EXISTENCE OF SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR CONDITIONS

Chung Nhan Phu, Tran Tan Quoc

University of Natural Sciences, VNU-HCM (Manuscript Received on March 24th, 2006, Manuscript Revised October 2nd, 2006)

ABSTRACT: In this paper, we study the existence of generalized solution for a class of singular elliptic equation: $-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$.

Using the Galerkin approximation in [2, 10] and test functions introduced by Drabek, Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10].

1.INTRODUCTION

The aim of this paper is to prove the existence of generalized solutions in $W_0^{1,p}(\Omega)$ for the quasilinear elliptic equations:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0 \quad (1.1)$$

i.e. proving the existence of $u \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} a(x, u(x), \nabla u(x)) \nabla \phi dx + \int_{\Omega} f(x, u(x), \nabla u(x)) \phi dx = 0, \forall \phi \in C_{c}^{\infty}(\Omega)$$

where Ω is a bounded domain in $\Box^N, N \ge 2$ with smooth boundary, $p \in (1, N)$ and $a: \Omega \times \Box \times \Box^N \to \Box^N, f: \Omega \times \Box \times \Box^N \to \Box$ satisfy the following conditions:

Each $a_i(x,\eta,\xi)$ is a Caratheodory function, that is, measurable in x for any fixed $\zeta = (\eta,\xi) \in \Box^{N+1}$ and continuous in ζ for almost all fixed $x \in \Omega$,

$$\left|a_{i}\left(x,\eta,\xi\right)\right| \leq c_{1}\left(x\right)\left[\left|\eta\right|^{\alpha}+\left|\xi\right|^{p-1}+k_{1}\left(x\right)\right], \forall i=\overline{1,N}$$

$$(1.2)$$

$$\left[a\left(x,\eta,\xi\right)-a\left(x,\eta,\xi^{*}\right)\right]\left[\xi-\xi^{*}\right]>0$$
(1.3)

$$a(x,\eta,\xi)\xi \ge \lambda |\xi|^{p}$$
(1.4)

a.e.
$$x \in \Omega, \forall \eta \in \Box, \forall \xi, \xi^* \in \Box^N, \xi \neq \xi^*$$
.

where $c_1 \in L^{\infty}_{loc}(\Omega), c_1 \ge 0, k_1 \in L^{p'}(\Omega), \alpha \in [0, p-1], \lambda > 0$.

and $f: \Omega \times \Box \times \Box^{N} \to \Box$ is a Caratheodory function satisfying

$$\left| f\left(x,\eta,\xi\right) \right| \le c_2\left(x\right) \left[\left|\eta\right|^{\beta} + \left|\xi\right|^{\gamma} + k_2\left(x\right) \right]$$
(1.5)

$$f(x,\eta,\xi)\eta \ge -c_3(x) - b|\eta|^q - d|\xi|^r$$
(1.6)

where c_2 is a positive function in $L^{\infty}_{loc}(\Omega)$, c_3 is a positive function in $L^{\infty}(\Omega)$, $k_2 \in L^{p'}(\Omega)$ and $r, q \in [0, p)$, b, d are positive constants, $\gamma \in [0, p-1]$, $\beta \in [0, p^*-1)$ with $p^* = \frac{Np}{N-p}$. Because $c_1, c_2 \in L^{\infty}_{loc}(\Omega)$ we cannot define operator on the whole space $W^{1,p}_0(\Omega)$. Therefore, we cannot use the property of (S_+) operator as usual. To overcome this difficulty, in every Ω_n we find solution $u_n \in W^{1,p}_0(\Omega_n)$ of the equation:

$$-\operatorname{diva}(x,u(x),\nabla u(x)) + f(x,u(x),\nabla u(x)) = 0$$

where $\{\Omega_n\}$ is an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega_n}$ is contained in Ω_{n+1} and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$. In this case, we only have the strong convergence of $\{u_n\}$ to u in $W_{loc}^{1,p}(\Omega)$ by using the same technique of Drabek, Kufner, Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.

