ON THE EXISTENCE OF SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

Bui Boi Minh Anh ${ }^{(1)}$, Nguyen Minh Quan ${ }^{(1)}$, Tran Tuan Anh ${ }^{(2)}$, Vo Dang Khoa ${ }^{(3)}$
(1) State University of New York at Buffalo, USA
(2) Georgia Institute of Technology, Atlanta, Georgia, USA
(3) University of Medicine and Pharmacy, Hochiminh City, Vietnam
(Manuscript Received on March 20 ${ }^{\text {th }}, 2006$, Manuscript Revised October $2^{\text {nd }}$, 2006)

ABSTRACT : Using the topological degree of class $\left(\mathrm{S}_{+}\right.$introduced by $^{\boldsymbol{F}}$. E. Browder in [1] and [2], we extend some results of the papers [3] and [4] to the case of Banach spaces with locally bounded conditions.

1. INTRODUCTION

Let N be an integer ≥ 2 and D be a bounded open subset in R^{N}. In this paper we study the following equation:

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, \nabla u)-\left[\sum_{i=1}^{N} g_{i}(x, u) \frac{\partial u}{\partial x_{i}}+g_{0}(x, u)+a(x)\right]=0 \quad \forall x \in D \tag{1.1}
\end{equation*}
$$

The $\mathrm{p}-$ Laplace equation $-\Delta_{\mathrm{p}} \mathrm{u}+\mathrm{f}(\mathrm{x}, \mathrm{u})=0$ is a special case of (1.1). If $\mathrm{p}=2$ and $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})=\frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}$ then (1.1) has the form:

$$
\begin{equation*}
-\Delta u+\left[\sum_{i=1}^{N} g_{i}(x, u) \frac{\partial u}{\partial x_{i}}+g_{0}(x, u)+a(x)\right]=0 \tag{1.2}
\end{equation*}
$$

The problem (1.2) has been solved in [4] (Theorem 3.1, p.514) by using the topological degree for operators of class (B) . However, that method doesn't work when $\mathrm{p} \neq 2$ and $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})=|\nabla \mathrm{u}|^{\mathrm{p}-2} \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}$. The one we use here can solve the problem (1.2) for all $\mathrm{p}>1$.

Moreover, our result is also stronger than Theorem 11 in [3] (p.357) where the authors prove the existence result for the Dirichlet problem:

$$
\left\{\begin{array}{l}
-\Delta_{\mathrm{p}} \mathrm{u}=\mathrm{f}(\mathrm{x}, \mathrm{u}) \\
\left.\mathrm{u}\right|_{\partial \mathrm{D}}=0
\end{array} \quad \text { in } \mathrm{D} .\right.
$$

with the condition (10) that the function b is in $L^{p}(D)$ but not in $L_{\text {loc }}^{p}(D)$.

2. TOPOLOGICAL DEGREE OF CLASS (S)

In this section, we recall the class $(S)_{+}$introduced by Browder (see [1], [2]).
Definition 2.1. Let D be a bounded open set of a reflexive Banach space X and f be a mapping from $\overline{\mathrm{D}}$ into the dual space X^{*} of X . We say f is of class $(\mathrm{S})_{+}$if f has the following properties:
(i) $\left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}_{\mathrm{n}}$ converges weakly to $\mathrm{f}(\mathrm{x})$ if $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ converges strongly to x in $\overline{\mathrm{D}}$, i.e. f is a demicontinuous mapping on $\overline{\mathrm{D}}$.
(ii) $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ converges strongly to x if $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ converges weakly to x in $\overline{\mathrm{D}}$ and

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x_{n}\right), x_{n}-x\right\rangle \leq 0
$$

Definition 2.1. Let $\left\{\mathrm{g}_{\mathrm{t}}: 0 \leq \mathrm{t} \leq 1\right\}$ be a one-parameter family of maps of $\overline{\mathrm{D}}$ into X^{*}. We say $\left\{\mathrm{g}_{\mathrm{t}}: 0 \leq \mathrm{t} \leq 1\right\}$ is a homotopy of class $(\mathrm{S})_{+}$, if the sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ and $\left\{\mathrm{g}_{\mathrm{t}_{\mathrm{n}}}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}_{\mathrm{n}}$ converge strongly to x and $\mathrm{g}_{\mathrm{t}}(\mathrm{x})$ respectively for any sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ in $\overline{\mathrm{D}}$ converging weakly to some x in X and for any sequence $\left\{\mathrm{t}_{\mathrm{n}}\right\}_{\mathrm{n}}$ in $[0,1]$ converging to t such that $\limsup _{\mathrm{n} \rightarrow \infty}\left\langle\mathrm{g}_{\mathrm{t}_{\mathrm{n}}}\left(\mathrm{x}_{\mathrm{n}}\right), \mathrm{x}_{\mathrm{n}}-\mathrm{x}\right\rangle \leq 0$.

Let f be a mapping of class $(\mathrm{S})_{+}$on $\overline{\mathrm{D}}$ and let p be in $\mathrm{X}^{*} \backslash \mathrm{f}(\partial \mathrm{D})$. By Theorems 4 and 5 in [2], the topological degree of f on D at p is defined as a family of integers and is denoted by $\operatorname{deg}(f, D, p)$. In [6] Skrypnik showed that this topological degree is singlevalued (see also [2]). The following result was proved in [2].

