TẠP CHÍ PHÁT TRIỂN KH\&CN, TẬP 9, SỐ 9-2006

EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR CONDITIONS

Chung Nhan Phu, Tran Tan Quoc

University of Natural Sciences, VNU-HCM
(Manuscript Received on March 24 ${ }^{\text {th }}, 2006$, Manuscript Revised October $2^{\text {nd }}, 2006$)

ABSTRACT: In this paper, we study the existence of generalized solution for a class of singular elliptic equation: $-\operatorname{diva}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0$.

Using the Galerkin approximation in [2,10] and test functions introduced by Drabek, Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10].

1.INTRODUCTION

The aim of this paper is to prove the existence of generalized solutions in $W_{0}^{1, p}(\Omega)$ for the quasilinear elliptic equations:

$$
\begin{equation*}
-\operatorname{diva}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0 \tag{1.1}
\end{equation*}
$$

i.e. proving the existence of $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\int_{\Omega} \mathrm{a}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x})) \nabla \varphi \mathrm{dx}+\int_{\Omega} \mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x})) \varphi \mathrm{dx}=0, \forall \varphi \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Omega)
$$

where Ω is a bounded domain in $\square^{N}, N \geq 2$ with smooth boundary, $p \in(1, N)$ and $\mathrm{a}: \Omega \times \square \times \square^{\mathrm{N}} \rightarrow \square^{\mathrm{N}}, \mathrm{f}: \Omega \times \square \times \square^{\mathrm{N}} \rightarrow \square$ satisfy the following conditions:

Each $\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \eta, \xi)$ is a Caratheodory function, that is, measurable in x for any fixed $\zeta=(\eta, \xi) \in \square^{\mathrm{N}+1}$ and continuous in ζ for almost all fixed $\mathrm{x} \in \Omega$,

$$
\begin{gather*}
\left|a_{i}(x, \eta, \xi)\right| \leq c_{1}(x)\left[|\eta|^{\alpha}+|\xi|^{p-1}+k_{1}(x)\right], \forall i=\overline{1, \mathrm{~N}} \tag{1.2}\\
{\left[\mathrm{a}(x, \eta, \xi)-a\left(x, \eta, \xi^{*}\right)\right]\left[\xi-\xi^{*}\right]>0} \tag{1.3}\\
a(x, \eta, \xi) \xi \geq \lambda|\xi|^{p} \tag{1.4}\\
\text { a.e. } x \in \Omega, \forall \eta \in \square, \forall \xi, \xi^{*} \in \square^{\mathrm{N}}, \xi \neq \xi^{*} .
\end{gather*}
$$

where $\mathrm{c}_{1} \in \mathrm{~L}_{\text {loc }}^{\infty}(\Omega), \mathrm{c}_{1} \geq 0, \mathrm{k}_{1} \in \mathrm{~L}^{\mathrm{p}^{\prime}}(\Omega), \alpha \in[0, \mathrm{p}-1], \lambda>0$.
and $\mathrm{f}: \Omega \times \square \times \square^{\mathrm{N}} \rightarrow \square$ is a Caratheodory function satisfying

$$
\begin{align*}
& |\mathrm{f}(\mathrm{x}, \eta, \xi)| \leq \mathrm{c}_{2}(\mathrm{x})\left[|\eta|^{\beta}+|\xi|^{\gamma}+\mathrm{k}_{2}(\mathrm{x})\right] \tag{1.5}\\
& \quad \mathrm{f}(\mathrm{x}, \eta, \xi) \eta \geq-\mathrm{c}_{3}(\mathrm{x})-\mathrm{b}|\eta|^{q}-\mathrm{d}|\xi|^{\mathrm{r}} \tag{1.6}
\end{align*}
$$

where c_{2} is a positive function in $L_{\text {loc }}^{\infty}(\Omega), c_{3}$ is a positive function in $L^{\infty}(\Omega), k_{2} \in L^{p^{\prime}}(\Omega)$ and $\mathrm{r}, \mathrm{q} \in[0, \mathrm{p}), \mathrm{b}$, d are positive constants, $\gamma \in[0, \mathrm{p}-1], \beta \in\left[0, \mathrm{p}^{*}-1\right)$ with $\mathrm{p}^{*}=\frac{\mathrm{Np}}{\mathrm{N}-\mathrm{p}}$.

Because $c_{1}, c_{2} \in L_{\text {loc }}^{\infty}(\Omega)$ we cannot define operator on the whole space $W_{0}^{1, p}(\Omega)$. Therefore, we cannot use the property of (S_{+}) operator as usual. To overcome this difficulty, in every Ω_{n} we find solution $\mathrm{u}_{\mathrm{n}} \in \mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)$ of the equation:

$$
-\operatorname{diva}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0
$$

where $\left\{\Omega_{n}\right\}$ is an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega_{\mathrm{n}}}$ is contained in $\Omega_{\mathrm{n}+1}$ and $\Omega=\bigcup_{\mathrm{n}=1}^{\infty} \Omega_{\mathrm{n}}$. In this case, we only have the strong convergence of $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ to u in $W_{l o c}^{1, p}(\Omega)$ by using the same technique of Drabek, Kufner, Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.

