ON THE EXISTENCE OF SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

Bui Boi Minh Anh⁽¹⁾, Nguyen Minh Quan⁽¹⁾, Tran Tuan Anh⁽²⁾, Vo Dang Khoa⁽³⁾ (1) State University of New York at Buffalo, USA

(2) Georgia Institute of Technology, Atlanta, Georgia, USA

(3) University of Medicine and Pharmacy, Hochiminh City, Vietnam

(Manuscript Received on March 20th, 2006, Manuscript Revised October 2nd, 2006)

ABSTRACT : Using the topological degree of class $(S)_+$ introduced by F. E. Browder in [1] and [2], we extend some results of the papers [3] and [4] to the case of Banach spaces with locally bounded conditions.

1. INTRODUCTION

Let N be an integer ≥ 2 and D be a bounded open subset in $\mathbb{R}^{\mathbb{N}}$. In this paper we study the following equation:

$$\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, \nabla u) - \left[\sum_{i=1}^{N} g_{i}(x, u) \frac{\partial u}{\partial x_{i}} + g_{0}(x, u) + a(x)\right] = 0 \qquad \forall x \in D,$$
(1.1)

The p-Laplace equation $-\Delta_p u + f(x, u) = 0$ is a special case of (1.1). If p = 2 and $a_i(x, \nabla u) = \frac{\partial u}{\partial x_i}$ then (1.1) has the form:

$$-\Delta u + \left[\sum_{i=1}^{N} g_i(x, u) \frac{\partial u}{\partial x_i} + g_0(x, u) + a(x)\right] = 0$$
 (1.2)

The problem (1.2) has been solved in [4] (Theorem 3.1, p.514) by using the topological degree for operators of class (B)₊. However, that method doesn't work when $p \neq 2$ and $a_i(x, \nabla u) = |\nabla u|^{p-2} \frac{\partial u}{\partial x_i}$. The one we use here can solve the problem (1.2) for all p > 1.

Moreover, our result is also stronger than Theorem 11 in [3] (p.357) where the authors prove the existence result for the Dirichlet problem:

$$\begin{cases} -\Delta_{p} u = f(x, u) \\ u \Big|_{\partial D} = 0 \end{cases} \quad \text{in } D.$$

with the condition (10) that the function b is in $L^{p}(D)$ but not in $L^{p}_{loc}(D)$.

2. TOPOLOGICAL DEGREE OF CLASS (S)₊

In this section, we recall the class (S) introduced by Browder (see [1], [2]).

Definition 2.1. Let D be a bounded open set of a reflexive Banach space X and f be a mapping from \overline{D} into the dual space X^* of X. We say f is of class $(S)_+$ if f has the following properties:

(i) $\{f(x_n)\}_n$ converges weakly to f(x) if $\{x_n\}_n$ converges strongly to x in \overline{D} , i.e. f is a demicontinuous mapping on \overline{D} .

(ii) $\{x_n\}_n$ converges strongly to x if $\{x_n\}_n$ converges weakly to x in \overline{D} and $\limsup_{n \to \infty} \langle f(x_n), x_n - x \rangle \leq 0.$

Definition 2.1. Let $\{g_t : 0 \le t \le 1\}$ be a one-parameter family of maps of \overline{D} into X^* . We say $\{g_t : 0 \le t \le 1\}$ is a homotopy of class $(S)_+$, if the sequences $\{x_n\}_n$ and $\{g_{t_n}(x_n)\}_n$ converge strongly to x and $g_t(x)$ respectively for any sequence $\{x_n\}_n$ in \overline{D} converging weakly to some x in X and for any sequence $\{t_n\}_n$ in [0,1] converging to t such that $\limsup_{n\to\infty} \langle g_{t_n}(x_n), x_n - x \rangle \le 0$.

Let f be a mapping of class $(S)_{+}$ on \overline{D} and let p be in $X^* \setminus f(\partial D)$. By Theorems 4 and 5 in [2], the topological degree of f on D at p is defined as a family of integers and is denoted by deg(f,D,p). In [6] Skrypnik showed that this topological degree is single-valued (see also [2]). The following result was proved in [2].