Proposition 2.1. Let f be a mapping of class $(\mathrm{S})_{+}$from $\overline{\mathrm{D}}$ into X^{*}, and let y be in $\mathrm{X}^{*} \backslash \mathrm{f}(\partial \mathrm{D})$. Then we can define the degree $\operatorname{deg}(\mathrm{f}, \mathrm{D}, \mathrm{y})$ as an integer satisfying the following properties:
(a) If $\operatorname{deg}(\mathrm{f}, \mathrm{D}, \mathrm{y}) \neq 0$ then there exists $\mathrm{x} \in \mathrm{D}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
(b) If $\left\{\mathrm{g}_{\mathrm{t}}: 0 \leq \mathrm{t} \leq 1\right\}$ is a homotopy of class $(\mathrm{S})_{+}$and $\left\{\mathrm{y}_{\mathrm{t}}: 0 \leq \mathrm{t} \leq 1\right\}$ is a continuous curve in X^{*} such that $\mathrm{y}_{\mathrm{t}} \notin \mathrm{g}_{\mathrm{t}}(\partial \mathrm{D})$ for all $\mathrm{t} \in[0,1]$, then $\operatorname{deg}\left(\mathrm{g}_{\mathrm{t}}, \mathrm{D}, \mathrm{y}_{\mathrm{t}}\right)$ is constant in t on $[0,1]$.

Proposition 2.2. Let $\mathrm{A}: \overline{\mathrm{D}} \rightarrow \mathrm{X}^{*}$ be a mapping of class $(\mathrm{S})_{+}$. Suppose that $0 \in \overline{\mathrm{D}} \backslash \partial \mathrm{D}$ and

$$
\mathrm{Au} \neq 0, \quad\langle\mathrm{Au}, \mathrm{u}\rangle \geq 0 \quad \text { for } \mathrm{u} \in \partial \mathrm{D}
$$

Then $\operatorname{deg}(\mathrm{A}, \mathrm{D}, 0)=1$.
Proposition 2.3. Let $A_{t}: \bar{D} \rightarrow X^{*}, t \in[0,1]$ be the homotopy family of operators of class $(S)_{+}$. Suppose that $A_{t} u \neq 0$ for $u \in \partial D, t \in[0,1]$. Then $\operatorname{deg}\left(A_{0}, D, 0\right)=\operatorname{deg}\left(A_{1}, D, 0\right)$.

3. NONLINEAR ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

Let p be a real number $\geq 2, \mathrm{~N}$ be an integer $\geq 2, \Omega$ and D be bounded open subsets in R^{N}. We denote by $\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})$ the completion of $\mathrm{C}_{\mathrm{c}}^{\infty}(\mathrm{D}, \square)$ in the norm:

$$
\|\mathrm{u}\|_{\mathrm{D}}=\left(\int_{\mathrm{D}}|\nabla \mathrm{u}|^{\mathrm{p}} \mathrm{dx}\right)^{1 / \mathrm{p}} \quad \forall \mathrm{u} \in \mathrm{C}_{\mathrm{c}}^{\infty}(\mathrm{D}, \square) .
$$

Let Ω_{k} be an increasing sequence of open subsets of Ω such that $\overline{\Omega_{k}}$ is contained in Ω_{k+1} and $\Omega=\bigcup_{k=1}^{\infty} \Omega_{k}$. Put $X=W_{0}^{1, p}(\Omega), \quad X_{k}=W_{0}^{1, p}\left(\Omega_{k}\right)$.

We denote by p^{\prime} and p^{*} the conjugate exponent and the Sobolev conjugate exponent of p, i.e.,

$$
\mathrm{p}^{\prime}=\left(1-\frac{1}{\mathrm{p}}\right)^{-1} \quad \text { and } \quad \mathrm{p}^{*}= \begin{cases}\frac{\mathrm{Np}}{\mathrm{~N}-\mathrm{p}} & \text { if } \mathrm{N} \geq \mathrm{p} \\ \infty & \text { if } \mathrm{N} \leq \mathrm{p}\end{cases}
$$