An example for our conditions:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \eta, \xi)=\frac{1}{\mathrm{~d}^{\theta}(\mathrm{x})}\left[\left|\xi_{\mathrm{i}}\right|^{\mathrm{p}-1}+\mathrm{A}_{1}(\eta)+\mathrm{k}_{1}(\mathrm{x})\right] \operatorname{sgn} \xi_{\mathrm{i}} \\
& \mathrm{f}(\mathrm{x}, \eta, \xi)=\frac{1}{\mathrm{~d}^{\mu}(\mathrm{x})}\left[|\xi|^{a}+|\eta|^{\mathrm{b}}+\mathrm{k}_{2}(\mathrm{x})\right] \operatorname{sgn} \eta
\end{aligned}
$$

where $\mathrm{d}(\mathrm{x})=\operatorname{dist}(\mathrm{x}, \partial \Omega) ; \theta, \mu>0 ; \mathrm{A}_{1}, \mathrm{k}_{1}, \mathrm{k}_{2}$ are positive functions

$$
\mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~L}^{\mathrm{p}^{\prime}}(\Omega) ; \mathrm{A}_{1}(\eta) \leq|\eta|^{\alpha} ; \alpha, \mathrm{a} \in[0, \mathrm{p}-1] ; \mathrm{b} \in\left[0, \mathrm{p}^{*}-1\right)
$$

The problem is singular because $\frac{1}{d^{\theta}(x)}, \frac{1}{d^{\mu}(x)} \in L_{\text {loc }}^{\infty}(\Omega)$.
Remark:

1) If $\mathrm{c}_{2} \in \mathrm{~L}^{\infty}(\Omega)$ and $\beta, \gamma \in[0, \mathrm{p}-1)$ the condition (1.5) implies the condition (1.6).
2) The pseudo-Laplacian $a(x, \eta, \xi)=\left(\left|\xi_{1}\right|^{p-2} \xi_{1}, \ldots,\left|\xi_{N}\right|^{p-2} \xi_{N}\right)$, the p-Laplacian $\mathrm{a}(\mathrm{x}, \eta, \xi)=\left(|\xi|^{p-2} \xi_{1}, \ldots,|\xi|^{p-2} \xi_{\mathrm{N}}\right)$ are some special cases that satisfy our conditions. So our results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends the recent result about singular elliptic equations for case $\mathrm{p}=2$ in [6].

2. PREREQUISITES

2.1.Lemma 2.1

(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure in \square^{n} and $\mathrm{h}: \mathrm{G} \times \square \times \square^{\mathrm{m}} \rightarrow \square$ satisfy the following conditions:
a) h is a Caratheodory function.
b) $\left|\mathrm{h}\left(\mathrm{x}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)\right| \leq \mathrm{c} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left|\mathrm{u}_{\mathrm{i}}\right|^{\mathrm{p}_{\mathrm{i}} / \mathrm{p}^{\prime}}+\mathrm{g}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{G}$
where c is a positive constant, $\mathrm{p}_{\mathrm{i}} \in(1, \infty), \forall \mathrm{i}=1, \ldots, \mathrm{~m}, \mathrm{~g} \in \mathrm{~L}^{\mathrm{p}^{\prime}}(\mathrm{G})$.
Then the Nemytskii operator defined by the equality

$$
\mathrm{H}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)(\mathrm{x})=\mathrm{h}\left(\mathrm{x}, \mathrm{u}_{1}(\mathrm{x}), \ldots, \mathrm{u}_{\mathrm{m}}(\mathrm{x})\right) \text { acts continuously from }
$$

$\mathrm{L}^{\mathrm{p}_{1}}(\mathrm{G}) \times \ldots \times \mathrm{L}^{\mathrm{p}_{m}}(\mathrm{G})$ to $\mathrm{L}^{\mathrm{L}^{\prime}}(\mathrm{G})$. Moreover, it is bounded, i.e. it transforms any set which is
bounded into another bounded set. (Proof of this fact for the simple case can be found in [8], theorem 2.2, page 26).

2.2.Lemma 2.2

(See e.g. [10], lemma 4.1, page 14) Let $\mathrm{F}: \overline{\mathrm{U}} \rightarrow \square^{\mathrm{m}}$ be a continuous mapping of the closure of a bounded domain $\mathrm{U} \subset \square^{\mathrm{m}}$. Suppose that the origin is an interior point of D and that the condition $\quad(\mathrm{F}(\mathrm{x}), \mathrm{x})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{F}_{\mathrm{i}}(\mathrm{x}) \mathrm{x}_{\mathrm{i}} \geq 0, \forall \mathrm{x} \in \partial \mathrm{U}$

Then the equation $F(x)=0$ has at least one solution in $\overline{\mathrm{U}}$.
We recall some results about Schauder bases.
Definition: A sequence $\left\{x_{i}\right\}$ in a Banach space X is a Schauder basis if every $x \in X$ can be written uniquely $\mathrm{x}=\sum_{\mathrm{i}=1}^{\infty} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$, where $\left\{\mathrm{c}_{\mathrm{i}}\right\} \subset \square$.