An example for our conditions:

$$a_{i}(x,\eta,\xi) = \frac{1}{d^{\theta}(x)} \left[\left| \xi_{i} \right|^{p-1} + A_{1}(\eta) + k_{1}(x) \right] \operatorname{sgn} \xi$$
$$f(x,\eta,\xi) = \frac{1}{d^{\mu}(x)} \left[\left| \xi \right|^{a} + \left| \eta \right|^{b} + k_{2}(x) \right] \operatorname{sgn} \eta$$

where $d(x) = dist(x, \partial \Omega); \theta, \mu > 0; A_1, k_1, k_2$ are positive functions

$$k_1, k_2 \in L^{p'}(\Omega); A_1(\eta) \le |\eta|^{\alpha}; \alpha, a \in [0, p-1]; b \in [0, p^*-1).$$

The problem is singular because $\frac{1}{d^{\theta}(x)}, \frac{1}{d^{\mu}(x)} \in L^{\infty}_{loc}(\Omega)$.

Remark:

1) If $c_2 \in L^{\infty}(\Omega)$ and $\beta, \gamma \in [0, p-1)$ the condition (1.5) implies the condition (1.6).

2) The pseudo-Laplacian $a(x,\eta,\xi) = (|\xi_1|^{p-2}\xi_1,...,|\xi_N|^{p-2}\xi_N)$, the p-Laplacian $a(x,\eta,\xi) = (|\xi|^{p-2}\xi_1,...,|\xi|^{p-2}\xi_N)$ are some special cases that satisfy our conditions. So our results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends the recent result about singular elliptic equations for case p=2 in [6].

2. PREREQUISITES

2.1.Lemma 2.1

(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure in \square^n and $h: G \times \square \times \square^m \to \square$ satisfy the following conditions:

a) h is a Caratheodory function.

b)
$$|h(x, u_1, ..., u_m)| \le c \sum_{i=1}^{m} |u_i|^{p_i/p'} + g(x), \forall x \in G$$

where c is a positive constant, $p_i \in (1, \infty)$, $\forall i = 1, ..., m, g \in L^{p'}(G)$.

Then the Nemytskii operator defined by the equality

 $H(u_1,...,u_m)(x) = h(x,u_1(x),...,u_m(x)) \text{ acts continuously from}$ $L^{p_1}(G) \times ... \times L^{p_m}(G) \text{ to } L^{p'}(G). \text{ Moreover, it is bounded, i.e. it transforms any set which is}$

bounded into another bounded set. (Proof of this fact for the simple case can be found in [8], theorem 2.2, page 26).

2.2.Lemma 2.2

that the condition

(See e.g. [10], lemma 4.1, page 14) Let $F:\overline{U} \to \Box^m$ be a continuous mapping of the closure of a bounded domain $U \subset \Box^m$. Suppose that the origin is an interior point of D and

$$\left(F(x), x\right) = \sum_{i=1}^{m} F_i(x) x_i \ge 0, \forall x \in \partial U$$
(1.7)

Then the equation F(x) = 0 has at least one solution in \overline{U} . We recall some results about Schauder bases.

Definition: A sequence $\{x_i\}$ in a Banach space X is a Schauder basis if every $x \in X$

can be written uniquely
$$x = \sum_{i=1}^{\infty} c_i x_i = \lim_{n \to \infty} \sum_{i=1}^{n} c_i x_i$$
, where $\{c_i\} \subset \Box$.

Because every $x \in X$ is written uniquely $x = \sum_{i=1}^{\infty} c_i x_i$ we have $x_i \neq 0$ and c_i is a function from X to \Box , for all i in R.

2.3.Lemma 2.3: ([9], Theorem 3.1, page 20) For all i in \Box , c_i is a continuous linear function on X, i.e. $\forall i \in \Box$, $\exists M_i > 0$, $|c_i(x)| \le M_i ||x||_x$, $\forall x \in X$

2.4.Lemma 2.4: ([7], Corollary 3) Let D be a bounded domain in $\square^{\mathbb{N}}$ with smooth boundary. Then the space $W_0^{1,p}(D)$ has a Schauder basis.