Let $g_{0}, g_{1}, \ldots, g_{N}$ be real functions on $\Omega \times \square$ satisfying the following conditions: (C1) The function $g_{i}(x, t)$ is measurable in x for fixed t in \square and continuous in t for fixed x in Ω for any $\mathrm{i}=0, \ldots, \mathrm{~N}$.
(C2) $\mathrm{g}_{0}(\mathrm{x}, 0)=0 \quad \forall \mathrm{x} \in \Omega$.
(C3) $\left|g_{i}(x, t)\right| \leq b_{i}(x)+\mathrm{k}_{\mathrm{i}}|\mathrm{t}|^{\mathrm{s}_{\mathrm{i}}} \quad \forall(\mathrm{x}, \mathrm{t}) \in \Omega \times \square, \mathrm{i}=0, \ldots, \mathrm{~N}$ and
$-\alpha(\mathrm{x})|\mathrm{z}|| |^{\mathrm{q}}-\beta(\mathrm{x})|\mathrm{t}|^{\mathrm{r}}-\mathrm{c}(\mathrm{x}) \leq\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{g}_{\mathrm{i}}(\mathrm{x}, \mathrm{t}) \mathrm{z}_{\mathrm{i}}+\mathrm{g}_{0}(\mathrm{x}, \mathrm{t})+\mathrm{a}(\mathrm{x})\right] \quad \forall(\mathrm{x}, \mathrm{t}, \mathrm{z}) \in \Omega \times \square \times \square^{\mathrm{N}}$
where $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{N}}, \mathrm{k}_{0}, \ldots, \mathrm{k}_{\mathrm{N}}, \mathrm{r}_{0}, \ldots, \mathrm{r}_{\mathrm{N}}$ and r, q are non-negative real numbers and b_{0}, \ldots, b_{N} and c, α, β are measurable functions such that $\alpha \in L^{b}(\Omega)$, $b \in\left(\frac{N p}{N(p-q-1)+p q}, \infty\right), \quad \beta \in L^{d}(\Omega), \quad d \in\left(\frac{N p}{N(p-r)+p r}, \infty\right), \quad c \in L^{1}(\Omega), \quad r \in(1, p)$, $q \in(1, p-1), \quad r_{0} \in\left(\frac{N p}{N(p-1)+p}, \infty\right), \quad s_{0}^{-1} \in\left(\frac{N-p}{N p} r_{0}, \infty\right), \quad a \in L^{r_{0}}(\Omega)$, $r_{i} \in\left(\frac{N p}{N(p-2)+p}, \infty\right), s_{i}^{-1} \in\left(\frac{N-p}{N p} r_{i}, \infty\right)$ and $b_{i} \in L_{\text {loc }}^{\mathrm{t}_{i}}(\Omega)$ for any $i=0, \ldots, N$.

We assume that the functions $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{s}), \mathrm{i}=1, \ldots, \mathrm{~N}, \mathrm{~s}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}\right) \in \square^{\mathrm{N}}$ satisfy:
(C5) $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{s})$ is defined and differentiable w.r.t all of its arguments for $\mathrm{x} \in \bar{\Omega}$, $\mathrm{s}=\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{N}}\right) \in \square^{\mathrm{N}}$. Moreover, $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, 0)=0$ for all $\mathrm{i}=1, \ldots, \mathrm{~N}, \mathrm{x} \in \bar{\Omega}$.
(C6) There exist positive constants M_{1}, M_{2} such that the inequalities :

$$
\begin{gathered}
\sum_{i, j=1}^{N} \frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{~s})}{\partial \mathrm{s}_{\mathrm{j}}} \xi_{\mathrm{i}} \xi_{\mathrm{j}} \geq \mathrm{M}_{1}(1+|\mathrm{s}|)^{\mathrm{p}-2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \xi_{\mathrm{i}}^{2}, \\
\left|\frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{~s})}{\partial \mathrm{s}_{\mathrm{j}}}\right| \leq \mathrm{d}(\mathrm{x})(1+|\mathrm{s}|)^{\mathrm{p}-2} \text { and } \quad\left|\frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{~s})}{\partial \mathrm{x}_{\mathrm{k}}}\right| \leq \mathrm{M}_{2}(1+|\mathrm{s}|)^{\mathrm{p}-1}
\end{gathered}
$$

are satisfied, where $\mathrm{d} \in \mathrm{L}_{\text {loc }}^{\infty}(\Omega)$.
Theorem 3.1. Under conditions (C1)-(C6), there exists u in X such that for any $\mathrm{v} \in \mathrm{Y}$,

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\Omega}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}) \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}(\mathrm{x}, \mathrm{u})+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0 \tag{3.1}
\end{equation*}
$$

To prove the theorem we need the following lemma.

Lemma 3.1. Let $\mathrm{X}_{\mathrm{k}}=\mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{k}}\right)$. Under conditions (C1)-(C6) there exists u_{k} in X_{k} such that for any $\mathrm{v} \in \mathrm{X}_{\mathrm{k}}$,

$$
\int_{\Omega} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\Omega}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0 .
$$

Proof. Fix a u in X_{k}. We will show that there exists a unique $T_{k}(u)$ in X_{k}^{*} satisfying

$$
\begin{equation*}
\left\langle\mathrm{T}_{\mathrm{k}}(\mathrm{u}), \mathrm{v}\right\rangle=\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{N} \mathrm{~g}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0 \cdot(. \tag{3.2}
\end{equation*}
$$

for all $v \in X_{k}$.
Since $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, 0)=0$ for $\mathrm{x} \in \bar{\Omega}$ and condition (C6),

