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ABSTRACT : Using the topological degree of class (S)+ introduced by F. E.
Browder in [1] and [2] we extend some results of the papers [3] and [4] to the case of

Banach spaces with locally bounded conditions.

1. INTRODUCTION

Let N be an integer >2 and D be a bounded open subset in R". In this paper we
study the following equation:

8 xVu {Zg xu +g0(x u)+a( )}:0 vxeD, (1.1)
X,

1

”MZ

The p- Laplace equation —Apu+f(x,u) =0 is a special case of (1.1). If p=2 and

a,(x,Vu)= (;ﬂ then (1.1) has the form:
X.

1

i=1 i

-Au{zg (x.u) §u+g0(x u)+a(x )}:0. (12)

The problem (1.2) has been solved in [4] (Theorem 3.1, p.514) by using the

topological degree for operators of class (B)+. However, that method doesn’t work when

p#2 and a, (x,Vu)= |Vu|"72 % . The one we use here can solve the problem (1.2) for all
p>1.
Moreover, our result is also stronger than Theorem 11 in [3] (p.357) where the authors
prove the existence result for the Dirichlet problem:
{—Apu =f(x,u)
u|¢9D = 0
with the condition (10) that the function b isin L’ (D) but not in L (D).

in D.

2. TOPOLOGICAL DEGREE OF CLASS (S),

In this section, we recall the class (S), introduced by Browder (see [1], [2]).
Definition 2.1. Let D be a bounded open set of a reflexive Banach space X and f be
a mapping from D into the dual space X of X. We say f is of class (S)+ if £ has the

following properties:
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(i) {f(xn)}n converges weakly to f(x) if{xn}n converges strongly to X in D,ie fisa
demicontinuous mapping on D. _
(ii) {xn}n converges strongly to X if {Xn}n converges weakly to x in D and

limsup, <f(xn),xn —x> <0.

Definition 2.1. Let {gt 0<t< 1} be a one-parameter family of maps of Dinto X'.
We say {gt 0<t< 1} is a homotopy of class (S)+, if the sequences {Xn}n and {gtn (xn )}n
converge strongly to xand g,(X) respectively for any sequence {Xn}n in D converging
weakly to some x in X and for any sequence {tn}n in [0,1] converging to t such that
limsup, ,, <gtn (x,).X, —x> <0.

Let f be a mapping of class (S)_ on D and let p bein X’ \f(&D). By Theorems 4
and 5 in [2] , the topological degree of fon D at p is defined as a family of integers and is
denoted by deg(f,D,p). In [6] Skrypnik showed that this topological degree is single-
valued (see also [2] ). The following result was proved in [2] .

Proposition 2.1. Let £ be a mapping of class (S)+ from D into X', and let y be in

X\ f (8D). Then we can define the degree deg(f,D,y) as an integer satisfying the

following properties:
(a) If deg(f,D,y)# 0 then there exists x € D such that f(x)=y.

(b) If {gt 0<t< 1} is a homotopy of class (S)+ and {yt :0<t< 1} is a continuous
curve in X such that Y, egt(ﬁD) for all te[O,l], then deg(gt,D, yt) is constant in t on
[0.1].

Proposition 2.2. Let A: DX bea mapping of class (S)+. Suppose that 0 e D\éD

and
Au=0, <Au,u>20 for uedD.

Then deg(A,D,0)=1.
Proposition 2.3. Let A, DX, te [0,1] be the homotopy family of operators of
class (S), . Suppose that A,u#0for uedD, te [0,1]. Then deg(A,,D,0)=deg(A,,D,0).