Because every $\mathrm{x} \in \mathrm{X}$ is written uniquely $\mathrm{x}=\sum_{\mathrm{i}=1}^{\infty} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ we have $\mathrm{x}_{\mathrm{i}} \neq 0$ and c_{i} is a function from X to \square, for all i in R .
2.3.Lemma 2.3: ([9], Theorem 3.1, page 20) For all i in \square, c_{i} is a continuous linear function on X, i.e. $\forall \mathrm{i} \in \square, \exists \mathrm{M}_{\mathrm{i}}>0,\left|\mathrm{c}_{\mathrm{i}}(\mathrm{x})\right| \leq \mathrm{M}_{\mathrm{i}}\|\mathrm{x}\|_{\mathrm{X}}, \forall \mathrm{x} \in \mathrm{X}$
2.4.Lemma 2.4: ([7], Corollary 3) Let D be a bounded domain in \square^{N} with smooth boundary. Then the space $\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})$ has a Schauder basis.
2.5.Lemma 2.5: Let D be an open set in $\Omega, \overline{\mathrm{D}} \subset \Omega$. If

$$
\begin{equation*}
\mathrm{u}_{\mathrm{n}} \xrightarrow{\text { weak }} \mathrm{u} \text { in } \mathrm{W}^{1, \mathrm{p}}(\mathrm{D}) \tag{1.8}
\end{equation*}
$$

and $\lim _{\mathrm{n} \rightarrow \infty} \int_{\mathrm{D}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right]\left[\nabla \mathrm{u}_{\mathrm{n}}-\nabla \mathrm{u}\right] \mathrm{dx}=0$
Then there exists a subsequence of $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ still denoted by $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ such that $\nabla \mathrm{u}_{\mathrm{n}} \rightarrow \nabla \mathrm{u}$ $\operatorname{in} \mathrm{L}^{\mathrm{p}}(\mathrm{D})$.
Proof: Since $c_{1}, c_{2} \in L_{\text {loc }}^{\infty}(\Omega)$ we have $c_{1}, c_{2} \in L^{\infty}(D)$ and the conditions (1.2), (1.5) become:

$$
\begin{aligned}
& \left|\mathrm{a}_{\mathrm{i}}(\mathrm{x}, \eta, \xi)\right| \leq \mathrm{C}_{1}\left[|\eta|^{\alpha}+|\xi|^{p-1}+\mathrm{k}_{1}(\mathrm{x})\right], \forall \mathrm{i}=\overline{1, \mathrm{~N}} \\
& |\mathrm{f}(\mathrm{x}, \eta, \xi)| \leq \mathrm{C}_{2}\left[|\eta|^{\beta}+|\xi|^{\gamma}+\mathrm{k}_{2}(\mathrm{x})\right]
\end{aligned}
$$

Using the well-known result in [2], Lemma 3, we obtain our Lemma.

Let us recall the definition of class ($\mathrm{S}+$): A mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}^{*}$ is called belongs to the class (S+) if for any sequence u_{n} in X with $u_{n} \xrightarrow{\text { weak }} u$ and $\underset{n \rightarrow \infty}{\limsup }\left\langle\operatorname{Tu}_{n}, u_{n}-u\right\rangle \leq 0$ it follows that $\mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{u}$.
2.6.Lemma 2.6: (see [2,10]) Let D be an open set in $\Omega, \overline{\mathrm{D}} \subset \Omega$ and A be a mapping from $\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})$ to $\left[\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})\right]^{*}$, such that $\langle\mathrm{Au}, \mathrm{v}\rangle=\int_{\mathrm{D}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\mathrm{D}} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \mathrm{vdx}$

Then A is a $\left(S_{+}\right)$operator.

3. MAIN RESULTS

Let $\left\{\Omega_{\mathrm{n}}\right\}$ be an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega_{\mathrm{n}}}$ is contained in $\Omega_{\mathrm{n}+1}$ and $\Omega=\bigcup_{\mathrm{n}=1}^{\infty} \Omega_{\mathrm{n}}$.
First, in every Ω_{n} we find solution $\mathrm{u}_{\mathrm{n}} \in \mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)$ of the equation:

$$
\begin{equation*}
-\operatorname{diva}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0 \tag{3.1}
\end{equation*}
$$

Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) has a bounded solution in $\mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)$.

3.1.Lemma 3.1:

For each Ω_{n}, the equation: - diva $(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0$
has a solution $\mathrm{u}_{\mathrm{n}} \in \mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)$. Furthermore, there exists a positive constant R independent of n satisfying that $\left\|\mathrm{u}_{\mathrm{n}}\right\|_{\mathrm{W}_{0}^{\mathrm{L}^{\mathrm{p}}\left(\Omega_{\mathrm{n}}\right)}} \leq \mathrm{R}, \forall \mathrm{n} \in \square$.
Proof: Fix $n \in \square$. Let $D=\Omega_{n}, X=W_{0}^{1, p}(D)$ and A be a mapping from $W_{0}^{1, p}(D)$ to $\left[\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})\right]^{*}$, such that

$$
\begin{equation*}
\langle A u, v\rangle=\int_{D} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\mathrm{D}} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \mathrm{vdx}, \forall \mathrm{u}, \mathrm{v} \in \mathrm{~W}_{0}^{1, \mathrm{p}} \tag{D}
\end{equation*}
$$

By Lemma 2.6, A belongs to class ($S+$).
We will prove that A is a demicontinuous operator, i.e. if $\mathrm{u}_{\mathrm{m}} \rightarrow \mathrm{u}$ in $\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})$, then

$$
\left\langle\mathrm{Au}_{\mathrm{m}}, \mathrm{v}\right\rangle \rightarrow\langle\mathrm{Au}, \mathrm{v}\rangle, \forall \mathrm{v} \in \mathrm{~W}_{0}^{1, \mathrm{p}}(\mathrm{D})
$$