$$
\begin{align*}
\left|\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}\right|= & \left|\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\int_{0}^{1} \sum_{\mathrm{j}=1}^{\mathrm{N}} \frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{t} \nabla \mathrm{u})}{\partial \mathrm{s}_{\mathrm{j}}} \cdot \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{dt}\right] \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}\right| \\
\leq & \int_{\Omega_{\mathrm{k}}}\left[\int_{0}^{1} \sum_{\mathrm{j}=1}^{\mathrm{N}}\left|\frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{t} \nabla \mathrm{u})}{\partial \mathrm{s}_{\mathrm{j}}}\right| \mathrm{dt}\right]|\nabla \mathrm{u}||\nabla \mathrm{v}| \mathrm{dx} \\
& \leq \mathrm{N}\|\mathrm{~d}\|_{\infty, \Omega_{\mathrm{k}}} \int_{\Omega_{\mathrm{k}}}\left[\int_{0}^{1}(1+|\mathrm{t} \nabla \mathrm{u}|)^{\mathrm{p}-2} \mathrm{dt}\right]|\nabla \mathrm{u}||\nabla \mathrm{v}| \mathrm{dx} \leq \mathrm{c}\|\mathrm{v}\|_{\Omega_{k}}, \tag{3.3}
\end{align*}
$$

where c is a positive number depending on k, N, u and d.
Put $\quad \mathrm{G}_{\mathrm{k}, \mathrm{i}}(\mathrm{u})(\mathrm{x})=\mathrm{g}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}(\mathrm{x})) \quad \forall \mathrm{x} \in \Omega_{\mathrm{k}}, \mathrm{i}=0, \ldots, \mathrm{~N}$. Then $\mathrm{G}_{\mathrm{k}, \mathrm{i}}$ is a bounded, continuous mapping from $\mathrm{L}^{\mathrm{r} \mathrm{s}_{\mathrm{i}}}\left(\Omega_{\mathrm{k}}\right)$ into $\mathrm{L}^{\mathrm{F}_{\mathrm{i}}}\left(\Omega_{\mathrm{k}}\right)$ by conditions $(\mathrm{C} 2),(\mathrm{C} 3)$ and by a result in [5], p.30. Moreover, by Sobolev embedding theorem there exists a positive C such that:

$$
\begin{aligned}
& \left|\int_{\Omega_{k}}\left[\sum_{i=1}^{N} g_{i}(x, u) \frac{\partial u_{k}}{\partial x_{i}}+g_{0}\left(x, u_{k}\right)+a(x)\right] v d x\right| \leq \\
\leq & C\left[\sum_{i=1}^{N}\left\|G_{k, i}(u)\right\|_{r_{i}, k}\|u\|_{\Omega}+\left\|G_{k, 0}(u)\right\|_{r_{0}, k}+\|a\|_{r_{0}}\right]\|v\|_{\Omega_{k}} \quad \forall v \in X_{k} .
\end{aligned}
$$

From this and (3.3) we get (3.2). Next, we show that T_{k} is of class (S) . First, we check that T_{k} is demicontinuous in X_{k}. Let $\left\{w_{n}\right\}_{n}$ be a sequence converging strongly to w in X_{k}. Then for every v in in X_{k} we have:

$$
\begin{align*}
& \left|\left\langle\mathrm{T}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{n}}\right)-\mathrm{T}_{\mathrm{k}}(\mathrm{w}), \mathrm{v}\right\rangle\right|=\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{w}_{\mathrm{n}}\right)-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{w})\right) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+ \\
+ & \int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{w}_{\mathrm{n}}\right) \frac{\partial \mathrm{w}_{\mathrm{n}}}{\partial \mathrm{x}_{\mathrm{i}}}-\mathrm{g}_{\mathrm{i}}(\mathrm{x}, \mathrm{w}) \frac{\partial \mathrm{w}}{\partial \mathrm{x}_{\mathrm{i}}}\right)+\left(\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{w}_{\mathrm{n}}\right)-\mathrm{g}_{0}(\mathrm{x}, \mathrm{w})\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx} . \tag{3.4}
\end{align*}
$$

On the other hand:

$$
\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{w}_{\mathrm{n}}\right)-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{w})\right) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}=
$$

$$
\begin{align*}
& =\int_{\Omega_{k}} \sum_{i=1}^{N}\left[\int_{0}^{1} \sum_{j=1}^{N} \frac{\partial a_{i}\left(x, \nabla w_{n}+t \nabla\left(w_{n}-w\right)\right)}{\partial s_{j}} \cdot \frac{\partial\left(w_{n}-w\right)}{\partial x_{j}} d t\right] \frac{\partial v}{\partial x_{i}} d x \\
& \leq N\|d\|_{\infty, \Omega_{k}} \int_{\Omega_{k}}\left[\int_{0}^{1}\left(1+\left|\nabla w_{n}+t \nabla\left(w_{n}-w\right)\right|\right)^{p-2} d t\right]\left|\nabla\left(w_{n}-w\right)\right||\nabla v| d x \leq M_{3}\left\|w_{n}-w\right\|_{\Omega_{k}} . \tag{3.5}
\end{align*}
$$

where M_{3} is a positive number depending on k, N, v and d.

