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ABSTRACT 

In this paper, we proved a new extended 

version of the Hahn-Banach-Lagrange theorem 

that is valid in the absence of a qualification 

condition and is called an approximate Hahn-

Banach-Lagrange theorem. This result, in special 

cases, gives rise to approximate sandwich and 

approximate Hahn-Banach theorems. These results 

extend the  Hahn-Banach-Lagrange theorem, the 

sandwich theorem in [18], and the celebrated 

Hahn-Banach theorem. The mentioned results 

extend the original ones into two features: Firstly, 

they extend the original versions to the case with 

extended sublinear functions (i.e., the sublinear 

functions that possibly possess extended real 

values). Secondly, they are topological versions 

which held without any qualification condition. 

Next, we showed that our approximate Hahn-

Banach-Lagrange theorem was actually equivalent 

to the asymptotic Farkas-type results that were 

established recently [10]. This result, together with 

the results [5, 16], give us a general picture on the 

equivalence of the Farkas lemma and the Hahn-

Banach theorem, from the original version to their 

corresponding extensions and in either non-

asymptotic or asymptotic forms.    

INTRODUCTION AND PRELIMINARY  

It is well-known that the Farkas lemma for 

convex systems is equivalent to the celebrated 

Hahn-Banach theorem [16]. In the last decades, 

many generalized versions of the Farkas lemma 

have been developed (see [3, 5, 4, 9, 11, 15, 17], 

and, in particular, the recent survey [7]). For the 

generalizations of non-asymptotic Farkas lemma, 

i.e., the versions of Farkas-type results were hold 

under some qualification condition. It was shown 

in [5] that these versions are equivalent to some 

extended versions of the Hahn-Banach theorem. A 

natural question arises: Are there any similar 

results for generalized asymptoic/sequential Farkas 

lemmas and certain types of extended Hahn-

Banach theorems? This paper is aimed to answer 

this question. Fortunately, the answer is 

affirmative, and so the result in this paper can be 

considered as a counter part of [5] concerning 

versions of sequential Farkas lemmas and the so-

called approximate Hahn-Banach-Lagrange 

theorems (which are extended versions of the 

Hahn-Banach theorem). 

In this paper, we establish a new extended 

version of Hahn-Banach-Lagrange theorem which 

extends the original one in [5, 18], and it is valid in 

the absence of a regularity condition. It is called 

the approximate Hahn-Banach-Lagrange theorem. 

The results then gives rise to an approximate 

sandwich theorem and an approximate Hahn-

Banach theorem in the manner as in [5]. The 

generalization of these reults in comparison with 

[5, 18] is twofold: firstly, they extend the original 

version to the case with extended sublinear 

functions (i.e., the sublinear functions which 

possibly possess extended real values); secondly, 
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in contrast to [5], they are topological versions 

which hold without any qualification condition. 

The paper can be considered as a continuation of 

the previous ones (of the authors and their co-

authors) [5, 10, 12]. Some tools and some ideas of 

generalizations to Hahn-Banach-Lagrange theorem 

and to real-extended sublinear functions are 

modifications of the one in [5] to adapt to the case 

where no qualification condition is assumed. 

 Let X  and Y  be locally convex Hausdorff 

topological vector spaces (lcHtvs in short), with 

their topological dual spaces X   and ,Y  

respectively. The only topology we consider on 
*,X Y  is the w -topology. For a set ,A X   the  

closure of A  w.r.t. the weak -topology is denoted 

by cl .A  The  indicator function of A  is denoted 

by 
Ai ,  i.e.,   0Ai x   if ,x A  Ai x    if 

\ .x X A  Let ,B C  be two subsets of some 

locally convex Hausdorff topological vector space. 

We say that B  is closed regarding C  if 

(cl )B C B C    (see [1], [5]). 