By $\mathrm{u}_{\mathrm{m}} \rightarrow \mathrm{u}$ in $\mathrm{W}_{0}^{1, \mathrm{p}}(\mathrm{D})$ and (1.2), (1.5), applying Lemma 2.1, we get

$$
\mathrm{a}_{\mathrm{i}}\left(., \mathrm{u}_{\mathrm{m}}, \nabla \mathrm{u}_{\mathrm{m}}\right) \rightarrow \mathrm{a}_{\mathrm{i}}(., \mathrm{u}, \nabla \mathrm{u}), \forall \mathrm{i}=1, . ., \mathrm{N} \text { In } \mathrm{L}^{\mathrm{p}^{\prime}}(\mathrm{D}) \text { as } \mathrm{m} \rightarrow \infty
$$

and

$$
\mathrm{f}\left(., \mathrm{u}_{\mathrm{m}}, \nabla \mathrm{u}_{\mathrm{m}}\right) \rightarrow \mathrm{f}(., \mathrm{u}, \nabla \mathrm{u}) \text { in } \mathrm{L}^{\mathrm{p}^{\prime}}(\mathrm{D}) \text { as } \mathrm{m} \rightarrow \infty
$$

Hence $\left\langle A u_{m}, v\right\rangle=\int_{D} \sum_{i=1}^{N} a_{i}\left(x, u_{m}, \nabla u_{m}\right) \frac{\partial v}{\partial x_{i}} d x+\int_{D} f\left(x, u_{m}, \nabla u_{m}\right) v d x \rightarrow$

$$
\int_{\mathrm{D}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{a}_{\mathrm{i}}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \frac{\partial \mathrm{v}}{\partial \mathrm{x}_{\mathrm{i}}} \mathrm{dx}+\int_{\mathrm{D}} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \mathrm{vdx}=\langle\mathrm{Au}, \mathrm{v}\rangle, \forall \mathrm{v} \in \mathrm{~W}_{0}^{1, \mathrm{p}}(\mathrm{D})
$$

Therefore, A is demicontinuous.
Besides, by applying the boundedness of Nemytskii operator for a $(., \mathrm{u}, \nabla \mathrm{u})$ and $\mathrm{f}(., \mathrm{u}, \nabla \mathrm{u})$ one deduces that A is bounded.
For any arbitrary u in $W_{0}^{1, \mathrm{p}}(\mathrm{D})$, due to (1.4), (1.6), we have

$$
\begin{aligned}
\langle A u, u\rangle & =\int_{D} a(x, u, \nabla u) \nabla u d x+\int_{D} f(x, u, \nabla u) u d x \\
& \geq \lambda \int_{D}|\nabla u(x)|^{p} d x-\int_{D}^{p}\left[c_{3}(x)+b \cdot|u(x)|^{q}+d \cdot|\nabla u(x)|^{r}\right] d x \\
& \geq \lambda\|u\|_{x}^{p}-\left\|c_{3}\right\|_{L^{\infty}(D)}-b\|u\|_{L^{q^{(}(D)}}^{q}-d \int_{D}|\nabla u(x)|^{r} d x
\end{aligned}
$$

Let $\hat{\mathrm{u}}(\mathrm{x})=\mathrm{u}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{D}$ and $\hat{\mathrm{u}}(\mathrm{x})=0, \forall \mathrm{x} \in \Omega \backslash \mathrm{D}$, we have

$$
\langle A u, u\rangle \geq \lambda\|u\|_{x}^{p}-\left\|c_{3}\right\|_{L^{\infty}(D)}-b\|u\|_{L^{q}(\Omega)}^{q}-d\left(\int_{D}^{q}|\nabla u(x)|^{p} d x\right)^{r / p}\left(\int_{D} d x\right)^{1-r / p}
$$

Since $\mathrm{q}<\mathrm{p}<\mathrm{p}^{*}$, the continuous imbedding $\mathrm{W}_{0}^{1, \mathrm{p}}(\Omega) \rightarrow \mathrm{L}^{\mathrm{q}}(\Omega)$ implies that

$$
\begin{aligned}
& \langle A u, u\rangle \geq \lambda\|u\|_{X}^{p}-\left\|c_{3}\right\|_{L^{\infty}(\Omega)}-b\left(M \cdot\|\hat{u}\|_{W_{0}^{1 p}(\Omega)}\right)^{q}-d . K\|\nabla u\|_{L^{p}(D)}^{r} \\
& \geq \lambda\|u\|_{X}^{\mathrm{p}}-\left\|\mathrm{c}_{3}\right\|_{\mathrm{L}^{\infty}(\Omega)}-\mathrm{bM}^{\mathrm{q}} .\|\mathrm{u}\|_{\mathrm{w}_{0}^{1 \mathrm{p}}(\mathrm{D})}^{\mathrm{q}}-\mathrm{d} . \mathrm{K}\|\mathrm{u}\|_{\mathrm{W}_{0}^{L^{p}(\mathrm{D})}}^{\mathrm{r}} \\
& \geq\|u\|_{X}^{p}\left(\lambda-\frac{\left\|c_{3}\right\|_{L^{\infty}(\Omega)}}{\|u\|_{X}^{p}}-\frac{\mathrm{bM}^{\mathrm{q}}}{\|u\|_{X}^{\|^{p-q}}}-\frac{\text { d.K }}{\|u\|_{X}^{p-r}}\right)
\end{aligned}
$$

