew}.The effective domain
of f istheset domf :={xe X : f(x) <+oo}. The
function f is proper if domf = . The set of all
proper, lower semi-continuous (Isc in short) and
convex functions on X will be denoted by 77(X).
The epigraph of f is

epi f i={(x,@) e Xxj : f(X)<a}.

The Legendre-Fenchel conjugate of f is the
function f*: X" 1= Uftos} defined

f(x)= su)la{<x*, X)— f(x)}, vx e X",

Now let K be a closed convex cone in Y and
let <. be the partial order on Y generated by K,
ie.,
Vi< Y, if and only if y,—y eK
We add to Y a greatest element with respect to
<, denoted by oo,, which does not belong to Y,
and let Y* =Y U{eo, }. Then one has y <, oo, for

every yeY" We assume by convention:

y+o, =0 +y=0, for all yeY’, and

axo, = o if @>0. The dual cone of K, denoted
by K, is defined by
K:={y eY":(y,y)>0 forall ye K}.
A mapping h: X —Y* iscalled K -convex if
%% € X, thyt >0, py+1p =1
= (X + %) < 14h(%) + 150(x,),
where "<, " is the binary relation (generated by

K) extended to Y* by setting
y< oo, for all yeY". The domain of h,

denoted by domh, is defined to be the set
domh :={xe X: h(x)eY}. The K -epigraph of
h is the set
epich:={(x y) e XxY : yeh(X)+K}.

Itis clear that h is K -convex if and only if epih
is convex. In addition, h: X —Y* is said to be K -
epi closed if epi.h is a closed set in the product
space. Then, h™(-K) is closed (see [5]). It is
worth observing that if h is K -convex, then
h™(-K) is convex.

Moreover, for any ¥ €Y and 9°X Y7
we define the composite function
yog:X =i Wid o6 follows

. ,9(x)), if xedomg,
(v Og)(x):{@ 9(x)) domg
+00, otherwise.
The function S:Y —; Ufte} is called

(extended) sublinear if

S(y+Y)<S(y)+S(y) and
S(Ay)=AS(y), Vy,y' €Y, VA>0.
By convention, we set S(0,) =0. We extend S to
Y* by setting S(oo,) =-+o0. An extended sublinear
function S:Y —; W{+oc} allows us to introduce

in Y* a binary relation which is reflexive and
transitive as:

ylss yz If yl SK y2’
K:={yeY:S(-y)<0}.

where

It is worth mentioning that the definition of the
relation <, can be understood in the extended
sense of S:Y"—; Uf+oc}. The relation < can
be extended to Y* in a suitable way.
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Given a sublinear function S:Y —; U{+},
we adapt the notion S -convex (i.e.,convex with
respect to a sublinear function) in [20] and
introduce the one corresponding to an extended
sublinear function S:

A mapping h: X —-Y* s said to be S -
convex if for all x,% € X, 14,16>0, p+u,=1
one has

heax + £6%) <5 44h(%) + £6h(x,).
It is worth observing that, as mentioned in [19,

Remark 1.10], "S -convex can mean different
things under different circumstances” such as,

when Y = ,if S(y):=|y| S(y):=y, S(y):=-y,
or S(y) =0, respectively, then " S -convex" means
"affine”, "convex", "concave" or “arbitrary",
respectively.

It can be easily verified that if h is S -convex
then h is K -convex with
K:={yeY : S(-y)<0}. Conversely, if h is K-
convex with some convex cone K then h is S -
convex with S= i, (see [5]).

The organization of the paper is as follows: In
the next section, Section 2, we recall two new
versions of sequential Farkas lemma for cone-
convex systems and sublinear-convex systems
established in [10]. In Section 3, we establish the
so-called approximate Hahn-Banach-Lagrange
theorem, a topological and asymptotic extended
version of the original algebraic one in [18, 19,
20]. Versions of approximate sandwich theorem
and approximate Hahn-Banach theorem are
derived from this approximate Hahn-Banach-
Lagrange theorem. The last section, Section 4, we
show that our new approximate Hahn-Banach-
Lagrange theorem is actually equivalent to the
asymptotic  Farkas-type results that were
established recently in [10]. This equivalence can
be considered as the last piece of the whole picture
on the equivalence of the Farkas lemma and the
Hahn-Banach theorem for which the other pieces
are the equivalence of non-asymptotic extended
convex Farkas lemmas and extended Hahn-

Banach-Lagrange theorem established in [5], and
the one between the linear Farkas lemma and the
celebrated Hahn-Banach theorem [16].