> And:

$$
\begin{gather*}
\int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{w}_{\mathrm{n}}\right) \frac{\partial \mathrm{w}_{\mathrm{n}}}{\partial \mathrm{x}_{\mathrm{i}}}-\mathrm{g}_{\mathrm{i}}(\mathrm{x}, \mathrm{w}) \frac{\partial \mathrm{w}}{\partial \mathrm{x}_{\mathrm{i}}}\right)+\left(\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{w}_{\mathrm{n}}\right)-\mathrm{g}_{0}(\mathrm{x}, \mathrm{w})\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}= \\
=\int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{G}_{\mathrm{k}, \mathrm{i}}\left(\mathrm{w}_{\mathrm{n}}\right) \frac{\partial \mathrm{w}_{\mathrm{n}}}{\partial \mathrm{x}_{\mathrm{i}}}-\mathrm{G}_{\mathrm{k}, \mathrm{i}}(\mathrm{w}) \frac{\partial \mathrm{w}}{\partial \mathrm{x}_{\mathrm{i}}}\right)+\left(\mathrm{G}_{\mathrm{k}, 0}\left(\mathrm{w}_{\mathrm{n}}\right)-\mathrm{G}_{\mathrm{k}, 0}(\mathrm{w})\right)\right] \mathrm{vdx} \\
\leq \mathrm{M}_{4}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left\|\mathrm{G}_{\mathrm{k}, \mathrm{i}}\left(\mathrm{w}_{\mathrm{n}}\right)-\mathrm{G}_{\mathrm{k}, \mathrm{i}}(\mathrm{w})\right\|_{\mathrm{r}, \mathrm{k}}\left\|\mathrm{w}_{\mathrm{n}}\right\|_{\Omega}+\left\|\mathrm{G}_{\mathrm{k}, \mathrm{i}}(\mathrm{w})\right\|_{\mathrm{r}, \mathrm{k}}\left\|\mathrm{w}_{\mathrm{n}}-\mathrm{w}\right\|_{\Omega}\right]\|\mathrm{v}\|_{\Omega}+ \\
+\mathrm{M}_{4}\left\|\mathrm{G}_{\mathrm{k}, 0}\left(\mathrm{w}_{\mathrm{n}}\right)-\mathrm{G}_{\mathrm{k}, 0}(\mathrm{w})\right\|_{\mathrm{r}_{\mathrm{r}, \mathrm{k}}}\|\mathrm{v}\|_{\Omega} \cdot \tag{3.6}
\end{gather*}
$$

Since $\mathrm{G}_{\mathrm{k}, \mathrm{i}}$ is a bounded, continuous mapping from $\mathrm{L}^{\mathrm{Ts}}\left(\Omega_{\mathrm{k}}\right)$ into $\mathrm{L}^{\mathrm{Li}^{\mathrm{i}}}\left(\Omega_{\mathrm{k}}\right)$ and $\left\{\mathrm{w}_{\mathrm{n}}\right\}_{\mathrm{n}}$ converges strongly to w in X_{k}, from (3.4) and (3.6), we have T_{k} is demicontinuous in X_{k}.

Now let $\left\{u_{m}\right\}_{m}$ be a sequence converging weakly to u in X_{k} and

$$
\begin{align*}
& \limsup _{\mathrm{m} \rightarrow \infty}\left\langle\mathrm{~T}_{\mathrm{k}}\left(\mathrm{u}_{\mathrm{m}}\right), \mathrm{u}_{\mathrm{m}}-\mathrm{u}\right\rangle \leq 0 \text { or } \\
& \underset{\mathrm{m} \rightarrow \infty}{\limsup } \int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{m}}\right) \frac{\partial\left(\mathrm{u}_{\mathrm{m}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+ \\
& +\int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{m}}\right) \frac{\partial \mathrm{u}_{\mathrm{m}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{m}}\right)+\mathrm{a}(\mathrm{x})\right]\left(\mathrm{u}_{\mathrm{m}}-\mathrm{u}\right) \mathrm{dx} \leq 0 . \tag{3.7}
\end{align*}
$$

Since $r_{i}^{-1} s_{i}^{-1}>\frac{\mathrm{N}-\mathrm{p}}{\mathrm{pN}}$ for all $\mathrm{i}=0, \ldots, \mathrm{~N}$, the theorem of Rellich-Konkrachov gives us that the sequence $\left\{\mathrm{G}_{\mathrm{k}, \mathrm{i}}\left(\mathrm{u}_{\mathrm{m}}\right)\right\}_{\mathrm{m}}$ converges to $\mathrm{G}_{\mathrm{k}, \mathrm{i}}(\mathrm{u})$ in $\mathrm{L}^{\mathrm{F}}\left(\Omega_{\mathrm{k}}\right)$. Thus, $\left\{\mathrm{G}_{\mathrm{k}, 0}\left(\mathrm{u}_{\mathrm{m}}\right)\right\}_{\mathrm{m}}$ converges to $\mathrm{G}_{\mathrm{k}, 0}(\mathrm{u})$ in $\mathrm{L}^{\mathrm{t}}\left(\Omega_{\mathrm{k}}\right)$. This implies : $\int_{\Omega_{k}}\left[g_{0}\left(x, u_{m}\right)+a(x)\right]\left(u_{m}-u\right) d x \rightarrow 0$.