Since $1, \mathrm{r}, \mathrm{q}<\mathrm{p}$, one can choose a positive constant R independent of n such that

$$
\begin{equation*}
\langle\mathrm{Au}, \mathrm{u}\rangle \geq 0, \forall \mathrm{u} \in \partial \mathrm{~B}_{\mathrm{x}}(0, \mathrm{R}) \tag{3.3}
\end{equation*}
$$

Applying Lemma 2.4 there exists a Schauder basis $\left\{v_{i}\right\}$ in the space X. We consider in \square^{m} the domain $U_{m}=\left\{c=\left(c_{1}, \ldots, c_{m}\right):\left\|\sum_{i=1}^{m} c_{i} v_{i}\right\|_{X}<R\right\}$
Applying Lemma 2.3, there exists

$$
\mathrm{M}_{\mathrm{i}}>0,\left|\mathrm{c}_{\mathrm{i}}\right| \leq \mathrm{M}_{\mathrm{i}}\left\|\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right\|_{\mathrm{x}}<\mathrm{M}_{\mathrm{i}} \mathrm{R}, \forall \mathrm{i}=\overline{1, \mathrm{~m}}, \forall\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}\right) \in \mathrm{U}_{\mathrm{m}}
$$

So U_{m} is bounded in \square^{m}. We apply Lemma 2.2 to this domain U_{m} and to the mapping

$$
\mathrm{F}: \overline{\mathrm{U}}_{\mathrm{m}} \rightarrow \square^{\mathrm{m}}, \quad \mathrm{~F}(\mathrm{c})=\left(\mathrm{F}_{1}(\mathrm{c}), \ldots, \mathrm{F}_{\mathrm{m}}(\mathrm{c})\right), \quad \mathrm{F}_{\mathrm{i}}(\mathrm{c})=\left\langle\mathrm{A}\left(\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right), \mathrm{v}_{\mathrm{i}}\right\rangle
$$

Let $\mathrm{c}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}\right) \in \partial \mathrm{U}_{\mathrm{m}}$ and $\mathrm{u}=\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}$ then $\|\mathrm{u}\|_{\mathrm{X}}=\mathrm{R}$. We have

$$
(F(c), c)=\sum_{j=1}^{m} F_{j}(c) c_{j}=\left\langle A\left(\sum_{j=1}^{m} c_{j} v_{j}\right), \sum_{j=1}^{m} c_{j} v_{j}\right\rangle=\langle A u, u\rangle \geq 0
$$

because of (3.3). By Lemma 2.2, the equation $\mathrm{F}(\mathrm{c})=0$ has at least one solution in $\overline{\mathrm{U}}_{\mathrm{m}}$, for example $\mathrm{c}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{m}}\right)$. Hence $\mathrm{F}_{\mathrm{i}}(\mathrm{c})=\left\langle\mathrm{A}\left(\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}\right), \mathrm{v}_{\mathrm{i}}\right\rangle=0, \forall \mathrm{i}=\overline{1, \mathrm{~m}}$
Consequently, $\mathrm{u}_{\mathrm{m}}=\sum_{\mathrm{j}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}$ satisfies the inequality

$$
\begin{equation*}
\left\|\mathrm{u}_{\mathrm{m}}\right\|_{\mathrm{X}} \leq \mathrm{R} \tag{3.4}
\end{equation*}
$$

And is a solution of the system

$$
\begin{equation*}
\left\langle\mathrm{Au}_{\mathrm{m}}, \mathrm{v}_{\mathrm{i}}\right\rangle=0, \forall \mathrm{i}=\overline{1, \mathrm{~m}} \tag{3.5}
\end{equation*}
$$

Let m go through \square we have a sequence $\left\{u_{m}\right\}$ satisfying (3.4) and is a solution of (3.5). By virtue of the reflexivity of the space X, the sequence u_{m} contains weakly convergent
subsequence $u_{m_{k}}$. So $u_{m_{k}} \xrightarrow{\text { weak }} u_{0}$. Since u_{0} is in X with the Schauder basis $\left\{v_{i}\right\}$, we have $\mathrm{u}_{0}=\sum_{\mathrm{j}=1}^{\infty} \alpha_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}=\lim _{\mathrm{m} \rightarrow \infty} \sum_{\mathrm{j}=1}^{\mathrm{m}} \alpha_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}$. Let $\mathrm{w}_{\mathrm{m}}=\sum_{\mathrm{j}=1}^{\mathrm{m}} \alpha_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}$ then $\mathrm{w}_{\mathrm{m}} \rightarrow \mathrm{u}_{0}$ so $\mathrm{w}_{\mathrm{m}_{\mathrm{k}}} \rightarrow \mathrm{u}_{0}$. We have

$$
\begin{equation*}
\left\langle A u_{m_{k}}, u_{m_{k}}-u_{0}\right\rangle=\left\langle A u_{m_{k}}, u_{m_{k}}-w_{m_{k}}\right\rangle+\left\langle A u_{m_{k}}, w_{m_{k}}-u_{0}\right\rangle \tag{3.6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle A u_{m_{k}}, w_{m_{k}}-u_{0}\right\rangle=0 \tag{3.7}
\end{equation*}
$$

because of (3.4), the boundedness of the operator A, and the strong convergence of $\mathrm{w}_{\mathrm{m}_{k}}$ to u_{0}. Since $u_{m_{k}}-w_{m_{k}}=\sum_{j=1}^{m_{k}} \beta_{j} v_{j}$ and (3.5), we get $\left\langle\operatorname{Au}_{m_{k}}, u_{m_{k}}-w_{m_{k}}\right\rangle=0, \forall k$.
Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\langle A u_{m_{k}}, u_{m_{k}}-u_{0}\right\rangle=0 \tag{3.8}
\end{equation*}
$$