Proposition 2.1. Let f be a mapping of class $(S)_+$ from \overline{D} into X^* , and let y be in $X^* \setminus f(\partial D)$. Then we can define the degree deg(f, D, y) as an integer satisfying the following properties:

(a) If deg(f, D, y) $\neq 0$ then there exists $x \in D$ such that f(x) = y.

(b) If $\{g_t : 0 \le t \le 1\}$ is a homotopy of class $(S)_+$ and $\{y_t : 0 \le t \le 1\}$ is a continuous curve in X^* such that $y_t \notin g_t(\partial D)$ for all $t \in [0,1]$, then $\deg(g_t, D, y_t)$ is constant in t on [0,1].

Proposition 2.2. Let $A: \overline{D} \to X^*$ be a mapping of class $(S)_+$. Suppose that $0 \in \overline{D} \setminus \partial D$ and

$$\operatorname{Au} \neq 0$$
, $\langle \operatorname{Au}, u \rangle \ge 0$ for $u \in \partial D$.

Then deg(A, D, 0) = 1.

Proposition 2.3. Let $A_t : \overline{D} \to X^*$, $t \in [0,1]$ be the homotopy family of operators of class $(S)_+$. Suppose that $A_t u \neq 0$ for $u \in \partial D$, $t \in [0,1]$. Then $deg(A_0, D, 0) = deg(A_1, D, 0)$.

3. NONLINEAR ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

Let p be a real number ≥ 2 , N be an integer ≥ 2 , Ω and D be bounded open subsets in R^N. We denote by W₀^{1,p}(D) the completion of C_c[∞](D, \Box) in the norm:

$$\left\|u\right\|_{D} = \left(\int_{D} \left|\nabla u\right|^{p} dx\right)^{p} \qquad \forall u \in C_{c}^{\infty}(D, \Box).$$

Let Ω_k be an increasing sequence of open subsets of Ω such that $\overline{\Omega_k}$ is contained in Ω_{k+1} and $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$. Put $X = W_0^{1,p}(\Omega)$, $X_k = W_0^{1,p}(\Omega_k)$.

We denote by $p\,{}^{\prime}$ and p^{\ast} the conjugate exponent and the Sobolev conjugate exponent of $p\,,\,i.e.,$

$$p' = \left(1 - \frac{1}{p}\right)^{-1}$$
 and $p^* = \begin{cases} \frac{Np}{N-p} & \text{if } N \ge p \\ \infty & \text{if } N \le p \end{cases}$.

Let $g_0, g_1, ..., g_N$ be real functions on $\Omega \times \Box$ satisfying the following conditions:

(C1) The function $g_i(x,t)$ is measurable in x for fixed t in \Box and continuous in t for fixed x in Ω for any i = 0, ..., N.

 $\begin{array}{ll} (C2) & g_0\left(x,0\right) = 0 & \forall x \in \Omega \,. \\ (C3) & \left|g_i\left(x,t\right)\right| \leq b_i\left(x\right) + k_i \left|t\right|^{s_i} & \forall \left(x,t\right) \in \Omega \times \Box \,, \, i = 0,...,N \ \text{ and} \\ (C4) \end{array}$

$$-\alpha(x)|z||t|^{q} - \beta(x)|t|^{r} - c(x) \leq \left[\sum_{i=1}^{N} g_{i}(x,t)z_{i} + g_{0}(x,t) + a(x)\right] \quad \forall (x,t,z) \in \Omega \times \Box \times \Box^{N}$$

where $s_0, ..., s_N, k_0, ..., k_N, r_0, ..., r_N$ and r, q are non-negative real numbers and $b_0, ..., b_N$ and c, α, β are measurable functions such that $\alpha \in L^b(\Omega)$,

$$b \in \left(\frac{Np}{N(p-q-1)+pq}, \infty\right), \quad \beta \in L^{d}(\Omega), \quad d \in \left(\frac{Np}{N(p-r)+pr}, \infty\right), \quad c \in L^{1}(\Omega), \quad r \in (1,p),$$

$$q \in (1, p-1), \qquad r_0 \in \left(\frac{Np}{N(p-1)+p}, \infty\right), \qquad s_0^{-1} \in \left(\frac{N-p}{Np}r_0, \infty\right), \qquad a \in L^{r_0}(\Omega),$$
$$r_0 \in \left(\frac{Np}{Np}r_0, \infty\right), \qquad s_0^{-1} \in \left(\frac{N-p}{Np}r_0, \infty\right) \text{ and } b_i \in L^{r_i}(\Omega) \text{ for any } i = 0, \dots, N.$$