3. NONLINEAR ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

Let pbe a real number >2, N be an integer >2, QO and D be bounded open subsets
in R™. We denote by W, (D) the completion of C7 (D, ) in the norm:

1/p
||u||D = [“Vur dXJ VueC?(D,0).
D

Let Q, be an increasing sequence of open subsets of €2 such that Q_k is contained in

Q,,, and Q= ng CPut X =7 (Q), X, =W,"(Q,).
k=1
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We denote by p' and p  the conjugate exponent and the Sobolev conjugate exponent
of p,ie.,

1 .
., |—— if N2>
p'=(1—lj and p =¢N-p p.
P © if N<p
Let g,, g,, ..., gy be real functions on Q2x[] satisfying the following conditions:

(Cl1) The function g, (x,t) is measurable in x for fixed t in [J and continuous in t for
fixed x in Q forany i=0, ..., N.

(C2) g (x,O)zO vx eQ.

(C3) x)+k | V(x,t)eQxO, i=0,..,N and

(C4)

x)|z||t|q —B(x)|t|r —c(x)< LZNI:gi (x,1)z +g0(x,t)+a(x)} V(x,t,z)e Qx0 xO™

where s, ..., sy, kg, oy Ky, Ty, ..., Iy and r,q are non-negative real numbers and

by, .., by and ¢, o, B are measurable functions such that aeL’(Q),

AL 0 ! Lw 1
be(N(p—q—1)+pq’ j, pel'(Q), de(N(p—r)+pr’ ], cel'(Q), re(lp),

Np -1 N_p 1,
15 -1 ) ) ) ’ ’ L* (€ )
qe(l,p-1) roe[N(p—l)er oo] S, e( o I, oo} ael’(Q)

I e L,oo , s, G[Mri,ooj and b, e L} (Q) forany i=0, ..., N.
N(p-2)+p Np

We assume that the functions a, (x,s), i=1, .., N, s=(s, ..., s ) e[l " satisfy:
( ) ai(x,s) is defined and differentiable w.r.t all of its arguments for xeﬁ,
s=(sl, - sN)eD N. Moreover, ai(x,0)=0 foralli=1, ..., N, xeQ.

) There exist positive constants M, M, such that the inequalities :

a N
Zl%gg >M, (1+]s])" ;éf,

oa, (x, 2 oa, (X, .

—a‘a(: s) <d(x)(1+[s])" " and %ts) <M, (1+]5])

are satisfied, where de L} _(Q).

Theorem 3.1. Under conditions (C1)—(C6), there exists u in X such that for any
vey,

J.ila1 xVu —dx+.|.{2g xu %Jrgo(x u)+a( ):|VdX=0. (3.1)

Q i=1 i=1 i

To prove the theorem we need the following lemma.
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Lemma 3.1. Let X, = W;* (€, ). Under conditions (C1)—(C6) there exists u, in X,
such that for any veX,,

jza x,Vu, —dX+J‘{Zg X, U, a“ +gO(X u, ) +a(x )}vdx=o.

Q i=1

Proof. Fixa u in X, . We will show that there exists a unique T, (u) in X, satisfying

<Tk( JZa XVu)%dX+I{Zg X, u) %+g0(x u, )+a(x ):|VdX=0.(3.2)

Q 1=l i i
forall veX,.
Since a,(x,0)=0 for x € Q and condition (C6),

1
<NJd].,, | U 1+]tvul)” dt}|Vu||Vv|dec||v||Qk, (3.3)

0

where ¢ is a positive number depending on k,N,uand d.

Put G, (u)(x)zgi(x,u(x)) VxeQ,i=0, .., N. Then G,; is a bounded,
continuous mapping from L™ (€ ) into L' (€, ) by conditions (C2),(C3) and by a result
in [5] , p-30. Moreover, by Sobolev embedding theorem there exists a positive C such that:

J{i‘,gi(Xau)%+g0(x,uk)+a(x)}vdx

Q i=1 i
.|

< C[ZN;”GH (u)

From this and (3.3) we get (3.2). Next, we show that T, is of class (S), . First, we

<

o +||Gk,o (u)

+|a

|V|| o VveX,.