Let : { }.f X   ¡ The effective domain 

of f  is the set   dom : : < .f x X f x    The 

function f  is proper if dom .f   The set of all 

proper, lower semi-continuous (lsc in short) and 

convex functions on X  will be denoted by  .X  

The epigraph of f  is  

  epi : ( , ) : .f x X f x    ¡  

The Legendre-Fenchel conjugate of f  is the 

function : : { }f X     ¡ ¡  defined   

    , , .sup
x X

f x x x f x x X    



     

Now let K  be a closed convex cone in Y  and 

let K  be the partial order on Y  generated by ,K  

i.e.,  

1 2 2 1if and only if .Ky y y y K    

We add to Y  a greatest element with respect to 

,K  denoted by ,K which does not belong to ,Y  

and let { }KY Y    . Then one has 
K Ky    for 

every .y Y
 

We assume by convention: 

K K Ky y        for all ,y Y  and 

K K    if 0.   The dual cone of ,K  denoted 

by ,K
 is defined by  

 : : , 0 for all .K y Y y y y K        

A mapping :h X Y  is called K -convex if  

1 2 1 2 1 2, , , > 0, 1x x X      
  

1 1 2 2 1 1 2 2( ) ( ) ( ),Kh x x h x h x        

where " K " is the binary relation (generated by 

K ) extended to Y   by setting 

for all .K Ky y Y    The  domain of h , 

denoted by dom ,h  is defined to be the set 

 dom : : ( ) .h x X h x Y    The K -epigraph of 

h  is the set  

 epi : ( , ) : ( ) .Kh x y X Y y h x K      

It is clear that h  is K -convex if and only if epiKh  

is convex. In addition, :h X Y  is said to be K -

epi closed if epiKh  is a closed set in the product 

space. Then, 1( )h K   is closed (see [5]). It is 

worth observing that if h  is K -convex, then 
1( )h K   is convex. 

Moreover, for any 
y Y 

 and 
: ,g X Y

 

we define the composite function 
: { }y g X   o ¡

 as follows  

 
, ( ) , if dom ,

( )
, otherwise.

y g x x g
y g x




 
 


o  

The function : { }S Y   ¡  is called 

(extended) sublinear if  

  ( ) ( )S y y S y S y     and 

   , , , 0.S y S y y y Y        

By convention, we set (0 ) 0 .YS   We extend S  to 

Y   by setting ( ) .KS     An extended sublinear 

function : { }S Y   ¡  allows us to introduce 

in Y   a binary relation which is reflexive and 

transitive as:  

1 2S
y y  if 1 2Ky y , where 

  .: : 0K y Y S y     

It is worth mentioning that the definition of the 

relation S  can be understood in the extended 

sense of : { }.S Y   ¡  The relation S  can 

be extended to Y   in a suitable way. 
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Given a sublinear function : { },S Y   ¡  

we adapt the notion S -convex (i.e.,convex with 

respect to a sublinear function) in [20] and 

introduce the one corresponding to an extended 

sublinear function :S  

A mapping :h X Y    is said to be S  -

convex if for all 1 2 1 2, , , > 0,x x X   1 2 1    

one has  

1 1 2 2 1 1 2 2( ) ( ) ( ).Sh x x h x h x       

It is worth observing that, as mentioned in [19, 

Remark 1.10], " S -convex can mean different 

things under different circumstances" such as, 

when ,Y  ¡ if ( ) : | |,S y y ( ) : ,S y y ( ) : ,S y y 

or ( ) 0,S y  respectively, then " S -convex" means 

"affine", "convex", "concave" or "arbitrary", 

respectively. 

It can be easily verified that if h  is S -convex 

then h  is K -convex with 

 : : ( ) 0 .K y Y S y     Conversely, if h  is K -

convex with some convex cone K  then h  is S -

convex with KS i  (see [5]). 

The organization of the paper is as follows: In 

the next section, Section 2, we recall two new 

versions of sequential Farkas lemma for cone-

convex systems and sublinear-convex systems 

established in [10]. In Section 3, we establish the 

so-called approximate Hahn-Banach-Lagrange 

theorem, a topological and asymptotic extended 

version of the original algebraic one in [18, 19, 

20]. Versions of approximate sandwich theorem 

and approximate Hahn-Banach theorem are 

derived from this approximate Hahn-Banach-

Lagrange theorem. The last section, Section 4, we 

show that our new approximate Hahn-Banach-

Lagrange theorem is actually equivalent to the 

asymptotic Farkas-type results that were 

established recently in [10]. This equivalence can 

be considered as the last piece of the whole picture 

on the equivalence of the Farkas lemma and the 

Hahn-Banach theorem for which the other pieces 

are the equivalence of non-asymptotic extended 

convex Farkas lemmas and extended Hahn-

Banach-Lagrange theorem established in [5], and 

the one between the linear Farkas lemma and the 

celebrated Hahn-Banach theorem [16].   