Sequential Farkas lemma for convex systems

In this section we will recall the sequential
Farkas lemmas for convex systems in [10] which
hold without any qualification condition: the
asymptotic version of the Farkas lemma for
systems which is convex w.r.t. a convex cone and
the one for systems which is convex w.r.t. an
extended sublinear function.

Let X, Y be IcHtvs, Kbe a closed convex
cone in Y, C be a nonempty closed convex subset
of X and f:X —; w{+w} be a proper Isc and
convex function.

Sequential  Farkas lemma  for

convexsystems

cone-

Consider g: X — Y~ bea K -convex and K
-epi closed mapping. Let A:=Cn g(-K) and
assume that (domf)nA#@. The following
sequential Farkas lemmas in [10] will be used in
the sequence.

Theorem 2.1 [10] The following statements are
equivalent:

(i) xeC, g)e-K = f(x)>0,
(i) there exist nets (y;),., < K" and
(¢, % X% &) © X x X x X" x| such that

&2 1704) + (¥ 09) (%) +ic(xy) Viel,

and (g +%; + %, &) —(0,..,0),
(iii) there exist

(X, &), = X x; such that

nets (y)),., < K" and

g=2(f+yog+i)(x) Viel,

and (x,5) —>(0,.,0),

(iv)there exists a net (y),., = K* such that
f(X) + liminf(y; 0g)(x) >0, VxeC.

iel

From the previous theorem, it is easy to see
that under some closedness conditions, one gets
back stable Farkas lemma established recently in
[5] (see [10]).
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Sequential Farkas lemma for sublinear-convex
systems

Let X, Y belcHtvs, C be a nonempty closed
convex subset of X, S :Y — U{+o} be an Isc
sublinear function and g : X -»Y* be an S -
convex mapping such that the set
{(xy,A)eXxYx; :S@X-y)<4} (2.1)
is closed in the product space X xY xj .
f: X > ufte} and
v — Wit} be proper convex Isc functions.

Let us
consider

We now recall two versions of asymptotic
Farkas lemma for systems that are convex w.r.t.
the sublinear function S:Y — U{+oc} in [10]

Theorem 2.2 [10] Assume that the following
condition holds:
(domf)n{xeC : Jaedomy, (Sog)(X)<a}=D.

(2.2)

Then the following statements are equivalent:

(@)

xeC, aej, Sog)(¥<a = f(X)+y(x)=0,
(b) there exist nets (y/,%).., <Y x;j . and

(% X0 X 7 )i © X x XX X x| % with
y'<yS onY forall iel suchthat

&2 £°04)+ (¥ 09) () +i(%) +y (g +7) Viel,

and ( + %, +%;,7,5) —>(0,.,0,0),

(c) there exist nets (y,»)., <Y xj, and

X, m,&), < X xj xj with y'<xS on Y for

all ie!l such that

g2 (f+yog+iy(X)+y (7 +y) Viel, (2.3)
and (x,7,5) —(0,..0,0). (2.4)

Theorem 2.3 [10] Assume that (2.2) holds. Then
the following statements are equivalent:

@xeC, aej, Sog)¥<a= f(X)+y(a)=0,
(b) there exists a net (y,y,7)
with y"<xS onY forall i<l suchthat 77 =0,

iel < Y*X l + X l

(@7 + 7)o, =domy” and

f () + liminf ((y; 09)(X) —w" (3 +7)) 20 VxeC.
iel

(2.5)

Approximate Hahn-Banach-Lagrange theorem

In this section we establish the so-called
approximate Hahn-Banach-Lagrange theorem, a
topological and asymptotic extended version of the
original algebraic version in [18], [19], and [20].
An approximate sandwich theorem and an
approximate Hahn-Banach theorem are derived
from this approximate Hahn-Banach-Lagrange
theorem.

It is worth mentioning that these extended
versions of Hahn-Banach-Lagrange theorem,
sandwich theorem, and Hahn-Banach theorem
extended the original ones in two features: they
extend the original version to the case with
extended sublinear functions and, in contrast to [5],
they are topological versions which hold without
any qualification condition.

We will maintain the notations used in Section 2.