Because A belongs to class $(S+)$ and (3.8), we deduce that $\mathrm{u}_{\mathrm{m}_{\mathrm{k}}} \rightarrow \mathrm{u}_{0}$. Since A is demicontinuous, passing to limit the equality (3.5) for a fixed i, we have

$$
\begin{equation*}
\left\langle\mathrm{Au}_{0}, \mathrm{v}_{\mathrm{i}}\right\rangle=0 \tag{3.9}
\end{equation*}
$$

Let $\mathrm{v} \in \mathrm{X}$, then $\mathrm{v}=\sum_{\mathrm{j}=1}^{\infty} \alpha_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}=\lim _{\mathrm{m} \rightarrow \infty} \sum_{\mathrm{j}=1}^{\mathrm{m}} \alpha_{\mathrm{j}} \mathrm{v}_{\mathrm{j}}$. Since i is an arbitrary index, it follows from (3.9) that $\left\langle A u_{0}, \sum_{i=1}^{m} \alpha_{i} v_{i}\right\rangle=0, \forall m \in \square$. Let m tend to infinity, we get $\left\langle A u_{0}, v\right\rangle=0$
Hence, u_{0} is a solution of the equation (3.2). Moreover, since $u_{m_{k}} \rightarrow{ }_{n}$ weak , we get $\left\|u_{0}\right\|_{W_{0}^{1 p}\left(\Omega_{n}\right)}=\left\|u_{0}\right\|_{X} \leq \liminf _{k \rightarrow \infty}\left\|u_{m_{k}}\right\|_{X} \leq R$, where R does not depend on n. This completes the proof of Lemma 3.1

By Lemma 3.1, we have proved that (3.2) has a bounded solution $\mathrm{u}_{\mathrm{n}} \in \mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)$ satisfying $\left\|\mathrm{u}_{\mathrm{n}}\right\|_{\mathrm{W}_{0}^{\mathrm{p} p}\left(\Omega_{\mathrm{n}}\right)} \leq \mathrm{R}, \forall \mathrm{n} \in \square$. Next, we expand u_{n} to all $\Omega: \mathrm{u}_{\mathrm{n}}(\mathrm{x})=0, \forall \mathrm{x} \in \Omega \backslash \Omega_{\mathrm{n}}$. So $\mathrm{u}_{\mathrm{n}} \in \mathrm{W}_{0}^{1, \mathrm{p}}(\Omega)$ and $\left\|\mathrm{u}_{\mathrm{n}}\right\|_{\mathrm{W}_{0}^{1 \mathrm{p}}(\Omega)}=\left\|\mathrm{u}_{\mathrm{n}}\right\|_{\mathrm{w}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{n}}\right)} \leq \mathrm{R}, \forall \mathrm{n} \in \square$. By virtue of the reflexivity of the space $W_{0}^{1, p}(\Omega)$, there exists $u \in W_{0}^{1, p}(\Omega)$ such that $u_{n} \xrightarrow{\text { weak }} u$ in $W_{0}^{1, p}(\Omega)$ for some subsequence. We will prove that u is a generalized solution of the equation (1.1) in $\mathrm{W}_{0}^{1, \mathrm{p}}(\Omega)$, i.e. $\int_{\Omega}^{\mathrm{a}}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x})) \nabla \varphi \mathrm{dx}+\int_{\Omega} \mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x})) \varphi \mathrm{dx}=0, \forall \varphi \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Omega)$

In order to do that, we need the following lemma:

3.2.Lemma 3.2.

Let m in \square, we have

$$
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right]\left[\nabla \mathrm{u}_{\mathrm{n}}-\nabla \mathrm{u}\right] \mathrm{dx}=0
$$

Proof: We only need to consider $\mathrm{n}>\mathrm{m}+1$. Let ϕ_{m} be a functions in $\mathrm{C}_{\mathrm{c}}^{\infty}(\Omega)$, with $0 \leq \phi_{\mathrm{m}} \leq 1$ in Ω and $\phi_{\mathrm{m}}(\mathrm{x})=\left\{\begin{array}{ll}1 & \text { if } \mathrm{x} \in \Omega_{\mathrm{m}} \\ 0 & \text { if } \mathrm{x} \in \Omega \Omega_{\mathrm{m}+1}\end{array}\right.$. Then there exists M such that,

$$
\begin{equation*}
\left|\phi_{\mathrm{m}}(\mathrm{x})\right| \leq \mathrm{M},\left|\nabla \phi_{\mathrm{m}}(\mathrm{x})\right| \leq \mathrm{M}, \forall \mathrm{x} \in \Omega \tag{3.10}
\end{equation*}
$$