2.5.Lemma 2.5: Let D be an open set in
$$\Omega$$
, D $\subset \Omega$. If
 $u_n \xrightarrow{\text{weak}} u$ in $W^{1,p}(D)$ (1.8)

and
$$\lim_{n \to \infty} \int_{D} \left[a \left(x, u_n, \nabla u_n \right) - a \left(x, u_n, \nabla u \right) \right] \left[\nabla u_n - \nabla u \right] dx = 0$$
(1.9)

Then there exists a subsequence of $\{u_n\}$ still denoted by $\{u_n\}$ such that $\nabla u_n \rightarrow \nabla u$ in $L^p(D)$.

Proof: Since $c_1, c_2 \in L^{\infty}_{loc}(\Omega)$ we have $c_1, c_2 \in L^{\infty}(D)$ and the conditions (1.2), (1.5) become:

$$\begin{aligned} \left| a_{i}\left(x,\eta,\xi\right) \right| &\leq C_{1} \left[\left| \eta \right|^{\alpha} + \left| \xi \right|^{p-1} + k_{1}\left(x\right) \right], \forall i = \overline{1, N} \\ \left| f\left(x,\eta,\xi\right) \right| &\leq C_{2} \left[\left| \eta \right|^{\beta} + \left| \xi \right|^{\gamma} + k_{2}\left(x\right) \right] \end{aligned}$$

Using the well-known result in [2], Lemma 3, we obtain our Lemma.

Let us recall the definition of class (S+): A mapping $T: X \to X^*$ is called belongs to the class (S+) if for any sequence u_n in X with $u_n \xrightarrow{weak} u$ and $\limsup_{n \to \infty} \langle Tu_n, u_n - u \rangle \le 0$ it follows that $u_n \to u$.

2.6.Lemma 2.6: (see [2, 10]) Let D be an open set in Ω , $\overline{D} \subset \Omega$ and A be a mapping from $W_0^{1,p}(D)$ to $\left[W_0^{1,p}(D)\right]^*$, such that $\langle Au, v \rangle = \int_{D} \sum_{i=1}^{N} a_i(x, u, \nabla u) \frac{\partial v}{\partial x_i} dx + \int_{D} f(x, u, \nabla u) v dx$

Then A is a (S_+) operator.

3 . MAIN RESULTS

Let $\{\Omega_n\}$ be an increasing sequence of open subsets of Ω with smooth boundaries such that $\overline{\Omega_n}$ is contained in Ω_{n+1} and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$. First, in every Ω_n we find solution $u_n \in W_0^{1,p}(\Omega_n)$ of the equation:

$$-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$$
(3.1)

Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) has a bounded solution in $W_0^{1,p}(\Omega_n)$.

3.1.Lemma 3.1:

For each Ω_n , the equation: $-\operatorname{diva}(x, u(x), \nabla u(x)) + f(x, u(x), \nabla u(x)) = 0$ (3.2)

has a solution $u_n \in W_0^{1,p}(\Omega_n)$. Furthermore, there exists a positive constant R independent of n satisfying that $\|u_n\|_{W_0^{1,p}(\Omega_n)} \leq R, \forall n \in \Box$.

Proof: Fix $n \in \square$. Let $D = \Omega_n$, $X = W_0^{1,p}(D)$ and A be a mapping from $W_0^{1,p}(D)$ to $\left[W_0^{1,p}(D)\right]^*$, such that

$$\left\langle Au, v \right\rangle = \int_{D} \sum_{i=1}^{N} a_i \left(x, u, \nabla u \right) \frac{\partial v}{\partial x_i} dx + \int_{D} f\left(x, u, \nabla u \right) v dx, \forall u, v \in W_0^{1,p}(D)$$

By Lemma 2.6, A belongs to class (S+).