Sequential Farkas lemma for convex systems 

In this section we will recall the sequential 

Farkas lemmas for convex systems in [10] which 

hold without any qualification condition: the 

asymptotic version of the Farkas lemma for 

systems which is convex w.r.t. a convex cone and 

the one for systems which is convex w.r.t. an 

extended sublinear function. 

Let ,X Y be lcHtvs, K be a closed convex 

cone in Y , C be a nonempty closed convex subset 

of X  and : { }f X   ¡  be a proper lsc and 

convex function. 

Sequential Farkas lemma for cone-

convexsystems 

Consider :g X Y   be a K -convex and K

-epi closed mapping. Let 1: ( )A C g K    and 

assume that  dom = .f A    The following 

sequential Farkas lemmas in [10] will be used in 

the sequence. 

Theorem 2.1 [10] The following statements are 

equivalent:   

(i) , ( ) ( ) 0x C g x K f x    ,  

(ii) there exist nets ( )i i Iy K 

  and

* * *

1 2 3( , , , )i i i i i Ix x x X X X  

     ¡ such that 

*

1 2 3( ) ( ) ( ) ( ) ,i i i i C if x y g x i x i I          o  

and  1 2 3( , ) 0 ,0 ,i i i i X
x x x  

      

(iii) there exist nets ( )i i Iy K 

  and

*( , )i i i Ix X

   ¡ such that 

( ) ( ) ,i i C if y g i x i I       o  

and  ( , ) 0 ,0 ,i i X
x  

   

(iv)there exists a net ( )i i Iy K 

   such that  

( ) ( )( ) 0, .liminf i
i I

f x y g x x C



   o  

From the previous theorem, it is easy to see 

that under some closedness conditions, one gets 

back stable Farkas lemma established recently in 

[5] (see [10]). 
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Sequential Farkas lemma for sublinear-convex 

systems 

Let ,X Y  be lcHtvs, C  be a nonempty closed 

convex subset of ,X : { }S Y   ¡  be an lsc 

sublinear function and :g X Y   be an S -

convex mapping such that the set  

 ( , , ) : ( ( ) )x y X Y S g x y     ¡  (2.1) 

is closed in the product space .X Y  ¡  Let us 

consider : { }f X   ¡  and 

: { }   ¡ ¡  be proper convex lsc functions. 

We now recall two versions of asymptotic 

Farkas lemma for systems that are convex w.r.t. 

the sublinear function : { }S Y   ¡  in [10] 

 

Theorem 2.2 [10] Assume that the following 

condition holds:  

 (dom ) : dom , ( )( ) .f x C S g x       o
 

(2.2)                                                                                                    
 

Then the following statements are equivalent:   

(a)

, , ( )( ) ( ) ( ) 0x C S g x f x        ¡ o ,  

(b) there exist nets *( , )i i i Iy Y

   ¡  and 

* * *

1 2 3( , , , , )i i i i i i Ix x x X X X   

     ¡ ¡
 
with  

i iy S   on Y  for all i I  such that 

1 2 3( ) ( ) ( ) ( ) ( ) ,i i i i C i i if x y g x i x i I                o

 

and  1 2 3( , , ) 0 ,0,0 ,i i i i i X
x x x   

      

(c) there exist nets *( , )i i i Iy Y

   ¡  and 

*( , , )i i i i Ix X 

   ¡ ¡  with 
i iy S   on Y  for 

all i I  such that 

( ) ( ) ( ) ,i i C i i if y g i x i I            o  (2.3) 

                    and  ( , , ) 0 ,0,0 .i i i X
x   

             (2.4) 

 