On the other hand, since $\left\{u_{m}\right\}_{m}$ converges to u in $L^{p}, \partial u_{m}$ converges weakly to ∂u and $\left\{G_{k, i}\left(u_{m}\right)\right\}_{m}$ converges to $G_{k, i}(u)$ in $L^{\mathrm{t}}\left(\Omega_{k}\right)$, we get $\int_{\Omega_{\mathrm{k}}} \sum_{i=1}^{N} g\left(x, u_{m}\right) \frac{\partial u_{m}}{\partial x_{i}}\left(u_{m}-u\right) d x \rightarrow 0$.

Hence

$$
\begin{equation*}
\lim _{\mathrm{m} \rightarrow \infty} \int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{m}}\right) \frac{\partial \mathrm{u}_{\mathrm{m}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{m}}\right)+\mathrm{a}(\mathrm{x})\right]\left(\mathrm{u}_{\mathrm{m}}-\mathrm{u}\right) \mathrm{dx}=0 \tag{3.8}
\end{equation*}
$$

So, it follows from (3.7) and (3.8) that $\limsup _{\mathrm{m} \rightarrow \infty} \int_{\Omega_{k}} \sum_{i=1}^{n} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{m}}\right) \frac{\partial\left(\mathrm{u}_{\mathrm{m}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx} \leq 0$ or

$$
\begin{equation*}
\limsup _{\mathrm{m} \rightarrow \infty} \int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{m}}\right)-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})\right] \frac{\partial\left(\mathrm{u}_{\mathrm{m}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx} \leq 0 \tag{3.9}
\end{equation*}
$$

By condition (C6)

$$
\begin{align*}
& \int_{\Omega_{k}} \sum_{i=1}^{N}\left(\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{v})-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})\right) \frac{\partial(\mathrm{v}-\mathrm{u})}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx} \\
= & \int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\int_{0}^{1} \sum_{0}^{\mathrm{N}} \frac{\partial \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{v}+\mathrm{t} \nabla(\mathrm{v}-\mathrm{u}))}{\partial \mathrm{s}_{\mathrm{j}}} \cdot \frac{\partial(\mathrm{v}-\mathrm{u})}{\partial \mathrm{x}_{\mathrm{j}}} \mathrm{dt}\right] \frac{\partial(\mathrm{v}-\mathrm{u})}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx} \\
\geq & \mathrm{M}_{1} \int_{\Omega_{\mathrm{k}}}\left[\int_{0}^{1}(1+|\nabla \mathrm{u}+\mathrm{t} \nabla(\mathrm{v}-\mathrm{u})|)^{\mathrm{p}-2} \mathrm{dt}\right]|\nabla(\mathrm{v}-\mathrm{u})|^{2} \geq \mathrm{M}_{5}|\nabla(\mathrm{v}-\mathrm{u})|^{\mathrm{p}} . \tag{3.10}
\end{align*}
$$

Combining (3.9) and (3.10), we have the conclusion that the sequence $\left\{\mathrm{u}_{\mathrm{m}}\right\}_{\mathrm{m}}$ converges tou in X_{k}. Thus, T_{k} is of class $(S)_{+}$in X_{k}. Next we calculate the topological degree of the operator T_{k}.

By condition (C4), the Holder enequality and (3.10), we have:

$$
\begin{aligned}
\left\langle\mathrm{T}_{\mathrm{k}}(\mathrm{u}), \mathrm{u}\right\rangle_{\Omega} & =\int_{\Omega_{\mathrm{k}}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u}) \frac{\partial(\mathrm{u})}{\partial \mathrm{x}_{\mathrm{i}}}+\int_{\Omega_{\mathrm{k}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}) \frac{\partial \mathrm{u}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}(\mathrm{x}, \mathrm{u})+\mathrm{a}(\mathrm{x})\right] \mathrm{u}(\mathrm{x}) \mathrm{dx} \\
& \geq \mathrm{M}_{5}\|\mathrm{u}\|_{\Omega}^{\mathrm{p}}-\|\alpha\|_{\mathrm{b}}\|\nabla \mathrm{u}\|_{\mathrm{p}}\|\mathrm{u}\|_{\mathrm{qb}_{1}}^{\mathrm{q}}-\|\beta\|_{\mathrm{b}}\|\mathrm{u}\|_{\mathrm{d}_{1} \mathrm{r}}^{\mathrm{r}}-\|\mathrm{c}\|_{\mathrm{l}} .
\end{aligned}
$$

where $\mathrm{b}_{1}, \mathrm{~d}_{1}$ are positive numbers such that $\mathrm{b}^{-1}+\mathrm{p}^{-1}+\mathrm{b}_{1}^{-1}=1, \mathrm{~d}^{-1}+\mathrm{d}_{1}^{-1}=1$. From conditions of b, d we have: $1<\mathrm{qb}_{1}<\mathrm{p}^{*}, 1<\mathrm{rd}_{1}<\mathrm{p}^{*}$. By Poincare inequalities, the Sobolev embedding theorem there exists $\mathrm{C}>0$ such that:

$$
\left\langle\mathrm{T}_{\mathrm{k}}(\mathrm{u}), \mathrm{u}\right\rangle_{\Omega} \geq \mathrm{M}_{5}\|\mathrm{u}\|_{\Omega}^{\mathrm{p}}-\mathrm{C}\|\alpha\|_{\mathrm{b}}\|\mathrm{u}\|_{\mathrm{q}}^{\mathrm{q} \mathrm{~b}_{1}}+\mathrm{C}\|\beta\|_{\mathrm{d}}\|\mathrm{u}\|_{\Omega}^{\mathrm{q}}-\|\mathrm{c}\|_{\mathrm{l}} .
$$