We will prove that A is a demicontinuous operator, i.e. if $u_m \rightarrow u$ in $W_0^{1,p}(D)$, then

$$\langle \mathrm{Au}_{\mathrm{m}}, \mathrm{v} \rangle \rightarrow \langle \mathrm{Au}, \mathrm{v} \rangle, \forall \mathrm{v} \in \mathrm{W}^{1, \mathrm{p}}_{0}(\mathrm{D})$$

By $u_m \rightarrow u$ in $W_0^{1,p}(D)$ and (1.2), (1.5), applying Lemma 2.1, we get

 $a_i(., u_m, \nabla u_m) \rightarrow a_i(., u, \nabla u), \forall i = 1, .., N \text{ In } L^{p'}(D) \text{ as } m \rightarrow \infty$ $f(., u_m, \nabla u_m) \rightarrow f(., u, \nabla u) \text{ in } L^{p'}(D) \text{ as } m \rightarrow \infty$

and

Hence
$$\langle Au_{m}, v \rangle = \int_{D} \sum_{i=1}^{N} a_{i} (x, u_{m}, \nabla u_{m}) \frac{\partial v}{\partial x_{i}} dx + \int_{D} f(x, u_{m}, \nabla u_{m}) v dx \rightarrow$$

$$\int_{D} \sum_{i=1}^{N} a_{i} (x, u, \nabla u) \frac{\partial v}{\partial x_{i}} dx + \int_{D} f(x, u, \nabla u) v dx = \langle Au, v \rangle, \forall v \in W_{0}^{1,p}(D)$$

Therefore, *A* is demicontinuous.

Besides, by applying the boundedness of Nemytskii operator for $a(., u, \nabla u)$ and $f(., u, \nabla u)$ one deduces that *A* is bounded.

For any arbitrary u in $W_0^{1,p}(D)$, due to (1.4), (1.6), we have

$$\langle \operatorname{Au}, \mathbf{u} \rangle = \int_{D} a(x, u, \nabla u) \nabla u dx + \int_{D} f(x, u, \nabla u) u dx \geq \lambda \int_{D} |\nabla u(x)|^{p} dx - \int_{D} \left[c_{3}(x) + b \cdot |u(x)|^{q} + d \cdot |\nabla u(x)|^{r} \right] dx \geq \lambda ||u||_{X}^{p} - ||c_{3}||_{L^{\infty}(D)} - b ||u||_{L^{q}(D)}^{q} - d \int_{D} |\nabla u(x)|^{r} dx$$

Let $\hat{u}(x) = u(x), \forall x \in D \text{ and } \hat{u}(x) = 0, \forall x \in \Omega \setminus D$, we have

$$\left\langle Au,u\right\rangle \geq \lambda \left\|u\right\|_{X}^{p} - \left\|c_{3}\right\|_{L^{\infty}(D)} - b\left\|\widehat{u}\right\|_{L^{q}(\Omega)}^{q} - d\left(\int_{D} \left|\nabla u\left(x\right)\right|^{p} dx\right)^{r/p} \left(\int_{D} dx\right)^{1-r/p}$$

Since $q , the continuous imbedding <math>W_0^{1,p}(\Omega) \rightarrow L^q(\Omega)$ implies that

$$\begin{split} \left\langle Au, u \right\rangle &\geq \lambda \left\| u \right\|_{X}^{p} - \left\| c_{3} \right\|_{L^{\infty}(\Omega)} - b \left(M. \left\| \widehat{u} \right\|_{W_{0}^{1,p}(\Omega)} \right)^{q} - d.K \left\| \nabla u \right\|_{L^{p}(D)}^{r} \\ &\geq \lambda \left\| u \right\|_{X}^{p} - \left\| c_{3} \right\|_{L^{\infty}(\Omega)} - bM^{q} \cdot \left\| u \right\|_{W_{0}^{1,p}(D)}^{q} - d.K \left\| u \right\|_{W_{0}^{1,p}(D)}^{r} \\ &\geq \left\| u \right\|_{X}^{p} \left(\lambda - \frac{\left\| c_{3} \right\|_{L^{\infty}(\Omega)}}{\left\| u \right\|_{X}^{p}} - \frac{bM^{q}}{\left\| u \right\|_{X}^{p-q}} - \frac{d.K}{\left\| u \right\|_{X}^{p-r}} \right) \end{split}$$

Since 1, r, q \leq p, one can choose a positive constant R independent of n such that

$$\langle \operatorname{Au}, u \rangle \ge 0, \forall u \in \partial B_{X}(0, R)$$
 (3.3)