Theorem 2.3 [10] Assume that (2.2) holds. Then 

the following statements are equivalent:   

(a) , , ( )( ) ( ) ( ) 0x C S g x f x        ¡ o , 

(b) there exists a net *( , , )i i i i Iy Y 

   ¡ ¡  

with 
i iy S   on Y  for all i I  such that 0,i 

( ) domi i i I   

   and 

 ( ) ( )( ) ( ) 0 .liminf i i i
i I

f x y g x x C   



     o
 

                                                            
             (2.5) 

Approximate Hahn-Banach-Lagrange theorem 

In this section we establish the so-called 

approximate Hahn-Banach-Lagrange theorem, a 

topological and asymptotic extended version of the 

original algebraic version in [18], [19], and [20]. 

An approximate sandwich theorem and an 

approximate Hahn-Banach theorem are derived 

from this approximate Hahn-Banach-Lagrange 

theorem. 

It is worth mentioning that these extended 

versions of Hahn-Banach-Lagrange theorem, 

sandwich theorem, and Hahn-Banach theorem 

extended the original ones in two features: they 

extend the original version to the case with 

extended sublinear functions and, in contrast to [5], 

they are topological versions which hold without 

any qualification condition.  

We will maintain the notations used in Section 2. 

Theorem 3.1 [Approximate Hahn-Banach-

Lagrange theorem] Let ,X Y  be lcHtvs, C  be a 

nonempty closed convex subset of ,X

: { }S Y   ¡  be an lsc extended sublinear 

function, and :g X Y   be an S -convex 

mapping such that the set in (2.1) is closed in the 

product space .X Y  ¡  Let further 

: { }f X   ¡  be a proper lsc convex 

function. 

Assume that 

   dom : ( )( ) .f x C such that S g x      ¡ o

               (3.1) 

Then the following statements are equivalent: 

(i)  ( ) ( )( ) ,inf
x C

f x S g x


 o ¡  

(ii) there exist nets *( , )i i i Iy Y

   ¡  and 

* * *

1 2 3( , , )i i i i Ix x x X X X  

     with 
i iy S   on Y  

for all i I  such that 1,i 
1 2 3 *0 ,i i i X

x x x    

and 

 * *

1 2 3( ) ( ) ( ) ( )liminf i i i C i
i I

f x y g x i x    



  o  

*( ) ( )( )inf liminf i
x C i I

f x y g x
 

  
  

o
 

 ( ) ( )( ) .inf
x C

f x S g x


  o ¡  
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Proof. Let : ¡ ¡  be the function defined 

by ( ) =    for all . ¡  It is clear that   is 

proper convex continuous function and  

0 if = 1,
( )

else.


 


 


                       (3.2) 

The conclusion follows from Theorem 2.2. Firstly, 

(2.2) follows from the assumption (3.1). 

[(i) (ii)]
 

Assume that  : ( ) ( )( ) .inf
x C

f x S g x


  o ¡  

Then ( ) ( )( )f x S g x  o  for all .x C  Note that 

,x C   ¡ , ( )( )S g x o  then  

( ) ( ) = ( ) ( ) ( )( ) .f x f x f x S g x       o  

Thus, with ° :f f    then   

°, , ( )( ) ( ) ( ) 0,x C S g x f x        ¡ o
 

i.e., (a) inTheorem 2.2 holds, where °f  plays the 

role of .f
 
By this theorem, (a) is equivalent to (b), 

namely, there exist nets *( , )i i i Iy Y

   ¡  and 

* * *

1 2 3( , , , , )i i i i i i Ix x x X X X   

     ¡ ¡  with 

*

i iy S  on Y  for all i I  such that 

°
1 2 3( ) ( ) ( ) ( ) ( ) .i i i i C i i if x y g x i x i I   

             o

                                                                          (3.3) 

and  
1 2 3 *( , , , , ) (0 ,0,0).i i i i i X

x x x                                                                                                                              

(3.4) 

It follows from (3.3) that ( ) dom .i i i I   

   

Hence, by (3.2), one has  

( ) = 0 andi i    =1 for all .i i i I  
  

        

(3.5) 

As 0i   we have 1.i   This and the fact that 

i iy S   on Y  for all i I  imply that

( ) ( )liminf i
i I

y y S y



  for all .y Y  Hence, one gets 

( )( ) ( )( )liminf i
i I

y g x S g x



o o  for all x C  (note 

that this inequality still holds in the case where 

domx g ). 