Put $\mathrm{w}_{\mathrm{n}}=\phi_{\mathrm{m}} \cdot\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right)$ restricted on Ω_{n}.
Because supp $\left[\phi_{\mathrm{m}} \cdot\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right)\right] \subset \Omega_{\mathrm{m}+2} \subset \Omega_{\mathrm{n}}, \forall \mathrm{n}>\mathrm{m}+1$, we have suppw $\mathrm{n}_{\mathrm{n}} \subset \Omega_{\mathrm{n}}, \forall \mathrm{n}>\mathrm{m}+1$. So $W_{n} \in W_{0}^{1, p}\left(\Omega_{n}\right)$. Since u_{n} is the solution of the equation (3.2), we have

$$
\int_{\Omega_{\mathrm{n}}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \nabla \mathrm{w}_{\mathrm{n}} \mathrm{dx}+\int_{\Omega_{\mathrm{n}}} \mathrm{f}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \mathrm{w}_{\mathrm{n}} \mathrm{dx}=0
$$

Hence

$$
\begin{equation*}
\int_{\Omega_{\mathrm{m}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \nabla \mathrm{w}_{\mathrm{n}} \mathrm{dx}+\int_{\Omega_{\mathrm{m}+1}} \mathrm{f}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \mathrm{w}_{\mathrm{n}} \mathrm{dx}=0 \tag{3.11}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{f}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \phi_{\mathrm{m}}\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0 \tag{3.12}
\end{equation*}
$$

by finding a number s such that $\mathrm{f}\left(., \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)$ is bounded in $\mathrm{L}^{\mathrm{s}^{\prime}}\left(\Omega_{\mathrm{m}+1}\right)$ and $\mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{u}$ in $\mathrm{L}^{\mathrm{s}}\left(\Omega_{\mathrm{m}+1}\right)$. Since $\beta \in\left[0, \mathrm{p}^{*}-1\right)$ and $\mathrm{p}<\mathrm{p}^{*}$, we can find s satisfying $\beta+1<\mathrm{s}<\mathrm{p}^{*}$ and $\mathrm{p}<\mathrm{s}$.
Hence $\beta<\mathrm{s}-1=\frac{\mathrm{s}}{\mathrm{s}^{\prime}}$ and $\gamma<\mathrm{p}-1<\mathrm{p}-\frac{\mathrm{p}}{\mathrm{s}}=\frac{\mathrm{p}}{\mathrm{s}^{\prime}}$. Since $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ is bounded in $\mathrm{W}_{0}^{1, \mathrm{p}}(\Omega)$, the
Sobolev imbedding implies that there exists a subsequence still denoted by $\left\{u_{n}\right\}$ such that $u_{n} \rightarrow u$ in $L^{s}(\Omega)$, so $u_{n} \rightarrow u$ in $L^{s}\left(\Omega_{m+1}\right)$. From (1.5) and Lemma 2.1, one deduces that $\mathrm{f}\left(., \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)$ is bounded in $\mathrm{L}^{\mathrm{s}^{\prime}}\left(\Omega_{\mathrm{m}+1}\right)$. Combining (3.10), we have (3.12). Hence

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{f}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \mathrm{w}_{\mathrm{n}} \mathrm{dx}=0 \tag{3.13}
\end{equation*}
$$

From (3.11), (3.13), one deduces that $\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \nabla \mathrm{w}_{\mathrm{n}} \mathrm{dx}=0$ or

$$
\lim _{n \rightarrow \infty} \int_{\Omega_{\mathrm{n}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \nabla\left(\phi_{\mathrm{m}} \cdot\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right)\right) \mathrm{dx}=0
$$

Hence,

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)\left[\phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right)+\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \cdot \nabla \phi_{\mathrm{m}}\right] \mathrm{dx}=0 \tag{3.14}
\end{equation*}
$$

Besides, since $p<s$, we get $\quad \mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{u}$ in $\mathrm{L}^{\mathrm{p}}\left(\Omega_{\mathrm{m}+1}\right)$
Applying Lemma 2.1, we have $a\left(., u_{n}, \nabla u_{n}\right)$ is bounded in $\left[L^{\mathrm{p}^{\prime}}\left(\Omega_{m+1}\right)\right]^{N}$. Combining with (3.10), (3.15), we obtain

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \cdot \nabla \phi_{\mathrm{m}} \mathrm{dx}=0 \tag{3.16}
\end{equation*}
$$

From (3.14), (3.16) we have

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0 \tag{3.17}
\end{equation*}
$$

On the other hand, (1.2), Lemma 2.1, (3.15) imply

$$
\mathrm{a}\left(., \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right) \rightarrow \mathrm{a}(., \mathrm{u}, \nabla \mathrm{u}) \text { in }\left[\mathrm{L}^{\mathrm{p}^{\prime}}\left(\Omega_{\mathrm{m}+1}\right)\right]^{\mathrm{N}}
$$

Combining with (3.10) and the boundedness of $u n$ in $\mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{m}+1}\right)$, one deduces that

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)-\mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u})\right] \phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0 \tag{3.18}
\end{equation*}
$$

and due to the weak convergence of un to u in $\mathrm{W}_{0}^{1, \mathrm{p}}\left(\Omega_{\mathrm{m}+1}\right)$ also

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}} \mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0 \tag{3.19}
\end{equation*}
$$