Theorem 3.1 [Approximate Hahn-Banach-
Lagrange theorem] Let X,Y be IcHtvs, C be a

nonempty closed convex subset of X,
S:Y > uf+c} be an Isc extended sublinear

function, and g: X —»Y* be an S -convex
mapping such that the set in (2.1) is closed in the
product  space XxYxij . Let  further
f:X > Ufte} be a proper Isc convex

function.
Assume that
(domf)n{xeC:3ae; such that (Sog)(X)<a}=J.

(3.1)
Then the following statements are equivalent:

(i) ixr:g[f(X)+(S og)(M]ei,

(i) there exist nets (y,x%), <Y x;i, and
(¢, % %), © X 'x X 'x X" with y"<yS on Y
for all iel such that y —1, x; + X, +X; —0,.,
and

liminf {—f"0¢) - (¥ 09)'(6) ~kc0G)}

= inf [f(x)+ Iir_nilnf (yi*og)(x)}

xeC

= inf [f()+(So0g)(X)]ei .

Trang 172



TAP CHi PHAT TRIEN KH&CN, TAP 19, SO T6- 2016

Proof. Let w:; —; be the function defined
by w(A)=A forall Ae; . Itis clear that y is
proper convex continuous function and

V/*(7)={0 Torsh

+oo  else.
The conclusion follows from Theorem 2.2. Firstly,
(2.2) follows from the assumption (3.1).

[@) = (@]
Assume that g:= inf [f(X)+(Sog)(X)] e .

3.2

Then f(X)+(Sog)(X)> g for allxeC. Note that
xeC,aej , (S0g)(X) <« then
f)+y(@)=1f)+a=f(X)+(So0g)(X) > L.
Thus, with T:= f — g then

xeC,aei, Sog)X)<a = F(X)+w(x)=0,
i.e., (@) inTheorem 2.2 holds, where ¥ plays the
role of f. By this theorem, (a) is equivalent to (b),
namely, there exist nets (y/,y)_, <Y xj, and
(K X X T )i © XX XX XX ) with
y,<xnS on Y for all iel such that

&2 T00)+(y 09y (06) +i06) +y (3 +7) Viel.

(3.3)
and 0% X0 X5 70 &) — (Ox*‘ 0,0).
(3.4)
It follows from (3.3) that (7 +y)., < domy".
Hence, by (3.2), one has
w'm+y)=0and n+y=1forall iel
(3.5)
As 1. — 0 we have y —1. This and the fact that
y<yS on Y for all iel imply that

liminf y'(y) <S(y) for all yeY. Hence, one gets
iel

liminf (y7 0g)(X) <(Sog)(x) for all xeC (note
iel

that this inequality still holds in the case where
X ¢ domg).

Moreover, by (3.5), (3.3) can be rewritten as

&= F06) - (% 09) () —ic06) = B, Viel

(3.6)

(note that x;edomf”, x; edom(y 0g)” and
X; € domi; for all iel as (3.3) holds). On the

other hand, by the definition ofthe conjugate
function, one has

&+ T+ 09)() — 4 + % + %, %)

> - £(¢)— (% 00)' (%) —ic0%), ¥xeC, Viel.
Combing this inequality and (3.6), we get

&+ T+ 09)() — (4 + % + %, %)

2&— 110 - (¥ 09) (%z) —ic(x) = B VxeC,Viel.
Taking liminf in the last inequalities and taking the
fact that liminf (v 0g)(x) <(Sog)(x) for all

iel

xeC

into account, one gets

fX)+(S0g)(x) = f(x)+ liminf(y; 0g)(x)

iel

>~ limsup { ') + (¥ 09) 0G) + (%)}
> B =inf[ f(X)+(S0g)(x)], VxeC,
and (ii) follows.

[(i() = ()] The converse implication is trivial. The
proof is complete.

As a consequence of Theorem 3.1,
approximate Hahn-Banach theorem is derived,
namely, Corollary 3.1. This result can be
considered as a convex version of the approximate
Hahn-Banach theorem for positive homogeneous
functions established recently in [2].

Corollary 3.1  [Approximate  Hahn-Banach
theorem] Let X be an IcHtvs, S: X — | U{+o}

be an Isc extended sublinear function, F be a
closed subspace of X, and ¢:F—; be a

continuous linear functional on F and such that
¢<S on F. Assume that F~(domS)=J.

Then there exists a net (zi*)i , © X" such that

z7<Son X foralliel and 7 — ¢ on F.