Moreover, by (3.5), (3.3) can be rewritten as  

1 2 3( ) ( ) ( ) ( ) ,i i i i C if x y g x i x i I            o        

(3.6) 

(note that 
1 dom ,ix f  2 dom( )i ix y g   o  and 

3 domi Cx i   for all i I  as (3.3) holds). On the 

other hand, by the definition ofthe conjugate 

function, one has 

1 2 3( ) ( )( ) ,i i i i if x y g x x x x x         o
 

1 2 3( ) ( ) ( ) ( ), , .i i i i C if x y g x i x x C i I              o  

Combing this inequality and (3.6), we get 

1 2 3( ) ( )( ) ,i i i i if x y g x x x x x         o
 

1 2 3( ) ( ) ( ) ( ) , , .i i i i C if x y g x i x x C i I               o

Taking liminf in the last inequalities and taking the 

fact that ( )( ) ( )( )liminf i
i I

y g x S g x



o o  for all 

 
into account, one gets  

( ) ( )( ) ( ) ( )( )liminf i
i I

f x S g x f x y g x



  o o

 * * * * * * *

1 2 3( ) ( ) ( ) ( )limsup i i i C i
i I

f x y g x i x


   o  

           
[ ( ) ( )( )], ,inf

x C

f x S g x x C


    o  

and (ii) follows. 

[(ii) (i)]  The converse implication is trivial. The 

proof is complete.    

As a consequence of Theorem 3.1, 

approximate Hahn-Banach theorem is derived, 

namely, Corollary 3.1. This result can be 

considered as a convex version of the approximate 

Hahn-Banach theorem for positive homogeneous 

functions established recently in [2]. 

Corollary 3.1 [Approximate Hahn-Banach 

theorem] Let X  be an lcHtvs, : { }S X   ¡  

be an lsc extended sublinear function, F  be a 

closed subspace of ,X  and : F  ¡  be a 

continuous linear functional on F  and such that 

S   on .F  Assume that  dom .F S   

Then there exists a net  i i I
z X 


  such that 

iz S   on X  for all i I  and 
iz    on .F  

 

Proof. Let 
: ,Y X : ,C F :g X X

 with 
( ) :g x x

 for all x X  and 
: { }f X   ¡

 

with  

( ) if ,
( ) :

else .

x x F
f x

 
 


 

Then g  is S -convex and f  is a proper lsc 

convex function. We first observe that the 

conditions (2.1) and (3.1) in Theorem 3.1 hold. 

Indeed, since  dom ,F S   (3.1) holds. We 

now set : { }h X X    ¡ ¡  defined by 

x C
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( , , ) : ( )h x y S x y     for all 

( , , )x y X X    ¡ . Then h  is lsc. So one has  

 ( , , ) : ( ( ) )x y X Y S g x y      ¡
 

   1( , , ) : ( ) 0 ( ,0]x y X X S x y h         ¡

 

is closed in the product space ,X X  ¡  i.e., (2.1) 

holds. Since (dom )F S   and S   on ,F  

one has 

[ ( ) ( )( )] [ ( ) ( )] .inf inf
x F x F

f x S g x x S x
 

    o ¡ By 

Theorem 3.1, there exists a net *( , )i i i Iy X

   ¡  

with 
i iy S   on X  for all i I  such that 1i   

and  

[ ( ) ( )] [ ( ) ( )] 0inf liminf infi
x F i I x F

x y x x S x 

  

     
 

(as on )S F 
  

which gives rise to 

                   ( ) ( ), .liminf i
i I

y x x x F



               

(3.7) 

On the other hand, since F  is subspace of ,X it 

follows  that 

( ) ( ), ( also belongs to ),liminf i
i I

y x x x F x F



     

which is equivalent to  

                   
( ) ( ), .limsup i

i I

y x x x F



                

(3.8) 

 From (3.7) and (3.8), we get 
iy    on F . Since 

( )i i I   ¡  and 1,i   we can assume that 

> 0i  for all .i I  Thus, by setting 1:i i
i

z y

   for 

all ,i I  we obtain 
iz S   on X  for all i I  and 

iz    on .F  The proof is complete.    