$$\mathbf{r}_{i} \in \left(\frac{Np}{N(p-2)+p}, \infty\right), \ \mathbf{s}_{i}^{-1} \in \left(\frac{N-p}{Np}\mathbf{r}_{i}, \infty\right) \text{ and } \mathbf{b}_{i} \in \mathbf{L}_{\text{loc}}^{\mathbf{r}_{i}}(\Omega) \text{ for any } i = 0, \dots, N.$$

We assume that the functions $a_i(x,s)$, i = 1, ..., N, $s = (s_1, ..., s_N) \in \Box^N$ satisfy: (C5) $a_i(x,s)$ is defined and differentiable w.r.t all of its arguments for $x \in \overline{\Omega}$,

 $s = (s_1, ..., s_N) \in \Box^N$. Moreover, $a_i(x, 0) = 0$ for all $i = 1, ..., N, x \in \overline{\Omega}$.

(C6) There exist positive constants M_1, M_2 such that the inequalities :

$$\sum_{i,j=1}^{N} \frac{\partial a_{i}(\mathbf{x},\mathbf{s})}{\partial s_{j}} \xi_{i} \xi_{j} \ge M_{1} \left(1+|\mathbf{s}|\right)^{p-2} \sum_{i=1}^{N} \xi_{i}^{2} ,$$

$$\left| \frac{\partial a_{i}(\mathbf{x},\mathbf{s})}{\partial s_{j}} \right| \le d(\mathbf{x}) \left(1+|\mathbf{s}|\right)^{p-2} \text{ and } \left| \frac{\partial a_{i}(\mathbf{x},\mathbf{s})}{\partial x_{k}} \right| \le M_{2} \left(1+|\mathbf{s}|\right)^{p-1}$$

are satisfied, where $d \in L^{\infty}_{loc}(\Omega)$.

Theorem 3.1. Under conditions (C1)–(C6), there exists u in X such that for any $v \in Y$,

$$\int_{\Omega} \sum_{i=1}^{N} a_i \left(x, \nabla u \right) \frac{\partial v}{\partial x_i} dx + \int_{\Omega} \left[\sum_{i=1}^{N} g_i \left(x, u \right) \frac{\partial u}{\partial x_i} + g_0 \left(x, u \right) + a \left(x \right) \right] v dx = 0.$$
(3.1)

To prove the theorem we need the following lemma.

Lemma 3.1. Let $X_k = W_0^{1,p}(\Omega_k)$. Under conditions (C1)–(C6) there exists u_k in X_k such that for any $v \in X_k$,

$$\int_{\Omega} \sum_{i=1}^{N} a_i \left(x, \nabla u_k \right) \frac{\partial v}{\partial x_i} dx + \int_{\Omega} \left[\sum_{i=1}^{N} g_i \left(x, u_k \right) \frac{\partial u_k}{\partial x_i} + g_0 \left(x, u_k \right) + a \left(x \right) \right] v dx = 0.$$

Proof. Fix a u in X_k . We will show that there exists a unique $T_k(u)$ in X_k^* satisfying

$$\left\langle T_{k}\left(u\right),v\right\rangle = \int_{\Omega_{k}}\sum_{i=1}^{N}a_{i}\left(x,\nabla u\right)\frac{\partial v}{\partial x_{i}}dx + \int_{\Omega_{k}}\left[\sum_{i=1}^{N}g_{i}\left(x,u\right)\frac{\partial u_{k}}{\partial x_{i}} + g_{0}\left(x,u_{k}\right) + a\left(x\right)\right]vdx = 0 \cdot (3.2)$$

for all $v \in X_k$.