Y:=X,C:=F, g: X—>X

Proof. Let with
909:= X gor all xex and X i UEed
with

f(x)::{_¢(x) if xeF,
+00 else.
Then g is S-convex and f is a proper Isc

convex function. We first observe that the
conditions (2.1) and (3.1) in Theorem 3.1 hold.
Indeed, since Fn(domS)=&, (3.1) holds. We

now set h:XxXx; — j U{toc} defined by
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h(x,y,4):=S(x-y)—4 for all
(% y,A) e XxXxj . Then h islsc. So one has
{0y, ) e XxYxj : S(@()~y) <A} =
{(xy,A) e XxXxj :S(x—y)—2=<0} =h"((-0,0])

is closed in the product space X xX xj, i.e., (2.1)
holds. Since Fn(domS)#< and ¢<S on F,
one has

inf[f(X)+(Sog)(X)] = inf[-#X)+S(X)] i .By

Theorem 3.1, there exists a net (y/, 7)., = X xj .,

iel
with y"<#S on X forall iel suchthat y, —1
and
inf [-g(X) + liminf y'(X)] = inf[-#(X) + S(X)] = 0

| xeF

xeF ie

(s ¢<S on F) which gives rise to
liminf y/(x) > #(x), vxeF.

iel

(3.7)
On the other hand, since F is subspace of X, it

follows that

liminf y/(=X) > ¢(-X), Vx e F (—x also belongs to F),

iel

which is equivalent to

Iirrilslup V() < é(x), VxeF.
(3.8)
From (3.7) and (3.8), we get y" — ¢ on F . Since
)a<i, and % —>1, we can assume that
7,>0 forall iel. Thus, by setting Zi=1Y for

all iel, we obtain z'<S on X forall iel and
zZ' — ¢ on F. The proof is complete.

Corollary 3.2 [Approximate sandwich theorem]
Let X bean IcHtvs, S: X — | w{+c} be an Isc
sublinear function and f:X —; U{tw} be a
proper Isc convex function satisfying —f <S on
X. Assume that (dom f)~(domS)=&. Then
there

exists a  net

such  that

(yi*)iel < x*
—f(x) < liminf y'(x) < limsupy;(x) < S(x), Vxe X.
iel iel

Proof. The conclusion follows from Theorem
3.1bytaking Y = X, C:=X and g(X):=x forall

x e X. Indeed, similar to the proof of Corollary
3.1, the set in (2.1) is closed in the product space
XxXxi and (3.1) in Theorem 3.1 also holds as
(dom f)~(domS)=<. Moreover, observe that
(domf)~(domS)=< and —f <S on X entail
inf[f(X)+S(X)]e; . Theorem 3.1 ensures the
eXistence of a net (Von)_, = X'xi, with
Y, <yS on X forall iel such that  —1 and
inf [ £(X) + liminf y'(x)] = inf[ f(xX)+S(x)]=0

Yex i xeX
(8s — £ <8 on X) |\ iiCh implies that

limsup y;(x) = liminf y;(x) > —f(x) for all xe X.
iel

iel ie

Since y'<xS on X forall iel and y —1, the
conclusion of the corollary follows.
The equivalence of sequential Farkas lemmas

and approximate  Hahn-Banach-Lagrange
theorem

It is well-known that the original (linear)
Farkas lemma for convex systems is equivalent to
the celebrated Hahn-Banach theorem [16]. For the
generalizations of non-asymptotic Farkas lemma,
i.e., the versions of Farkas-type results that hold
under some qualification conditions, it was shown
in [5] that these versions are equivalent to some
extended versions of the Hahn-Banach theorem. In
this section, we establish the counter part of [5]
concerning versions of sequential Farkas lemmas
and the so-called approximate Hahn-Banach-
Lagrange theorem just obtained in Section 3.
Concretely, we show that two versions of
sequential Farkas lemma for cone-convex systems
and for sublinear-convex systems in [10] and the
approximate Hahn-Banach-Lagrange established in
this paper are equivalent.

Claim: Theorem 2.1, Theorem 2.2 and Theorem
3.1 are equivalent.
Proof of the Claim:
o[Theorem 2.1 = Theorem 2.2] This was
proved in [10].
«[Theorem 2.2 = Theorem 3.1] It was proved
in Section 3.
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oIt is sufficient to prove the
[Theorem 3.1 = Theorem 2.1].
Let X,Y, C K, f,

Theorem 2.1. Let > * =L« |

We firstly observe that S is an Isc sublinear
function (as K is a closed convex cone), and g is
S -convex as g is K -convex.

implication

and 9 be as in

Secondly, since S is the indicator function of
-K, we get

{(x ¥, A) e XxY xi :S(g(¥) —y) < A} =epi, g x[0,+.

