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ABSTRACT: In this paper, we study the existence of generalized solution for a class
of singular elliptic equation: —diva (x, u(x),Vu (x)) +f (x, u(x),Vu (x)) =0.

Using the Galerkin approximation in [2, 10] and test functions introduced by Drabek,
Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10].

1.INTRODUCTION

The aim of this paper is to prove the existence of generalized solutions in W,*” (Q) for

the quasilinear elliptic equations:
—diva(x,u(x),Vu(x))+f(x,u(x),Vu(x))=0 (1.1)

i.e. proving the existence of ue W;* (Q) such that

J.a(x,u(x),Vu(x))V(pdx+£f(x,u(x),Vu(x))(pdx =0,VoeC; (Q)

Q
where Q is a bounded domain in 0™ N>2 with smooth boundary,pe(1,N) and

a:Qx0 x0N 50N, f:Qx[0 x0N - satisfy the following conditions:

Each ai(x,n,&,) is a Caratheodory function, that is, measurable in x for any fixed

£=(n,&) el ™" and continuous in ¢ for almost all fixedx € Q,

2, (x,m.8)| < ¢, (X)Unr g+, (x)],w LN (1.2)
[a(x,n,é)—a(x,n,ﬁ*)][é—ﬁ*]>O (1.3)
a(x,n,&)E= e[ (1.4)

ae. xeQ Vnell \VEE eI N, g2E".
wherec, e Ly (Q),¢, 20k, e I’ (Q),a€[0,p—-1],A>0.

loc

and f:Qx[J xJ™ -0 is a Caratheodory function satisfying
F(xne) < ()P +g +k. (x) ] (1.5)

f(x,n,i,)n >—c, (x)—b|n|q -d|g

where ¢, is a positive function in L} _(Q),c¢, is a positive function in L*(Q), k, e L (Q)

loc
andr,q €[0,p), b, d are positive constants, y € [O,p —1] ,Bel0,p —1) with p" = I\?I_p

' (1.6)
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Because c¢,,c, €L (Q) we cannot define operator on the whole space W,”(Q).

Therefore, we cannot use the property of (S+) operator as usual. To overcome this difficulty,
in every Q, we find solution u, € W;* (€, ) of the equation:

—diva(x,u(x),Vu(x))+ f(x,u(x),Vu(x)) =0
where {Qn} is an increasing sequence of open subsets of 2 with smooth boundaries such

that Q_n is contained in Q ,, andQ=U’_ Q . In this case, we only have the strong

convergence of {u } to uin W)’ (Q) by using the same technique of Drabek, Kufner,

n

Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.

An example for our conditions:

8, (x18)= 5

EX)[P;F’#AI (0)+k (x) Jsent,

¥ k, (x)} sgnm

f(x,n,a):m[a

where d(x)=dist(x,0Q);0,n>0;A,,k,,k, are positive functions

k,.k, e (Q); A (n)<[n[*;0,2 €[0,p-1];b€[0,p" ~1).

—
—

The problem is singular because

Remark:

1)If ¢, e L”(Q) and B,y €[0,p—1) the condition (1.5) implies the condition (1.6).

2) The pseudo-Laplacian (x,n.§ (|§ |p ? Eoeres

(x.8)= (| * &1

results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends
the recent result about singular elliptic equations for case p=2 in [6].

|p72 &N), the  p-Laplacian

p-2 . . ..
&N) are some special cases that satisfy our conditions. So our

2. PREREQUISITES

2.1.Lemma 2.1
(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure
in 1" and h:Gx x0™ —>[ satisfy the following conditions:
a) his a Caratheodory function.

b) |h (x,uy,...

cZ|u|pp+g ,VxeG

where c is a positive constant, p; € (l,oo),V1 =l..m,ge 5 (G)
Then the Nemytskii operator defined by the equality
H(ul,...,um)(x) = h(x,u1 (X),...,um (X)) acts continuously from
L’ (G)x..xL™ (G) toL” (G). Moreover, it is bounded, i.e. it transforms any set which is
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bounded into another bounded set. (Proof of this fact for the simple case can be found in
[8], theorem 2.2, page 26).

2.2.Lemma 2.2
(See e.g. [10], lemma 4.1, page 14) Let F:U—>0U"™ be a continuous mapping of the

closure of a bounded domainU c 1 ™. Suppose that the origin is an interior point of D and

that the condition (F(x),x):f‘lﬂ(x)xi >(,Vx € oU (1.7)
i=1

Then the equation F(x) =0 has at least one solution inU.
We recall some results about Schauder bases.
Definition: A sequence {xi} in a Banach space X is a Schauder basis if every x € X

can be written uniquely x = ici = hmZC X; , where {c;} <0 .

i=1 i=1

Because every x € X is written uniquely x = Z:cixi we have x; # 0 and c; is a function
i=l1
from X tol , foralliin R.
2.3.Lemma 2.3: ([9], Theorem 3.1, page 20) For all i inl] , c; is a continuous linear

function on X, i.e. Viell,3IM, >0,|ci (x)|< VxeX

2.4.Lemma 2.4: (/7], Corollary 3) Let D be a bounded domain in 0~ with smooth
boundary. Then the space W," (D) has a Schauder basis.