Since $r, q+1 \in(1, p)$, we can choose $s>0$ such that:

$$
C\|\alpha\|_{b} s^{q+1-p}-C\|\beta\|_{d} s^{r-p}-\|c\|_{1} s^{-p}<\frac{M_{5}}{2} .
$$

Let $G=\left\{\mathrm{w} \in \mathrm{X}:\|\mathrm{w}\|_{\Omega}<\mathrm{s}\right\}$ and $\mathrm{G}_{\mathrm{k}}=\mathrm{G} \cap \mathrm{X}_{\mathrm{k}}$. Then G_{k} is an open bounded set in X_{k} and $\left\langle\mathrm{T}_{\mathrm{k}}(\mathrm{u}), \mathrm{u}\right\rangle_{\Omega} \geq \frac{\mathrm{M}_{5}}{2} \mathrm{~s}^{\mathrm{p}}, \forall \mathrm{u} \in \partial_{\mathrm{k}} \mathrm{G}_{\mathrm{k}}$.

Since T_{k} satisfies condition $(S)_{+}$on X_{k}, by Proposition 2.2 we conclude that

$$
\operatorname{deg}\left(\mathrm{T}_{\mathrm{k}}, \overline{\mathrm{G}}_{\mathrm{k}}^{\mathrm{x}_{\mathrm{k}}}, 0\right)=1 .
$$

Then there exists $u_{k} \in \partial_{X_{k}} G_{k}$ such that $T_{k}\left(u_{k}\right)=0$, i.e.

$$
\int_{\Omega} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\Omega}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0, \forall \mathrm{v} \in \mathrm{X}_{\mathrm{k}}
$$

which completes the proof of the lemma.

Proof of Theorem 3.1. By Lemma 3.1, there exists a sequence $\left\{u_{k}\right\}_{k} \subset \partial_{X_{k}} G_{k}$ such that:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{k}}\left(\mathrm{u}_{\mathrm{k}}\right)=0 \tag{3.11}
\end{equation*}
$$

Since $\left\{u_{k}\right\}_{k} \subset \partial_{\mathrm{X}} \mathrm{G}$, it is bounded in X. Let u be the weak limit of $\left\{\mathrm{u}_{\mathrm{k}}\right\}_{\mathrm{k}}$ in $\mathrm{W}_{0}^{1, \mathrm{p}}(\Omega)$.

By (3.11) we have

$$
\begin{equation*}
\left\langle\mathrm{T}_{\mathrm{k}}\left(\mathrm{u}_{\mathrm{k}}\right), \mathrm{v}\right\rangle=0, \quad \forall \mathrm{v} \in \mathrm{X}_{\mathrm{k}} \tag{3.12}
\end{equation*}
$$

Fix $l \in \square^{+}$. We consider the function $\rho_{1} \in C_{c}^{\infty}(\Omega)$ which satisfies $0 \leq \rho_{1} \leq 1$ and

$$
\rho_{1}(x)= \begin{cases}1 & \text { if } x \in \Omega_{1-1} \\ 0 & \text { if } x \notin \Omega_{1}\end{cases}
$$

For all $k \geq 1$ we have $\rho_{1} u_{k}-\rho_{l} u \in X_{k}$. Then, (3.12) implies

$$
\begin{equation*}
\left\langle\mathrm{T}_{\mathrm{k}}\left(\mathrm{u}_{\mathrm{k}}\right), \rho_{\mathrm{l}} \mathrm{u}_{\mathrm{k}}-\rho_{\mathrm{l}} \mathrm{u}\right\rangle=0 \tag{3.13}
\end{equation*}
$$

This yields $\lim _{k \rightarrow \infty}\left\langle T_{k}\left(u_{k}\right), \rho_{l} u_{k}-\rho_{l} u\right\rangle=0$, that is

$$
\begin{gather*}
\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{\mathrm{i}}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right) \frac{\partial\left(\rho_{\mathrm{l}} \mathrm{u}_{\mathrm{k}}-\rho_{\mathrm{l}} \mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+ \\
+\int_{\Omega_{1}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right]\left(\rho_{1} \mathrm{u}_{\mathrm{k}}-\rho_{\mathrm{l}} \mathrm{u}\right) \mathrm{dx}=0 . \tag{3.14}
\end{gather*}
$$

Since $\left\{\rho_{1} \mathrm{u}_{\mathrm{k}}\right\}_{\mathrm{k}}$ converges weakly to $\rho_{1} \mathrm{u}$ in X , arguing as in the Lemma 3.1 (the proof of T_{k} satisfying condition $(S)_{+}$, we have

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{1}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right]\left(\rho_{1} \mathrm{u}_{\mathrm{k}}-\rho_{\mathrm{l}} \mathrm{u}\right) \mathrm{dx}=0 . \tag{3.15}
\end{equation*}
$$