This set is closed in X xYx; by the K -epi
closedness of the mapping g, and hence the set in

(2.1)isclosed in X xY xj .

Thirdly, note that we also have
C n(dom f)~(dom(S 0g))
=(dom f)n{xeC:g(X) e-K} =
(If  g(x) e-K, (Sog)(x) =0; otherwise, i.e., if
g(x) ¢ -K , then (S0g)(X) =i ,(9(X)) =+x). This
means that (3.1) holds.
On the other hand, if (i) in Theorem 2.1 holds,
ie, xeC, gx)e-K = f(x)=>0,then
fFO)+(S0g)(¥) = f(x) +i(9() = f(x) 20,
vxeCng'(-K). (4.1)
Observe that the above inequality, (4.1), still holds
for xeC that does not belong to g™(-K).
Consequently, one gets
f(X)+(So0g)(x) =0, vxeC,
or equivalently, in(1:c [f(X)+(Sog)(¥)] = 0.

As  (domf)nCn(g'(-K))#@ we have
inf [f(X)+(S0g)(X)] < +oo. So,
inf[f(X)+(Sog)X)]e; .

yields the existence of nets (y;,#)  <Yx; , and

ie

Now, Theorem 3.1

(%%, %), = X xX"x X" with y'<xS on Y
for all iel such that y, =1, x +x, +X; —>0X*
and —limsup { £°0G) + (¥ 09)'0G) +K0G)}
=inf[f(X)+(S0g)(¥)]=0
thij:ch implies that

limsup { £°0) + (3] 09)'06) +i¢()} <O.

(4.2)
By the definition of limit superior, for any ¢ >0,

there exists i, € | such that

700 + (¥ 09) (%) +ic() <& Vi? iy
Therefore, there exists (g)_, <

& — 0, such that

F700) + (¥ 09) 06) +ic () <&, Viel.
Note that (y;‘)ieI < K. Indeed, as for any il we
have y(y) <7 S(y) =7ik(y) =0, vye-K.

The implication [(i) = (ii)] in Theorem 2.1
follows.

The proof of the implications [ (ii) = (iii)], [ (iii)
= (iv)], and [ (iv)= (i)] are similar to that of
Theorem 2.1.

Acknowledgement: The authors would like to
thank the anonymous referees for their valuable
comments that significantly improved the quality of
the paper.
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Dinh 1y Hahn-Banach-Lagrange xap xi

e Nguyén Pinh

Trudng Dai hoc Quéc té, PHQG-HCM
e Tran Hong Mo

Trudng Pai hoc Tién Giang

TOM TAT

Trong bdi bdo nay chiing téi thiét lip mot dinh
ly Hahn-Banach-Lagrange mo réong ma khong co
diéu kién chinh quy, goi la dinh 1y xdp xi Hahn-
Banach-Lagrange. Dinh Iy ndy trong cdc truong
hop ddc biét cho cac phién ban cua cac dinh ly
Hahn-Banach xdp xi va dinh ly sandwich xdp xi.
Cdc dang dinh Iy xap xi ndy mé rong cdc dinh 1y
dang kinh dién theo hai khia canh: Thir nhat, cac
“ban goc” dwoc mo rong ra cho ham dudi tuyén
tinh (xudt hién trong cdc dinh Iy nay) cé thé nhdn
gid tri vé cing; thir hai, khdc véi cac két qud trong

[5], day la cac phién ban topé cua cac dinh ly nay
nhwng khéng doi héi bat civ dieu kién chinh quy
ndo. Chang toi ciing chitng minh dwoc rang cdc
dinh ly Farkas dang tiém cdn dugc thiét lap trong
[10] va dinh Iy Hahn-Banach-Lagrange xdp xi do
chiing téi thiét lap ¢ day la twong dwong véi nhau.
Piéu nay cing véi cdc két qua trong [5, 10] cho
mét birc tranh toan canh vé sw twong dong giita
dinh Iy Hahn-Banach va bé dé Farkas tir cdc phién
ban “goc” dén cac phién ban mé réng cia ching,
du la cac mo rong tiém can hay khong tiém can.

Tir khéa: B6 dé Farkas, Bé dé Farkas theo ddy, dinh 1y Hahn-Banach-Lagrange, dinh 1y Hahn-Banach,

dinh 1y sandwich, gidi han trén, gidi han dudi.
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