2.5.Lemma 2.5: Let D be an open set in(2, DcQ. If

u, —*% 5y in W (D) (1.8)
and limj.[a x,u,,Vu, ) a(x,un,Vu)][Vun—Vu]dX=O (1.9)

Then there exists a subsequence of {u, | still denoted by {u,} such that Vu, — Vu
inL? (D).
Proof: Since ¢,,c, € L}, (Q) we have ¢,,c, € L”(D) and the conditions (1.2), (1.5)

become:

[a, (&) < Il +[gf ™ +k, (x) |, vi=LN

£ (xn.8) < C[ I + e +K, (x)]

Using the well-known result in [2], Lemma 3, we obtain our Lemma.
0
Let us recall the definition of class (S+): A mapping T:X — X' is called belongs to the

weak

class (S+) if for any sequence u, in X with u, — uand limsup <Tun ,u, —u> <0 it follows

n—oo

that u, ->u.

2.6.Lemma 2.6: (see [2, 10]) Let D be an open setinQ, DcQ and A be a mapping from
Wer (D) to[ Wy (D), such that (Au,v)= [ Y, (x.u Vu)gﬁdx+ [£(x.u.Vu) vdx
X

D i=l i
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Then A is a (S-) operator.

3. MAIN RESULTS

Let {Qn} be an increasing sequence of open subsets of € with smooth boundaries
andQ=U7_Q
First, in every Q, we find solution u, € W;" (€, ) of the equation:

such that Q_n is contained in Q

n+l

—diva(x,u(x),Vu(x))+f(x,u(x),Vu(x)):0 (3.1

Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) has a
bounded solution in Wy* (Q, ).

3.1.Lemma 3.1:
For eachQ_, the equation: —diva(x,u(x) ,Vu(x)) + f(x,u(x),Vu(x)) =0 (3.2)
has a solutionu, € W,” (Q ) Furthermore, there exists a positive constant R independent
ollwiro,) <R, Vnel.

Proof: Fixnell . Let D—QH,X—WOIP( ) and A be a mapping from W;*(D) to
[Wol"’ (D)] such that

<AUV J.Za xuVu)gﬁderJ.f (x,u,Vu)vdx, Vu,ve W, (D)
D i=l Xl

By Lemma 2.6, 4 belongs to class (S+).
We will prove that 4 is a demicontinuous operator, i.e. if u, —u in W;* (D), then
<Aum,v> N <Au, V>,VV e W,? (D)
By u,, —u in W;*(D) and (1.2), (1.5), applying Lemma 2.1, we get
a,(.u,,Vu,)—>a,(,u,Vu),Vi=1.,N In L (D) as m — o

and f( u_,Vu )—)f( uVu) in Lp'(D) as m— oo

Hence Au V J.Za x,u_,Vu _ %dx+!f(x,um,Vum)vdx—>

D i=l

JZ}:a xuVu)sx—dx+Jf (x,u,Vu)vdx = <Au v> Vv e W,? (D)
D! i
Therefore, 4 is demicontinuous.

Besides, by applying the boundedness of Nemytskii operator for a(.,u,Vu) and f(.,u,Vu)
one deduces that 4 is bounded.
For any arbitrary u in W;* (D), due to (1.4), (1.6), we have
<Au,u> = Ia(x,u,Vu)VudX + jf(x,u,Vu)udX
D D
> XHVu(x)r dx —I[c3 (x)+b.|u(x)|CI + d.|Vu(X)HdX
D

D

> Mol -]
2 Muly =[]l

)rdx

qL D)—dHVu(x
D

Let ﬁ(x):u(x),Vx eD andﬁ(x):O,Vx e Q\D, we have
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(Au,u) 22 ulf e, u

(D)

r/p 1-r/p
q p
o) —d[JD.|Vu(X)| dx) [J};dxj

Sinceq < p<p’, the continuous imbedding W,” (©2) — L' (Q) implies that

(M H ‘W"’ Q)) B

—bM™. ||u| wyr(D)

Gllio@ M dK
leulli[l— “p(”)— = J
olle Tl Tl

Since 1, 1, g<p, one can choose a positive constant R independent of n such that

(Au,u)>0,VuedB, (0,R) (3.3)