 

Corollary 3.2 [Approximate sandwich theorem] 

Let X  be an lcHtvs, : { }S X   ¡  be an lsc 

sublinear function and : { }f X   ¡  be a 

proper lsc convex function satisfying f S   on 

.X  Assume that    dom dom .f S   Then 

there   

exists a net  i i I
y X 


  such that 

( ) ( ) ( ) ( ), .liminf limsupi i
i I i I

f x y x y x S x x X 

 

     

 

Proof. The conclusion follows from Theorem 

3.1 by taking ,Y X :C X  and ( ) :g x x  for all 

.x X  Indeed, similar to the proof of Corollary 

3.1, the set in (2.1) is closed in the product space 

X X  ¡  and (3.1) in Theorem 3.1 also holds as 

   dom dom .f S   Moreover, observe that 

   dom domf S   and f S   on X  entail 

[ ( ) ( )] .inf
x X

f x S x


  ¡  Theorem 3.1 ensures the 

existence of a net   *,i i i I
y X


  ¡  with 

i iy S   on X  for all i I  such that 1i   and 

[ ( ) ( )] [ ( ) ( )] 0inf liminf infi
x X i I x X

f x y x f x S x

  

   
 (as on )f S X 

 
which implies that  

( ) ( ) ( ) for all .liminflimsup i i
i I i I

y x y x f x x X 

 

   

 

Since 
i iy S   on X  for all i I  and 1,i   the 

conclusion of the corollary follows.    

The equivalence of sequential Farkas lemmas 

and approximate Hahn-Banach-Lagrange 

theorem 

It is well-known that the original (linear) 

Farkas lemma for convex systems is equivalent to 

the celebrated Hahn-Banach theorem [16]. For the 

generalizations of non-asymptotic Farkas lemma, 

i.e., the versions of Farkas-type results that hold 

under some qualification conditions, it was shown 

in [5] that these versions are equivalent to some 

extended versions of the Hahn-Banach theorem. In 

this section, we establish the counter part of [5] 

concerning versions of sequential Farkas lemmas 

and the so-called approximate Hahn-Banach-

Lagrange theorem just obtained in Section 3. 

Concretely, we show that two versions of 

sequential Farkas lemma for cone-convex systems 

and for sublinear-convex systems in [10] and the 

approximate Hahn-Banach-Lagrange established in 

this paper are equivalent. 

Claim: Theorem 2.1, Theorem 2.2 and Theorem 

3.1 are equivalent. 

Proof of the Claim: 

 [Theorem 2.1   Theorem 2.2] This was 

proved in [10]. 

 [Theorem 2.2   Theorem 3.1] It was proved 

in Section 3. 
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 It is sufficient to prove the implication 

[Theorem 3.1   Theorem 2.1]. 

Let 
, , , , ,X Y C K f

 and 
g

 be as in 

Theorem 2.1. Let 
: KS i

. 

We firstly observe that S  is an lsc sublinear 

function (as K  is a closed convex cone), and g  is 

S -convex as g  is K -convex. 

Secondly, since S  is the indicator function of 

K , we get  

 ( , , ) : ( ( ) ) epi [0, [.Kx y X Y S g x y g        ¡

This set is closed in X Y  ¡  by the K -epi 

closedness of the mapping ,g  and hence the set in 

(2.1) is closed in .X Y  ¡  

Thirdly, note that we also have  

   dom dom( )C f S g  o
 

   = dom : ( )f x C g x K     

(If ( ) ,g x K ( )( ) 0;S g x o otherwise, i.e., if 

( )g x K , then ( )( ) ( ( )) ).KS g x i g x  o   This 

means that (3.1) holds. 