Therefore, (3.14) and (3.15) imply $\lim _{k \rightarrow \infty} \int_{\Omega_{1}} \sum_{i=1}^{N} a_{i}\left(x, \nabla u_{k}\right) \frac{\partial\left(\rho_{1} u_{k}-\rho_{1} u\right)}{\partial x_{i}} d x=0$, or

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{1}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right)\left[\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right) \frac{\partial \rho_{1}}{\partial \mathrm{x}_{\mathrm{i}}}+\rho_{\mathrm{l}} \frac{\partial\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}}\right] \mathrm{dx}=0 \tag{3.16}
\end{equation*}
$$

Since $\left\{u_{k}\right\}_{k}$ converges to u in $L^{p}(\Omega)$, it is easily seen that

$$
\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{4}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right)\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right) \frac{\partial \rho_{\mathrm{l}}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}=0
$$

Combining this and (3.16) we obtain $\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{4}} \rho_{1} \sum_{i=1}^{N} a_{i}\left(x, \nabla u_{k}\right) \frac{\partial\left(u_{k}-u\right)}{\partial x_{i}} d x=0$, or

$$
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{1}} \rho_{1} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right)-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})\right] \frac{\partial\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}=0 . \tag{3.17}
\end{equation*}
$$

On the other hand, by

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right)-\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u})\right] \frac{\partial\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right)}{\partial \mathrm{x}_{\mathrm{i}}} \geq \mathrm{M}_{8}\left|\nabla\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right)\right|^{\mathrm{p}} . \tag{3.10}
\end{equation*}
$$

Hence $\lim _{\mathrm{k} \rightarrow \infty} \int_{\Omega_{1}} \rho_{1}\left|\nabla\left(\mathrm{u}_{\mathrm{k}}-\mathrm{u}\right)\right|^{\mathrm{p}} \mathrm{dx}=0$.
This means that $\left\{u_{k}\right\}_{k}$ strongly converges to u on Ω_{1} for all $l \in \square^{+}$. Now fix $v \in Y$. Our goal is to show that

$$
\begin{equation*}
\int_{\Omega} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\Omega}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}(\mathrm{x}, \mathrm{u})+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0 . \tag{3.18}
\end{equation*}
$$

Indeed, since $v \in Y$, there exists a positive integer m such that $\sup p(v) \subset \Omega_{\mathrm{m}}$. Then $\mathrm{v} \in \mathrm{X}_{\mathrm{k}}$ for all $\mathrm{k} \geq \mathrm{m}$. By Lemma 3.1:

$$
\int_{\Omega_{\mathrm{m}}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}\left(\mathrm{x}, \nabla \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} d \mathrm{x}+\int_{\Omega_{\mathrm{m}}}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right) \frac{\partial \mathrm{u}_{\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{i}}}+\mathrm{g}_{0}\left(\mathrm{x}, \mathrm{u}_{\mathrm{k}}\right)+\mathrm{a}(\mathrm{x})\right] \mathrm{vdx}=0 .
$$

Since $\left\{u_{k}\right\}_{\mathrm{k}}$ strongly converges to u on Ω_{n}, it follows from the above equality that (3.18) holds. We now \mathbf{N} complete the proof of the theorem.

VỀ SỬ TỒN TẠI NGHIÊM CỦA PHƯƠNG TRÌNH ELLIPTIC PHI TUYẾN VỚI CÁC HỆ SỐ KHÔNG BỊ CHẶN

Bùi Bội Minh Anh ${ }^{(1)}$, Nguyễn Minh Quân ${ }^{(1)}$, Trần Tuấn Anh ${ }^{(2)}$, Võ Đăng Khoa ${ }^{(3)}$
(1) Trường Đại học NewYork tại Buffalo, Hoa Kỳ
(2) Viện Công nghệ Georgia, Hoa Kỳ
(3) Trường Đại học Dược Tp.HCM, Việt Nam

TÓM TȦT : Sỉ̉ dụng bậc tôpô của lớp $(\mathrm{S})_{+}$được giới thiệu bởi F. E. Browder trong các bài báo [1] và [2], chúng tôi mở rộng một số kết quả của các bài báo [3] và [4] sang truờng hợp không gian Banach vói các điều kiện bị chặn địa phuoong.

TÀI LIỆU THAM KHẢO

[1]. F. E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc., 76pp. 999-1005, (1970).
[2]. F. E. Browder, Fixed point theory and nonlinear problems, Proc. Symp. Pure Math, 39, 49-86, (1983).
[3]. G. Dinca, P. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with p-Laplacian, Portugaliae mathematica 58. Fasc. 3-2001.
[4]. D. M. Duc, N. H. Loc , P. V. Tuoc, Topological degree for a class of operators and applications, Nonlinear Analysis 57, 505-518, (2004).
[5]. M.A. Krasnosel'kii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, (1964).
[6]. I.V. Skrypnik, Nonlinear Higher Order Elliptic Equations (in Russian), Noukova Dumka. Kiev, (1973).
[7]. I.V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Am. Math. Soc. Transl., Ser. II 139 (1994).