Since $a_i(x,0) = 0$ for $x \in \overline{\Omega}$ and condition (C6),

$$\begin{split} \left| \int_{\Omega_{k}} \sum_{i=1}^{N} a_{i} \left(x, \nabla u \right) \frac{\partial v}{\partial x_{i}} dx \right| &= \left| \int_{\Omega_{k}} \sum_{i=1}^{N} \left[\int_{0}^{1} \sum_{j=1}^{N} \frac{\partial a_{i} \left(x, t \nabla u \right)}{\partial s_{j}} \cdot \frac{\partial u}{\partial x_{j}} dt \right] \frac{\partial v}{\partial x_{i}} dx \right| \\ &\leq \int_{\Omega_{k}} \left[\int_{0}^{1} \sum_{j=1}^{N} \left| \frac{\partial a_{i} \left(x, t \nabla u \right)}{\partial s_{j}} \right| dt \right] \left| \nabla u \right| \left| \nabla v \right| dx \\ &\leq N \left\| d \right\|_{\infty,\Omega_{k}} \int_{\Omega_{k}} \left[\int_{0}^{1} \left(1 + |t \nabla u| \right)^{p-2} dt \right] \left| \nabla u \right| \left| \nabla v \right| dx \leq c \left\| v \right\|_{\Omega_{k}}, \quad (3.3) \end{split}$$

where c is a positive number depending on k, N, u and d.

Put $G_{k,i}(u)(x) = g_i(x,u(x))$ $\forall x \in \Omega_k$, i = 0, ..., N. Then $G_{k,i}$ is a bounded, continuous mapping from $L^{r_i}(\Omega_k)$ into $L^{r_i}(\Omega_k)$ by conditions (C2),(C3) and by a result in [5], p.30. Moreover, by Sobolev embedding theorem there exists a positive C such that:

$$\begin{split} & \left| \int_{\Omega_{k}} \left[\sum_{i=1}^{N} g_{i}\left(x,u\right) \frac{\partial u_{k}}{\partial x_{i}} + g_{0}\left(x,u_{k}\right) + a\left(x\right) \right] v dx \right| \leq \\ & \leq C \left[\sum_{i=1}^{N} \left\| G_{k,i}\left(u\right) \right\|_{r_{i},k} \left\| u \right\|_{\Omega} + \left\| G_{k,0}\left(u\right) \right\|_{r_{0},k} + \left\| a \right\|_{r_{0}} \right] \left\| v \right\|_{\Omega_{k}} \qquad \forall v \in X_{k} \,. \end{split}$$

From this and (3.3) we get (3.2). Next, we show that T_k is of class $(S)_+$. First, we check that T_k is demicontinuous in X_k . Let $\{w_n\}_n$ be a sequence converging strongly to w in X_k . Then for every v in in X_k we have:

$$\left|\left\langle T_{k}\left(w_{n}\right)-T_{k}\left(w\right),v\right\rangle\right|=\int_{\Omega_{k}}\sum_{i=1}^{N}\left(a_{i}\left(x,\nabla w_{n}\right)-a_{i}\left(x,\nabla w\right)\right)\frac{\partial v}{\partial x_{i}}dx+$$
$$+\int_{\Omega_{k}}\left[\sum_{i=1}^{N}\left(g_{i}\left(x,w_{n}\right)\frac{\partial w_{n}}{\partial x_{i}}-g_{i}\left(x,w\right)\frac{\partial w}{\partial x_{i}}\right)+\left(g_{0}\left(x,w_{n}\right)-g_{0}\left(x,w\right)\right)+a(x)\right]vdx.$$
(3.4)

On the other hand:

$$\int_{\Omega_{k}} \sum_{i=1}^{N} \left(a_{i} \left(x, \nabla w_{n} \right) - a_{i} \left(x, \nabla w \right) \right) \frac{\partial v}{\partial x_{i}} dx =$$

$$= \int_{\Omega_{k}} \sum_{i=1}^{N} \left[\int_{0}^{1} \sum_{j=1}^{N} \frac{\partial a_{i} \left(x, \nabla w_{n} + t \nabla \left(w_{n} - w \right) \right)}{\partial s_{j}} \cdot \frac{\partial \left(w_{n} - w \right)}{\partial x_{j}} dt \right] \frac{\partial v}{\partial x_{i}} dx$$

$$\leq N \left\| d \right\|_{\infty,\Omega_{k}} \int_{\Omega_{k}} \left[\int_{0}^{1} \left(1 + \left| \nabla w_{n} + t \nabla \left(w_{n} - w \right) \right| \right)^{p-2} dt \right] \left| \nabla \left(w_{n} - w \right) \right| \left| \nabla v \right| dx \leq M_{3} \left\| w_{n} - w \right\|_{\Omega_{k}} . (3.5)$$

where M₃ is a positive number depending on k, N, v and d.