Applying Lemma 2.4 there exists a Schauder basis $\{v_i\}$ in the space X. We consider in \square^m the domain $U_m = \left\{ c = (c_1, ..., c_m) : \left\| \sum_{i=1}^m c_i v_i \right\|_X < R \right\}$ Applying Lemma 2.3, there exists

$$M_i > 0, \left| c_i \right| \le M_i \left\| \sum_{j=1}^m c_j v_j \right\|_x < M_i R, \forall i = \overline{1, m}, \forall \left(c_1, ..., c_m \right) \in U_m$$

So U_m is bounded in \square ^m. We apply Lemma 2.2 to this domain U_m and to the mapping

$$F:\overline{U}_{m} \to \Box^{m}, F(c) = (F_{1}(c), ..., F_{m}(c)), F_{i}(c) = \left\langle A\left(\sum_{j=1}^{m} c_{j} v_{j}\right), v_{i} \right\rangle$$

Let $c = (c_1, ..., c_m) \in \partial U_m$ and $u = \sum_{j=1}^m c_j v_j$ then $||u||_X = R$. We have

$$\left(\mathbf{F}(\mathbf{c}),\mathbf{c}\right) = \sum_{j=1}^{m} \mathbf{F}_{j}(\mathbf{c}) \mathbf{c}_{j} = \left\langle \mathbf{A}\left(\sum_{j=1}^{m} \mathbf{c}_{j} \mathbf{v}_{j}\right), \sum_{j=1}^{m} \mathbf{c}_{j} \mathbf{v}_{j}\right\rangle = \left\langle \mathbf{A}\mathbf{u}, \mathbf{u}\right\rangle \ge 0$$

because of (3.3). By Lemma 2.2, the equation F(c) = 0 has at least one solution in \overline{U}_m , for example $c = (c_1, ..., c_m)$. Hence $F_i(c) = \left\langle A\left(\sum_{j=1}^m c_j v_j\right), v_i\right\rangle = 0, \forall i = \overline{1, m}$

Consequently, $u_m = \sum_{j=1}^m c_j v_j$ satisfies the inequality

$$\left\|\mathbf{u}_{\mathrm{m}}\right\|_{\mathrm{X}} \le \mathbf{R} \tag{3.4}$$

And is a solution of the system

$$\langle Au_{m}, v_{i} \rangle = 0, \forall i = \overline{1, m}$$
 (3.5)

Let m go through \Box we have a sequence $\{u_m\}$ satisfying (3.4) and is a solution of (3.5). By virtue of the reflexivity of the space X, the sequence u_m contains weakly convergent

subsequence \mathbf{u}_{m_k} . So $\mathbf{u}_{m_k} \xrightarrow{\text{weak}} \mathbf{u}_0$. Since \mathbf{u}_0 is in X with the Schauder basis $\{\mathbf{v}_i\}$, we have $\mathbf{u}_0 = \sum_{j=1}^{\infty} \alpha_j \mathbf{v}_j = \lim_{m \to \infty} \sum_{j=1}^m \alpha_j \mathbf{v}_j$. Let $\mathbf{w}_m = \sum_{j=1}^m \alpha_j \mathbf{v}_j$ then $\mathbf{w}_m \to \mathbf{u}_0$ so $\mathbf{w}_{m_k} \to \mathbf{u}_0$. We have $\langle A\mathbf{u}_{m_k}, \mathbf{u}_{m_k} - \mathbf{u}_0 \rangle = \langle A\mathbf{u}_{m_k}, \mathbf{u}_{m_k} - \mathbf{w}_{m_k} \rangle + \langle A\mathbf{u}_{m_k}, \mathbf{w}_{m_k} - \mathbf{u}_0 \rangle$ (3.6)

Moreover,

$$\lim_{k \to \infty} \left\langle A u_{m_k}, w_{m_k} - u_0 \right\rangle = 0$$
(3.7)

because of (3.4), the boundedness of the operator *A*, and the strong convergence of w_{m_k} to u_0 . Since $u_{m_k} - w_{m_k} = \sum_{j=1}^{m_k} \beta_j v_j$ and (3.5), we get $\langle Au_{m_k}, u_{m_k} - w_{m_k} \rangle = 0, \forall k$. Hence

$$\lim_{k \to \infty} \left\langle A u_{m_k}, u_{m_k} - u_0 \right\rangle = 0 \tag{3.8}$$