(Auu) 24 ull e,

2 Ml el

lp
Wo

Applying Lemma 2.4 there exists a Schauder basis {Vi} in the space X. We consider in [1™
< R}
X

<MR,Vi=1,m,¥(c,,...c, ) e U

X

m

Z CiVi

i=1

the domain U = {c =(CsennCy )t

Applying Lemma 2.3, there exists

e,
j=l

So Uy, is bounded inl] ™ . We apply Lemma 2.2 to this domain U,, and to the mapping

F:Un—>0O™, F(c) =(E (¢),...E, (c)) , E(c) :<A(§:CJVJJ’V1>

Let c=(c,....,c,, )€U, and u= i“cjvj then”u”X =R . We have
i=1

m

(F(c),c)= jZmI:Fj(c)cj =<A[§:cjvj],ji“cjvj> =(Au,u)>0

because of (3.3). By Lemma 2.2, the equation F(c) =0 has at least one solution inUp, for

example c¢= (cy,..., Cy). Hence F < [ZCJVJ], > 0,Vi=1,m

Consequently, u = Zc ;v; satisfies the inequality
j=1

Ju.l, <R (3.4)

And is a solution of the system

(Au,,v,)=0,Vi=1,m (3.5)

Let m go through [J we have a sequence { m} satisfying (3.4) and is a solution of (3.5). By

virtue of the reflexivity of the space X, the sequence u, contains weakly convergent
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weak

subsequenceu,, . So u, —u,. Since u,is in X with the Schauder basis{v,}, we have

m,

0 m m
u, =Zocjvj =r}l1£r01020cjvj .Let w =ZOLJ-VJ- then w,, > u, so w,, —u,. We have
j=1 j=1 j=1

<Aumk U, —u0> = <Aumk Uy, —W > + <Aumk W —uo> (3.6)
Moreover,
lim (Au,, ,w,, —u,)=0 (3.7)

because of (3.4), the boundedness of the operator 4, and the strong convergence of w,, to
uo. Since u,, —w, = Z‘ijj and (3.5), we ge‘[<Aumk Uy — W, > =0,vk.
j=1

Hence

lim (Au,, ,u,, —u,)=0 (3.8)

k—® my > m

Because 4 belongs to class (S+) and (3.8), we deduce thatu, —u,. Since A4 is

demicontinuous, passing to limit the equality (3.5) for a fixed i, we have

(Aug,v;)=0 (3.9)

Letve X, thenv = ZOL iv;=lim Za ;V; - Since i is an arbitrary index, it follows from (3.9)
= =

that<Au0,ZociVi> =0,Vmell . Let m tend to infinity, we get <Au0,v> =0
i=1
weak

Hence, uo is a solution of the equation (3.2). Moreover, sinceu, —u,, we get

)= ||u0||X <liminf “umk ”X <R, where R does not depend on n. This completes the

k—o

||u0

proof of Lemma 3.1

W,

U
By Lemma 3.1, we have proved that (3.2) has a bounded solution u, € W;*(Q,)

)SR,VneD . Next, we expand u, to allQ:u, (x)=0,VxeQ\Q, . So

satisfying|fu,

W@,

u, € W,*(Q) and

Wallyog) = [Ballwio o) <R,Vnell . By virtue of the reflexivity of the

space W,” (Q), there exists ue W, (Q) such that un‘:aku in W,*(Q) for some
subsequence. We will prove that u is a generalized solution of the equation (1.1) in
W,"(Q) , ie. Ia(x,u(x),Vu(x))chdx +If(x,u(x),Vu(x))<pdx =0,YpeC/(Q)

Q

Q
In order to do that, we need the following lemma:

3.2.Lemma 3.2.

Letmin [J , we have
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lim j [a x,u,,Vu,) a(x,un,Vu)][Vun —Vuldx =0

n—o

Proof: We only need to consider n>m+1. Let ¢, be a functions inC] (Q), with 0<¢,, <1

1 ifxeQ
in Q and ¢, (x) = {0 o Q\mQ . Then there exists M such that,
if xe -

|<|)m (X)| <M

Put w, =¢,.(u, —u) restricted on €, .