And:

$$\int_{\Omega_{k}} \left[\sum_{i=1}^{N} \left(g_{i} \left(x, w_{n} \right) \frac{\partial w_{n}}{\partial x_{i}} - g_{i} \left(x, w \right) \frac{\partial w}{\partial x_{i}} \right) + \left(g_{0} \left(x, w_{n} \right) - g_{0} \left(x, w \right) \right) + a(x) \right] v dx =
= \int_{\Omega_{k}} \left[\sum_{i=1}^{N} \left[G_{k,i} \left(w_{n} \right) \frac{\partial w_{n}}{\partial x_{i}} - G_{k,i} \left(w \right) \frac{\partial w}{\partial x_{i}} \right] + \left(G_{k,0} \left(w_{n} \right) - G_{k,0} \left(w \right) \right) \right] v dx
\leq M_{4} \left[\sum_{i=1}^{N} \left\| G_{k,i} \left(w_{n} \right) - G_{k,i} \left(w \right) \right\|_{r_{i},k} \left\| w_{n} \right\|_{\Omega} + \left\| G_{k,i} \left(w \right) \right\|_{r_{i},k} \left\| w_{n} - w \right\|_{\Omega} \right] \| v \|_{\Omega} +
+ M_{4} \left\| G_{k,0} \left(w_{n} \right) - G_{k,0} \left(w \right) \right\|_{r_{0},k} \left\| v \right\|_{\Omega} .$$
(3.6)

Since $G_{k,i}$ is a bounded, continuous mapping from $L^{r_i s_i}(\Omega_k)$ into $L^{r_i}(\Omega_k)$ and $\{w_n\}_n$ converges strongly to w in X_k , from (3.4) and (3.6), we have T_k is demicontinuous in X_k .

Now let $\left\{\boldsymbol{u}_{m}\right\}_{m}$ be a sequence converging weakly to $\,\boldsymbol{u}\,$ in $\,\boldsymbol{X}_{k}\,$ and

$$\begin{split} \limsup_{m \to \infty} \langle T_{k} (u_{m}), u_{m} - u \rangle &\leq 0 \text{ or} \\ \limsup_{m \to \infty} \int_{\Omega_{k}} \sum_{i=1}^{n} a_{i} (x, \nabla u_{m}) \frac{\partial (u_{m} - u)}{\partial x_{i}} dx + \\ &+ \int_{\Omega_{k}} \left[\sum_{i=1}^{N} g_{i} (x, u_{m}) \frac{\partial u_{m}}{\partial x_{i}} + g_{0} (x, u_{m}) + a(x) \right] (u_{m} - u) dx \leq 0 \,. \end{split}$$
(3.7)

Since $r_i^{-1}s_i^{-1} > \frac{N-p}{pN}$ for all i = 0, ..., N, the theorem of Rellich-Konkrachov gives us that the sequence $\{G_{k,i}(u_m)\}_m$ converges to $G_{k,i}(u)$ in $L^{r_i}(\Omega_k)$. Thus, $\{G_{k,0}(u_m)\}_m$ converges to $G_{k,0}(u)$ in $L^{r_i}(\Omega_k)$. This implies : $\int_{\Omega_k} [g_0(x,u_m) + a(x)](u_m - u)dx \to 0.$

On the other hand, since $\{u_m\}_m$ converges to u in L^p , ∂u_m converges weakly to ∂u and $\{G_{k,i}(u_m)\}_m$ converges to $G_{k,i}(u)$ in $L^{r_i}(\Omega_k)$, we get $\int_{\Omega_k} \sum_{i=1}^N g(x, u_m) \frac{\partial u_m}{\partial x_i} (u_m - u) dx \to 0$.