Because A belongs to class (S+) and (3.8), we deduce that $u_{m_k} \rightarrow u_0$. Since A is demicontinuous, passing to limit the equality (3.5) for a fixed i, we have

$$\left\langle Au_{0}, v_{i} \right\rangle = 0 \tag{3.9}$$

Let $v \in X$, then $v = \sum_{j=1}^{\infty} \alpha_j v_j = \lim_{m \to \infty} \sum_{j=1}^m \alpha_j v_j$. Since i is an arbitrary index, it follows from (3.9) that $\left\langle Au_0, \sum_{i=1}^m \alpha_i v_i \right\rangle = 0$, $\forall m \in \Box$. Let m tend to infinity, we get $\left\langle Au_0, v \right\rangle = 0$

Hence, u_0 is a solution of the equation (3.2). Moreover, since $u_{m_k} \xrightarrow{w_{cas}} u_0$, we get $\|u_0\|_{W_0^{1,p}(\Omega_n)} = \|u_0\|_X \le \liminf_{k \to \infty} \|u_{m_k}\|_X \le R$, where R does not depend on n. This completes the proof of Lemma 3.1

By Lemma 3.1, we have proved that (3.2) has a bounded solution $u_n \in W_0^{1,p}(\Omega_n)$ satisfying $\|u_n\|_{W_0^{1,p}(\Omega_n)} \leq R, \forall n \in \Box$. Next, we expand u_n to all $\Omega : u_n(x) = 0, \forall x \in \Omega \setminus \Omega_n$. So $u_n \in W_0^{1,p}(\Omega)$ and $\|u_n\|_{W_0^{1,p}(\Omega)} = \|u_n\|_{W_0^{1,p}(\Omega_n)} \leq R, \forall n \in \Box$. By virtue of the reflexivity of the space $W_0^{1,p}(\Omega)$, there exists $u \in W_0^{1,p}(\Omega)$ such that $u_n \xrightarrow{weak} u$ in $W_0^{1,p}(\Omega)$ for some subsequence. We will prove that u is a generalized solution of the equation (1.1) in $W_0^{1,p}(\Omega)$, i.e. $\int_{\Omega} a(x, u(x), \nabla u(x)) \nabla \phi dx + \int_{\Omega} f(x, u(x), \nabla u(x)) \phi dx = 0, \forall \phi \in C_c^{\infty}(\Omega)$

In order to do that, we need the following lemma:

3.2.Lemma 3.2.

Let m in \square , we have

$$\lim_{n\to\infty}\int_{\Omega_{m}}\left[a\left(x,u_{n},\nabla u_{n}\right)-a\left(x,u_{n},\nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right]dx=0$$

Proof: We only need to consider n>m+1. Let ϕ_m be a functions in $C_c^{\infty}(\Omega)$, with $0 \le \phi_m \le 1$ in Ω and $\phi_m(x) = \begin{cases} 1 & \text{if } x \in \Omega_m \\ 0 & \text{if } x \in \Omega \setminus \Omega_{m+1} \end{cases}$. Then there exists M such that,

$$\left|\phi_{m}(x)\right| \leq M, \ \left|\nabla\phi_{m}(x)\right| \leq M, \ \forall x \in \Omega$$
(3.10)

Put $w_n = \phi_m \cdot (u_n - u)$ restricted on Ω_n . Because supp $[\phi_m \cdot (u_n - u)] \subset \Omega_{m+2} \subset \Omega_n$, $\forall n > m+1$, we have supp $w_n \subset \Omega_n$, $\forall n > m+1$. So $w_n \in W_0^{1,p}(\Omega_n)$. Since u_n is the solution of the equation (3.2), we have

$$\int_{\Omega_n} a(x, u_n, \nabla u_n) \nabla w_n dx + \int_{\Omega_n} f(x, u_n, \nabla u_n) w_n dx = 0.$$

$$\int_{\Omega_n} a(x, u_n, \nabla u_n) \nabla w_n dx + \int_{\Omega_n} f(x, u_n, \nabla u_n) w_n dx = 0$$
(3.11)