On the other hand, if (i) in Theorem 2.1 holds, 

i.e., , ( ) ( ) 0,x C g x K f x    then  

( ) ( )( ) ( ) ( ( )) ( ) 0,Kf x S g x f x i g x f x    o
 

1( ).x C g K      (4.1) 

Observe that the above inequality, (4.1), still holds 

for x C  that does not belong to 1( ).g K   

Consequently, one gets 

( ) ( )( ) 0, ,f x S g x x C   o  

or equivalently, [ ( ) ( )( )] 0.inf
x C

f x S g x


 o   

As    1dom ( ) =f C g K      we have 

[ ( ) ( )( )] < .inf
x C

f x S g x


 o  So, 

[ ( ) ( )( )] .inf
x C

f x S g x


 o ¡  Now, Theorem 3.1 

yields the existence of nets   *,i i i I
y Y


  ¡  and

  * * *

1 2 3, ,i i i i I
x x x X X X  


    with 

i iy S   on Y  

for all i I  such that 1,i 
1 2 3 *0i i i X

x x x      

and  1 2 3( ) ( ) ( ) ( )limsup i i i C i
i I

f x y g x i x      



  o
 

[ ( ) ( )( )] 0inf
x C

f x S g x


  o  

which implies that  

           
 1 2 3( ) ( ) ( ) ( ) 0.limsup i i i C i

i I

f x y g x i x      



  o   

                                                                            

(4.2) 

By the definition of limit superior, for any > 0,  

there exists 0i I  such that  

1 2 3 0( ) ( ) ( ) ( ) , .i i i C if x y g x i x i i         o ?  

Therefore, there exists ( )i i I   ¡  satisfying 

0i   such that  

1 2 3( ) ( ) ( ) ( ) , .i i i C i if x y g x i x i I          o  

Note that   .i i I
y K 


  Indeed, as for any i I we 

have ( ) ( ) ( ) 0, .i i i Ky y S y i y y K 

      

The implication [(i)   (ii)] in Theorem 2.1 

follows. 

The proof of the implications [ (ii)  (iii)], [ (iii)

  (iv)], and [ (iv)  (i)] are similar to that of 

Theorem 2.1.   
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Định lý Hahn-Banach-Lagrange xấp xỉ 
 Nguyễn Định 
Trường Đại học Quốc tế, ĐHQG-HCM  

 Trần Hồng Mơ 
Trường Đại học Tiền Giang  

TÓM TẮT  

Trong bài báo này chúng tôi thiết lập một định 

lý Hahn-Banach-Lagrange mở rộng mà không có 

điều kiện chính quy, gọi là định lý xấp xỉ Hahn-

Banach-Lagrange. Định lý này trong các trường 

hợp đặc biệt cho các phiên bản của các định lý 

Hahn-Banach xấp xỉ và định lý sandwich xấp xỉ. 

Các dạng định lý xấp xỉ này mở rộng các định lý 

dạng kinh điển theo hai khía cạnh: Thứ nhất, các 

“bản gốc” được mở rộng ra cho hàm dưới tuyến 

tính (xuất hiện trong các định lý này) có thể nhận 

giá trị vô cùng; thứ hai, khác với các kết quả trong 

[5], đây là các phiên bản tôpô của các định lý này 

nhưng không đòi hỏi bất cứ điều kiện chính quy 

nào. Chúng tôi cũng chứng minh được rằng các 

định lý Farkas dạng tiệm cận được thiết lập trong 

[10] và định lý Hahn-Banach-Lagrange xấp xỉ do 

chúng tôi thiết lập ở đây là tương đương với nhau. 

Điều này cùng với các kết qủa trong [5, 10] cho 

một bức tranh toàn cảnh về sự tương đồng giữa 

định lý Hahn-Banach và bổ đề Farkas từ các phiên 

bản “gốc” đến các phiên bản mở rộng của chúng, 

dù là các mở rộng tiệm cận hay không tiệm cận.  

Từ khóa: Bổ đề Farkas, Bổ đề Farkas theo dãy, định lý Hahn-Banach-Lagrange, định lý Hahn-Banach, 

định lý sandwich, giới hạn trên, giới hạn dưới. 
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