Hence

$$\lim_{m \to \infty} \int_{\Omega_k} \left[\sum_{i=1}^N g_i(x, u_m) \frac{\partial u_m}{\partial x_i} + g_0(x, u_m) + a(x) \right] (u_m - u) dx = 0.$$
(3.8)

So, it follows from (3.7) and (3.8) that $\limsup_{m \to \infty} \int_{\Omega_k} \sum_{i=1}^n a_i (x, \nabla u_m) \frac{\partial (u_m - u)}{\partial x_i} dx \le 0 \text{ or}$

$$\limsup_{m \to \infty} \int_{\Omega_{k}} \sum_{i=1}^{n} \left[a_{i} \left(x, \nabla u_{m} \right) - a_{i} \left(x, \nabla u \right) \right] \frac{\partial \left(u_{m} - u \right)}{\partial x_{i}} dx \leq 0$$
(3.9)

By condition (C6)

$$\begin{split} &\int_{\Omega_{k}} \sum_{i=1}^{N} \left(a_{i} \left(x, \nabla v \right) - a_{i} \left(x, \nabla u \right) \right) \frac{\partial \left(v - u \right)}{\partial x_{i}} dx \\ &= \int_{\Omega_{k}} \sum_{i=1}^{N} \left[\int_{0}^{1} \sum_{j=1}^{N} \frac{\partial a_{i} \left(x, \nabla u + t \nabla \left(v - u \right) \right)}{\partial s_{j}} \cdot \frac{\partial \left(v - u \right)}{\partial x_{j}} dt \right] \frac{\partial \left(v - u \right)}{\partial x_{i}} dx \\ &\geq M_{i} \int_{\Omega_{k}} \left[\int_{0}^{1} \left(1 + \left| \nabla u + t \nabla \left(v - u \right) \right| \right)^{p-2} dt \right] \left| \nabla \left(v - u \right) \right|^{2} \ge M_{5} \left| \nabla \left(v - u \right) \right|^{p} . \end{split}$$
(3.10)

Combining (3.9) and (3.10), we have the conclusion that the sequence $\{u_m\}_m$ converges to u in X_k . Thus, T_k is of class $(S)_+$ in X_k . Next we calculate the topological degree of the operator T_k .

By condition (C4), the Holder enequality and (3.10), we have:

$$\begin{split} \left\langle T_{k}\left(u\right),u\right\rangle_{\Omega} &= \int_{\Omega_{k}}\sum_{i=1}^{n}a_{i}\left(x,\nabla u\right)\frac{\partial\left(u\right)}{\partial x_{i}} + \int_{\Omega_{k}}\left[\sum_{i=1}^{N}g_{i}\left(x,u\right)\frac{\partial u}{\partial x_{i}} + g_{0}\left(x,u\right) + a\left(x\right)\right]u\left(x\right)dx\\ &\geq M_{5}\left\|u\right\|_{\Omega}^{p} - \left\|\alpha\right\|_{b}\left\|\nabla u\right\|_{p}\left\|u\right\|_{qb_{1}}^{q} - \left\|\beta\right\|_{b}\left\|u\right\|_{d_{1}r}^{r} - \left\|c\right\|_{l}. \end{split}$$

where b_1, d_1 are positive numbers such that $b^{-1} + p^{-1} + b_1^{-1} = 1$, $d^{-1} + d_1^{-1} = 1$. From conditions of b,d we have: $1 < qb_1 < p^*$, $1 < rd_1 < p^*$. By Poincare inequalities, the Sobolev embedding theorem there exists C > 0 such that:

$$\langle T_{k}(u), u \rangle_{\Omega} \ge M_{5} \|u\|_{\Omega}^{p} - C\|\alpha\|_{b} \|u\|_{qb_{1}}^{q+1} - C\|\beta\|_{d} \|u\|_{\Omega}^{r} - \|c\|_{1}.$$

Since $r, q+1 \in (1, p)$, we can choose s > 0 such that :

$$C \|\alpha\|_{b} s^{q+1-p} - C \|\beta\|_{d} s^{r-p} - \|c\|_{1} s^{-p} < \frac{M_{5}}{2}$$

Let $G = \left\{ w \in X : \|w\|_{\Omega} < s \right\}$ and $G_k = G \cap X_k$. Then G_k is an open bounded set in X_k and $\left\langle T_k\left(u\right), u \right\rangle_{\Omega} \ge \frac{M_5}{2} s^p$, $\forall u \in \partial_k G_k$.