Hence

We

shall prove that
$$\lim_{n \to \infty} \int_{\Omega_{m+1}} f(x, u_n, \nabla u_n) \phi_m(u_n - u) dx = 0$$
(3.12)

by finding a number s such that $f(., u_n, \nabla u_n)$ is bounded in $L^{s'}(\Omega_{m+1})$ and $u_n \to u$ in $L^s(\Omega_{m+1})$. Since $\beta \in [0, p^* - 1)$ and $p < p^*$, we can find s satisfying $\beta + 1 < s < p^*$ and p < s. Hence $\beta < s - 1 = \frac{s}{s'}$ and $\gamma . Since <math>\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$, the Sobolev imbedding implies that there exists a subsequence still denoted by $\{u_n\}$ such that $u_n \to u$ in $L^s(\Omega)$, so $u_n \to u$ in $L^s(\Omega_{m+1})$. From (1.5) and Lemma 2.1, one deduces that $f(., u_n, \nabla u_n)$ is bounded in $L^{s'}(\Omega_{m+1})$. Combining (3.10), we have (3.12). Hence

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} f(x, u_n, \nabla u_n) w_n dx = 0$$
(3.13)

From (3.11), (3.13), one deduces that $\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) \nabla w_n dx = 0 \text{ or}$ $\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) \nabla (\phi_m. (u_n - u)) dx = 0$

Hence,

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) \Big[\phi_m \cdot \nabla (u_n - u) + (u_n - u) \cdot \nabla \phi_m \Big] dx = 0$$
(3.14)

Besides, since
$$p < s$$
, we get $u_n \rightarrow u$ in $L^p(\Omega_{m+1})$ (3.15)

Applying Lemma 2.1, we have $a(., u_n, \nabla u_n)$ is bounded in $[L^{p'}(\Omega_{m+1})]^N$. Combining with (3.10) (3.15) we obtain $\lim_{n \to \infty} \int a(x, u, \nabla u_n)(u, u_n) \nabla h dx = 0$ (3.16)

(3.10), (3.15), we obtain
$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n)(u_n - u) \cdot \nabla \phi_m dx = 0$$
(3.16)

From (3.14), (3.16) we have
$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u_n) \phi_m \cdot \nabla (u_n - u) dx = 0$$
(3.17)

On the other hand, (1.2), Lemma 2.1, (3.15) imply

$$a(., u_n, \nabla u) \rightarrow a(., u, \nabla u) \text{ in } \left[L^{p'}(\Omega_{m+1})\right]^N$$

Combining with (3.10) and the boundedness of *un* in $W_0^{1,p}(\Omega_{m+1})$, one deduces that

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} \left[a(x, u_n, \nabla u) - a(x, u, \nabla u) \right] \phi_m \cdot \nabla (u_n - u) dx = 0$$
(3.18)

and due to the weak convergence of un to u in $W_0^{1,p}(\Omega_{m+1})$ also

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u, \nabla u) \phi_m \cdot \nabla (u_n - u) dx = 0$$
(3.19)

It follows from (3.18), (3.19) that

$$\lim_{n \to \infty} \int_{\Omega_{m+1}} a(x, u_n, \nabla u) \phi_m \cdot \nabla (u_n - u) dx = 0$$
(3.20)

Hence (3.17) together with (3.20) yield

$$\lim_{n\to\infty}\int_{\Omega_{m+1}} \left[a\left(x,u_{n},\nabla u_{n}\right)-a\left(x,u_{n},\nabla u\right)\right]\phi_{m}.\nabla\left(u_{n}-u\right)dx=0$$

Since ϕ_{m} . $\left[a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u)\right] (\nabla u_{n} - \nabla u) \ge 0$, for all x in Ω_{m+1} , we get $\lim_{n \to \infty} \int_{\Omega_{m}} \left[a(x, u_{n}, \nabla u_{n}) - a(x, u_{n}, \nabla u)\right] \phi_{m} \cdot \nabla (u_{n} - u) dx = 0$