It follows from (3.18), (3.19) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega_{m+1}} a\left(x, u_{n}, \nabla u\right) \phi_{m} \cdot \nabla\left(u_{n}-u\right) d x=0 \tag{3.20}
\end{equation*}
$$

Hence (3.17) together with (3.20) yield

$$
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}+1}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right] \phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0
$$

Since $\phi_{\mathrm{m}} \cdot\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right]\left(\nabla \mathrm{u}_{\mathrm{n}}-\nabla \mathrm{u}\right) \geq 0$, for all x in $\Omega_{\mathrm{m}+1}$, we get

$$
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right] \phi_{\mathrm{m}} \cdot \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0
$$

The fact that $\phi_{\mathrm{m}}(\mathrm{x})=1, \forall \mathrm{x} \in \Omega_{\mathrm{m}}$ then implies

$$
\lim _{\mathrm{n} \rightarrow \infty} \int_{\Omega_{\mathrm{m}}}\left[\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right)-\mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}\right)\right] \nabla\left(\mathrm{u}_{\mathrm{n}}-\mathrm{u}\right) \mathrm{dx}=0
$$

Fix $\varphi \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Omega)$, there exists m in \square such that $\operatorname{supp} \varphi \subset \Omega_{\mathrm{m}}$. Applying Lemma 2.5,
Lemma 3.2, we have $\nabla \mathrm{u}_{\mathrm{n}} \rightarrow \nabla \mathrm{u}$ in $\mathrm{L}^{\mathrm{p}}\left(\Omega_{\mathrm{m}}\right)$ for some subsequence. Since $\mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{u}$ in $L^{p}\left(\Omega_{m}\right)$ also, together with Lemma 2.1, we obtain

$$
\begin{aligned}
\int_{\Omega_{\mathrm{m}}} \mathrm{a}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \nabla \varphi \mathrm{dx} & \rightarrow \int_{\Omega_{\mathrm{m}}} \mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \nabla \varphi \mathrm{dx} \\
\int_{\Omega_{\mathrm{m}}} \mathrm{f}\left(\mathrm{x}, \mathrm{u}_{\mathrm{n}}, \nabla \mathrm{u}_{\mathrm{n}}\right) \varphi \mathrm{dx} & \rightarrow \int_{\Omega_{\mathrm{m}}} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \varphi \mathrm{dx}
\end{aligned}
$$

So

$$
\int_{\Omega} \mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \nabla \varphi \mathrm{dx}+\int_{\Omega} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \varphi \mathrm{dx}=\int_{\Omega_{\mathrm{m}}} \mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \nabla \varphi \mathrm{dx}+\int_{\Omega_{\mathrm{m}}} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \varphi \mathrm{dx}=0
$$

Therefore, we get the main theorem:
Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized solution u in $\mathrm{W}_{0}^{1, \mathrm{p}}(\Omega)$, that is, for any $\varphi \in \mathrm{C}_{\mathrm{c}}^{\infty}(\Omega)$

$$
\int_{\Omega} \mathrm{a}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \nabla \varphi \mathrm{dx}+\int_{\Omega} \mathrm{f}(\mathrm{x}, \mathrm{u}, \nabla \mathrm{u}) \varphi \mathrm{dx}=0
$$

SỬ TỒN TẠI NGHIỆM CỦA PHU'ƠNG TRİNH ELLIPTIC QUASILINEAR VỚI ĐIỀU KIỆN Kİ DỊ

Chung Nhân Phú, Trần Tấn Quốc
Trường Đại học Khoa học tự nhiên, ĐHQG-HCM

TÓM TȦT: Trong bài báo này, chúng tôi khảo sát sụ tồn tại nghiệm suy rộng của một lóp phương trình elliptic kì dị:
$-\operatorname{diva}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))+\mathrm{f}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))=0$
Sủ dụng phuơng pháp xấp xỉ Galerkin trong [2,10] và hàm thủ̉ được Drabek, Kufner, Nicolosi nêu trong [5], chúng tôi mở rộng một số kêt quả về phưong trình elliptic trong [2,3,4,6,10].

REFERENCES

[1]. Adams A., Sobolev spaces, Academic Press, (1975)
[2]. Browder F. E., Existence theorem for nonlinear partial differential equations, Pro.Sym. Pure Math., Vol XVI, ed. by Chern S. S. and Smale S., AMS, Providence, p 1-60, (1970).
[3]. Dinca G., Jebelean P., Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis 46, p 47-363, (2001).
[4]. Dinca G., Jebelean P., Mawhin J., Variational and Topological Methods for Dirichlet problems with p-Laplacian, Portugaliae Mathematica, Vol 58, Num 3, p 340-378, (2001).
[5]. Drabek P., Kufner A., Nicolosi F., Quasilinear Elliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications, Berlin - New York (1997)
[6]. Duc D. M., Loc N. H., Tuoc P. V., Topological degree for a class of operators and applications, Nonlinear Analysis Vol 57, p 505-518, (2004).
[7]. Fucik S., John O., Necas J., On the existence of Schauder bases in Sobolev spaces, Comment. Math. Univ. Carolin. 13, p 163-175,(1972).
[8]. Krasnoselskii M.A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, (1964).
[9]. Singer I., Bases in Banach spaces I, Springer, (1970)
[10]. Skrypnik I.V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, AMS (1994)