Since T_k satisfies condition (S), on X_k , by Proposition 2.2 we conclude that

$$\deg\left(T_k,\overline{G_k}^{X_k},0\right)=1.$$

Then there exists $u_{k} \in \partial_{X_{k}}G_{k}$ such that $T_{k}(u_{k}) = 0$, i.e.

$$\int_{\Omega} \sum_{i=1}^{N} a_i \left(x, \nabla u_k \right) \frac{\partial v}{\partial x_i} dx + \int_{\Omega} \left[\sum_{i=1}^{N} g_i \left(x, u_k \right) \frac{\partial u_k}{\partial x_i} + g_0 \left(x, u_k \right) + a \left(x \right) \right] v dx = 0, \forall v \in X_k$$

which completes the proof of the lemma .

Proof of Theorem 3.1. By Lemma 3.1, there exists a sequence $\{u_k\}_k \subset \partial_{X_k}G_k$ such that:

$$\mathbf{T}_{\mathbf{k}}\left(\mathbf{u}_{\mathbf{k}}\right) = \mathbf{0} \,. \tag{3.11}$$

Since $\{u_k\}_k \subset \partial_X G$, it is bounded in X. Let u be the weak limit of $\{u_k\}_k$ in $W_0^{1,p}(\Omega)$.

By (3.11) we have

$$\langle T_k(u_k), v \rangle = 0, \quad \forall v \in X_k$$
 (3.12)

Fix $l \in \Box^+$. We consider the function $\rho_l \in C_c^{\infty}(\Omega)$ which satisfies $0 \le \rho_l \le 1$ and

$$\rho_{1}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \Omega_{I-1} \\ 0 & \text{if } \mathbf{x} \notin \Omega_{I} \end{cases}.$$

For all $k \ge 1$ we have $\rho_1 u_k - \rho_1 u \in X_k$. Then, (3.12) implies

$$\langle T_k(u_k), \rho_l u_k - \rho_l u \rangle = 0$$
 (3.13)

This yields $\lim_{k\to\infty} \langle T_k(u_k), \rho_l u_k - \rho_l u \rangle = 0$, that is

$$\lim_{k \to \infty} \int_{\Omega_{i}} \sum_{i=1}^{N} a_{i} \left(x, \nabla u_{k} \right) \frac{\partial \left(\rho_{1} u_{k} - \rho_{1} u \right)}{\partial x_{i}} dx + \int_{\Omega_{i}} \left[\sum_{i=1}^{N} g_{i} \left(x, u_{k} \right) \frac{\partial u_{k}}{\partial x_{i}} + g_{0} \left(x, u_{k} \right) + a \left(x \right) \right] \left(\rho_{1} u_{k} - \rho_{1} u \right) dx = 0.$$
(3.14)

Since $\{\rho_l u_k\}_k$ converges weakly to $\rho_l u$ in X, arguing as in the Lemma 3.1 (the proof of T_k satisfying condition $(S)_+$, we have

$$\lim_{k \to \infty} \int_{\Omega_i} \left[\sum_{i=1}^N g_i(x, u_k) \frac{\partial u_k}{\partial x_i} + g_0(x, u_k) + a(x) \right] (\rho_1 u_k - \rho_1 u) dx = 0.$$
(3.15)

Therefore, (3.14) and (3.15) imply $\lim_{k \to \infty} \int_{\Omega_l} \sum_{i=1}^N a_i (x, \nabla u_k) \frac{\partial (\rho_l u_k - \rho_l u)}{\partial x_i} dx = 0$, or

$$\lim_{k \to \infty} \int_{\Omega_{i}} \sum_{i=1}^{N} a_{i} \left(x, \nabla u_{k} \right) \left[\left(u_{k} - u \right) \frac{\partial \rho_{i}}{\partial x_{i}} + \rho_{1} \frac{\partial \left(u_{k} - u \right)}{\partial x_{i}} \right] dx = 0.$$
(3.16)

Since $\{u_k\}_k$ converges to u in $L^p(\Omega)$, it is easily seen that

$$\lim_{k\to\infty}\int_{\Omega_{i}}\sum_{i=1}^{N}a_{i}(x,\nabla u_{k})(u_{k}-u)\frac{\partial\rho_{1}}{\partial x_{i}}dx=0$$