2 (XM, VxeQ (3.10)

Because supp[(l)m.(un —u)} cQ ,cQ ., Vn>m+1, we havesuppw, < Q , Vn>m+1.
Sow, € W,* (€, ). Since u, is the solution of the equation (3.2), we have

ja(x,un,Vun)VWndx+ J. f(x,u,,Vu,)w,dx=0.
Qﬂ

Qn
Hence J. a(x,u,,Vu, )Vw dx + _[ f(x,u,,Vu,)w dx=0 (3.11)
Qi Quy
We shall prove that lim | f(x,u,,Vu,)d, (u,—u)dx=0 (3.12)

n—oo

‘m+1

by finding a number s such that f(.,u,,Vu, ) is bounded in L' (Q,,,) and u, —>u in

m+1

L'(Q,. ). Since Be[0,p"—1) and p<p’, we can find s satisfying B+1<s<p  and p<s.
Hence B<s—1= i' andy<p-l<p-L= B' Since {u, |} is bounded in W;" (Q), the
s s s

Sobolev imbedding implies that there exists a subsequence still denoted by {un} such that
u, > uinl’(Q),so u, »>uinl*(Q,,,). From (1.5) and Lemma 2.1, one deduces that
f(.,u,,Vu,) is bounded inL*' (Q, , ). Combining (3.10), we have (3.12). Hence

lim f(x,un,Vun)WndX=0 (3.13)

‘m+l

From (3.11), (3.13), one deduces that lim _[ X,u,,Vu, )Vw, dx =0 or

lim | a(x,u,,Vu,)V(4,.(u,—u))dx=0

Hence,

1133 a(x,un,Vun)[(I)m.V(un —u)+(u, —u).Vd)m]dx =0 (3.14)

Besides, since p <5, we get u, >uin P(Q ) (3.15)
Applying Lemma 2.1, we have a(.,u,,Vu, ) is bounded in[Lp' (Qn )]N . Combining with
(3.10), (3.15), we obtain lim J x,u,,Vu, )(u, —u).V,dx =0 (3.16)

m+]

From (3.14), (3.16) we have hm'[ (x,u,,Vu,)¢,.V(u, —u)dx =0 (3.17)

m+1

On the other hand, (1.2), Lemma 2.1, (3.15) imply
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a(,u,,Vu)—>a(,u,Vu) in [Lp' (Q,. )]N
Combining with (3.10) and the boundedness of un in Wy® (Q, ), one deduces that

lim j [a(x.u,,Vu)-a(x,u,Vu)]4,V(u, —u)dx =0 (3.18)

n—>oo

and due to the weak convergence of un to uin W, (Q, ) also

lim [ a(x,u,Vu)¢,V(u,—u)dx=0 (3.19)
Q

It follows from (3.18), (3.19) that
lim [ a(x,u,,Vu)$,.V(u,—u)dx=0 (3.20)

Hence (3.17) together with (3.20) yield
lim J. [a(x,u,,Vu,)-a(x,u,,Vu) ], V(u, —u)dx =0

n—>o0

Since (1)[11.[a(x,un,Vun)—a(x,un,Vu)](Vun —-Vu)>0, forallxinQ,, , we get

m+1 ?

lim I [a(x,u,,Vu,)-a(x,u,,Vu)]d,.V(u, —u)dx=0

n—>o0

The fact that ¢, (x)=1,vx €Q, then implies

hm‘[[a (x,u,,Vu,)-a(x,u,,Vu)]V(u, —u)dx=0 [

n—>o0

Fixp e C7 (Q), there exists m in [ such thatsuppp < Q, . Applying Lemma 2.5,
Lemma 3.2, we have Vu, —Vuin I’(Q_) for some subsequence. Since u, —>uin

L*(Q,,) also, together with Lemma 2.1, we obtain

Ja(x,un,Vun)V(pdx% Ja(x,u,Vu)V(pdx
Q

Q

'm

I f(x,u,,Vu, )edx - _[ f(x,u,Vu)@pdx
in

an
So
Ia(x,u,Vu)V@dx+If(x,u,Vu)(pdx = J. a(x,u,Vu)V(pdx+ I f(x,u,Vu)(pdsz
Q Q

Q. Q

'm

Therefore, we get the main theorem:
Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized

solution u in W, (Q), that is, for any @ € C (Q)
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Ia(x,u,Vu)V@dx+If(x,u,Vu)(pdx =0
Q

Q

SU TON TAI NGHIEM CUA PHUONG TRINH ELLIPTIC QUASILINEAR

VOI PIEU KIEN Ki DI

Chung Nhén Phu, Tran Tan Qudc
Trudng Dai hoc Khoa hoc ty nhién, PHQG-HCM

TOM TAT: Trong bai bdo nay, ching t6i khdo sdt st ton tai nghiém suy rong ciia mot
lop phwong trinh elliptic ki dj:

—diva(x u(x),Vu(x ))+f(x u( ), Vu(x ))=0

Sir dung phuong phép xdp xi Galerkin trong [2,10] va ham thir dwgc Drabek, Kufner,
Nicolosi néu trong [5], ching t6i mé réng mot sé két qua vé phwong trinh elliptic trong
[2,3,4,6,10].
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