Ip.k

check that T, is demicontinuous in X, . Let {w_} be a sequence converging strongly to
w in X, . Then for every v in in X, we have:

KTk (w,)-T, ‘ IZ (x,Vw,) (X,VW))?dX+

Q i=l X

+;!;|:§(gi(x’wn)a(;:;_gi(Xaw)%J"‘(go(X,wn)_go(X,W))+3(X) vdx. (3.4)

On the other hand:

Iz (x,Vw,) I(X,VW))%dXZ

lel i
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8a.(x Vw, +tV(w —W)) o(w _W)dt}av

N |[LN
:(-!:(Z|:‘£JZ; asj . axj aTdX

< N||d|| I ﬁ(l+|VW +tV(w —W)|)pf2 dt}w(wn —W)||Vv|dx <M, |w, —W||Qk .(3.5)
0

where M, is a positive number depending on k,N,v and d.
And:

[[BletwBemstn et st

13 00 ) 20 )2 00 )0 )
o Mo

<M |:Z||Gk| n 1(W)
Since G, is a bounded, continuous mapping from L™ (€ ) into L' () and {w,|_

Aw
1.k k"( 5.k

+M, |G, o (W,) =Gy (W) (3.6)

converges strongly to w in X, , from (3.4) and (3.6) , we have T, is demicontinuous in
X, .
Now let {u, | be asequence converging weakly to u in X, and
limsup<Tk (u,).u, —u> <0 or
llmsupJZa x,Vu )%X-ﬁ-

m—0 kll

+J. Z:g1 X, U,

(x,u )+a(x)}(um—u)de0. (3.7)

Since 1 's;' > N;p for all i=0, ..., N, the theorem of Rellich-Konkrachov gives us
p

that the sequence {Gk!i(um)}m converges to G;(u) in L'(Q.). Thus,
{Gkﬂ0 (u, )}m converges  to Gy, (u) in L'(©,). This  implies

g‘!. [g,(x.u,)+a(x)](u, —u)x —0.

On the other hand, since {um}m converges touin L”,0u,  converges Weakly to ou and

{Gk’i(um)}m converges to G, (u)in L (Q, ) ,we get IZg X,u, (u, —u)dx —0.
Q i=1
Hence
ou
lim I (x,u,)—= 5 m g, (x,um)+a(x)}(um —u)dx =0. (3.8)
m—>o :1 Xi
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So, it follows from (3.7) and (3.8) that limsup J an:ai (X,Vum)ww <0 or
mow o i i
limsup [ i[ai(x,vum)—ai(x,vu)]%xgo. (3.9)
moo 4T i
By condition (C6)
N _
Jk ;(al(x,VV)—al(X,Vu))a(;Xlu dx
_ J-iﬁi@ai(X,Vu;rtV(V—u))‘a(V—u)dt}a(v—u)dx
= S, 0X; OX,
ZMIJﬁ(1+|Vu+tV(V—u)|)p dt}|V (v—u)[ 2M[V(v-u)[". (3.10)
o Lo
Combining (3.9) and (3.10), we have the conclusion that the sequence {u,}

converges touin X, . Thus, T, is of class (S)+ in X, . Next we calculate the topological
degree of the operator T, .
By condition (C4), the Holder enequality and (3.10), we have:

IZa (x,Vu) 6( +J{Zg (x,u) %Jrgo(x u)+a(x)|u(x)dx

lel i

= M Jull, =[], [V, Jul;

uf, =l

where b,,d,are positive numbers such that b +p'+b/'=1, d'+d;'=1. From

qb, |

conditions of b,d we have: 1<gb, <p”, 1<rd, <p". By Poincare inequalities, the Sobolev

T
Ula _”C”l :

embedding theorem there exists C >0 such that:
(T (), )y = M Jull, =l Jully — Bl

qab,

Since r,q+1€(1,p), we can choose s> 0such that :
Cld, 51" =[], 5 [l s <=
Let G={weX:|w|, <s}and G, =GNX,. Then G,is an open bounded set in
X,and (T, (u),u) > %sp,w €d,G, .
Since T, satisfies condition (S), on X, , by Proposition 2.2 we conclude that
deg(Tk,G_ka ,0) —1.