Combining this and (3.16) we obtain $\lim_{k\to\infty} \int_{\Omega} \rho_1 \sum_{i=1}^{N} a_i \left(x, \nabla u_k \right) \frac{\partial \left(u_k - u \right)}{\partial x_i} dx = 0, \text{ or }$

$$\lim_{k\to\infty}\int_{\Omega_{i}}\rho_{1}\sum_{i=1}^{N}\left[a_{i}\left(x,\nabla u_{k}\right)-a_{i}\left(x,\nabla u\right)\right]\frac{\partial\left(u_{k}-u\right)}{\partial x_{i}}dx=0.$$
(3.17)

On the other hand, by (3.10):

$$\sum_{i=1}^{N} \left[a_{i}(x, \nabla u_{k}) - a_{i}(x, \nabla u) \right] \frac{\partial(u_{k} - u)}{\partial x_{i}} \ge M_{8} \left| \nabla(u_{k} - u) \right|^{p}.$$
Hence
$$\lim_{k \to \infty} \int_{\Omega} \rho_{1} \left| \nabla(u_{k} - u) \right|^{p} dx = 0.$$

This means that $\{u_k\}_k$ strongly converges to u on Ω_l for all $l \in \square^+$. Now fix $v \in Y$. Our goal is to show that

$$\int_{\Omega} \sum_{i=1}^{N} a_i(x, \nabla u) \frac{\partial v}{\partial x_i} dx + \int_{\Omega} \left[\sum_{i=1}^{N} g_i(x, u) \frac{\partial u_k}{\partial x_i} + g_0(x, u) + a(x) \right] v dx = 0.$$
(3.18)

Indeed, since $v \in Y$, there exists a positive integer m such that $\sup p(v) \subset \Omega_m$. Then $v \in X_k$ for all $k \ge m$. By Lemma 3.1:

$$\int_{\Omega_{m}} \sum_{i=1}^{N} a_{i}\left(x, \nabla u_{k}\right) \frac{\partial v}{\partial x_{i}} dx + \int_{\Omega_{m}} \left[\sum_{i=1}^{N} g_{i}\left(x, u_{k}\right) \frac{\partial u_{k}}{\partial x_{i}} + g_{0}\left(x, u_{k}\right) + a\left(x\right) \right] v dx = 0.$$

Since $\{u_k\}_k$ strongly converges to u on Ω_m , it follows from the above equality that (3.18) holds. We now N complete the proof of the theorem.

VỀ SỰ TỒN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH ELLIPTIC PHI TUYẾN VỚI CÁC HỆ SỐ KHÔNG BỊ CHẶN

Bùi Bội Minh Anh⁽¹⁾, Nguyễn Minh Quân⁽¹⁾, Trần Tuấn Anh⁽²⁾, Võ Đăng Khoa⁽³⁾

(1) Trường Đại học NewYork tại Buffalo, Hoa Kỳ

(2) Viện Công nghệ Georgia, Hoa Kỳ

(3) Trường Đại học Dược Tp.HCM, Việt Nam

TÓM TĂT: Sử dụng bậc tôpô của lớp $(S)_+$ được giới thiệu bởi F. E. Browder trong các bài báo [1] và [2], chúng tôi mở rộng một số kết quả của các bài báo [3] và [4] sang trường hợp không gian Banach với các điều kiện bị chặn địa phương.

TÀI LIỆU THAM KHẢO

- [1]. F. E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc., 76pp. 999-1005, (1970).
- [2]. F. E. Browder, *Fixed point theory and nonlinear problems*, *Proc. Symp. Pure Math*, 39, 49-86, (1983).
- [3]. G. Dinca, P. Jebelean and J. Mawhin, *Variational and topological methods for Dirichlet problems with p-Laplacian, Portugaliae mathematica* 58. Fasc. 3-2001.

- [4]. D. M. Duc, N. H. Loc, P. V. Tuoc, *Topological degree for a class of operators and applications*, *Nonlinear Analysis* 57, 505-518, (2004).
- [5]. M.A. Krasnosel'kii, *Topological methods in the theory of nonlinear integral equations*, Pergamon Press, Oxford, (1964).
- [6]. I.V. Skrypnik, *Nonlinear Higher Order Elliptic Equations* (in Russian), Noukova Dumka . Kiev, (1973).
- [7]. I.V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Am. Math. Soc. Transl., Ser. II 139 (1994).