The fact that $\phi_m(x) = 1, \forall x \in \Omega_m$ then implies

$$\lim_{n\to\infty}\int_{\Omega_m} \left[a\left(x,u_n,\nabla u_n\right) - a\left(x,u_n,\nabla u\right)\right]\nabla \left(u_n - u\right)dx = 0 \quad \Box$$

Fix $\phi \in C_c^{\infty}(\Omega)$, there exists *m* in \Box such that supp $\phi \subset \Omega_m$. Applying Lemma 2.5, Lemma 3.2, we have $\nabla u_n \to \nabla u$ in $L^p(\Omega_m)$ for some subsequence. Since $u_n \to u$ in $L^p(\Omega_m)$ also, together with Lemma 2.1, we obtain

$$\int_{\Omega_{m}} a(x, u_{n}, \nabla u_{n}) \nabla \phi dx \rightarrow \int_{\Omega_{m}} a(x, u, \nabla u) \nabla \phi dx$$
$$\int_{\Omega_{m}} f(x, u_{n}, \nabla u_{n}) \phi dx \rightarrow \int_{\Omega_{m}} f(x, u, \nabla u) \phi dx$$

So

$$\int_{\Omega} a(x, u, \nabla u) \nabla \varphi dx + \int_{\Omega} f(x, u, \nabla u) \varphi dx = \int_{\Omega_m} a(x, u, \nabla u) \nabla \varphi dx + \int_{\Omega_m} f(x, u, \nabla u) \varphi dx = 0$$

Therefore, we get the main theorem:

Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized solution u in $W_0^{1,p}(\Omega)$, that is, for any $\phi \in C_c^{\infty}(\Omega)$

$$\int_{\Omega} a(x, u, \nabla u) \nabla \phi dx + \int_{\Omega} f(x, u, \nabla u) \phi dx = 0$$

SỰ TỒN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH ELLIPTIC QUASILINEAR VỚI ĐIỀU KIỆN KÌ DỊ

Chung Nhân Phú, Trần Tấn Quốc

Trường Đại học Khoa học tự nhiên, ĐHQG-HCM

TÓM TÅT: Trong bài báo này, chúng tôi khảo sát sự tồn tại nghiệm suy rộng của một lớp phương trình elliptic kì dị:

 $-\operatorname{diva}(x,u(x),\nabla u(x)) + f(x,u(x),\nabla u(x)) = 0$

Sử dụng phương pháp xấp xỉ Galerkin trong [2,10] và hàm thử được Drabek, Kufner, Nicolosi nêu trong [5], chúng tôi mở rộng một số kết quả về phương trình elliptic trong [2,3,4,6,10].

REFERENCES

- [1]. Adams A., Sobolev spaces, Academic Press, (1975)
- [2]. Browder F. E., Existence theorem for nonlinear partial differential equations, Pro.Sym. Pure Math., Vol XVI, ed. by Chern S. S. and Smale S., AMS, Providence, p 1-60, (1970).
- [3]. Dinca G., Jebelean P., Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis 46, p 47-363, (2001).
- [4]. Dinca G., Jebelean P., Mawhin J., Variational and Topological Methods for Dirichlet problems with p-Laplacian, Portugaliae Mathematica, Vol 58, Num 3, p 340-378, (2001).
- [5]. Drabek P., Kufner A., Nicolosi F., *Quasilinear Elliptic Equations with Degenerations and Singularities*, De Gruyter Series in Nonlinear Analysis and Applications, Berlin New York (1997)
- [6]. Duc D. M., Loc N. H., Tuoc P. V., *Topological degree for a class of operators and applications*, Nonlinear Analysis Vol 57, p 505-518, (2004).
- [7]. Fucik S., John O., Necas J., On the existence of Schauder bases in Sobolev spaces, Comment. Math. Univ. Carolin. 13, p 163-175,(1972).
- [8]. Krasnoselskii M.A., *Topological Methods in the Theory of Nonlinear Integral Equations*, Pergamon Press, (1964).
- [9]. Singer I., Bases in Banach spaces I, Springer, (1970)
- [10]. Skrypnik I.V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, AMS (1994)