Then there exists u, €0y G, such that T, (uk )=0,ie.

J.iai(x,Vuk dX+J.{Zg x,1, )

Q i=1
which completes the proof of the lemma .

1

+go(X uk)+a( )j|VdX=0,VV€Xk
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Proof of Theorem 3.1. By Lemma 3.1, there exists a sequence {uk}k < 0y, G, such
that:

T, (u,)=0. (3.11)

Since {u,}, <04G, it is bounded in X. Let u be the weak limit of {u,} in
W, (Q).
By (3.11) we have

(T, (u,),v)=0, VveX,. (3.12)

Fix 1e[1*. We consider the function p, € C7 () which satisfies 0<p, <1 and
1 ifxeQ),
p(x)= . :
0 ifxeQ)
For all k>1 we have pju, —p,ueX,. Then, (3.12) implies

<Tk (). pyu —p1u>:0. (3.13)

This yields lim (T, (u,).pu, —pyu) =0, that is

. N oo —pu
l%({;ai(X,VUk)%dx_k

1

+J[igi (x,uk)%Jrgo (x,uk)+a(x)}(p,uk —pu)dx=0. (3.14)
5 .

i=1 i

Since { pluk} converges weakly to p,u in X, arguing as in the Lemma 3.1 (the proof

k
of T, satisfying condition (S), , we have

. S ou
lim {Zgi(x,uk)a—XkJrgO(x,uk)+a(x)}(pluk—plu)dx=0. (3.15)
Q i=1 i
Therefore, (3.14) and (3.15) imply li S M =
, (3. ) pyklj)gJZai(X,Vuk) - dx =0, or
Q i=1 i
, N B, o(u,—u
%gl%igai(x,Vuk)[(uk—u)a—zz+p1(akTi)}dx=O. (3.16)
Since {u,}, convergesto u in L”(Q), itis easily seen that
N
lglglogj;;ai(x,Vuk)(uk—u)g—zdxzo.
—8(uk ~u) dx=0,or

N
Combining this and (3.16) we obtain llﬂl—g(.[‘ 91;31 (x,Vu,)

i
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. N J(u, —u
l{l_r)rigj;plg[ai(X,Vuk)—ai(x,Vu)}%dx=0. (3.17)

i

On the other hand, by (3.10):

i[ai (x,Vu, )—a, (X,Vu)]% > M, |V(uk —u)|p :

i=1 i

Hence lim J P, |V(uk —u)|p dx=0.
&

This means that {uk}k strongly converges to u on € for all 1e[J". Now fix veY.
Our goal is to show that

iiai (x,Vu)%derJl[igi (x,u)%+g0 (x,u)+a(x)} vdx =0. (3.18)

i-1 i

Indeed, since v eY , there exists a positive integer m such that supp(v) c Q. Then
veX, forall k>m.By Lemma 3.1:
N N
J D a, (X,Vuk)ﬂder _[ Dg, (x,uk)%+g0 (x,u,)+a(x)|vdx=0.
Q, i=l 0X; o, Li=t e
Since {uk}k strongly converges to u on Q,_, it follows from the above equality that

(3.18) holds. We now N complete the proof of the theorem.

VE SU TON TAI NGHIEM CUA PHUONG TRINH ELLIPTIC PHI TUYEN
VOI CAC HE SO KHONG BI CHAN
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TOM TAT : Sir dung bdc topé cia lép (S)+ duwoc gioi thiéu boi F. E. Browder trong
cdac bai bdao [1] va [2] chiing t6i mé rong mét sé két qua cia cdc bai bdo [3] va [4] sang

triwong hop khéng gian Banach véi cdc diéu kién bi chan dia phirong.
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