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ABSTRACT: In this paper, we study the existence of generalized solution for a class 
of singular elliptic equation:  ( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ = . 

Using the Galerkin approximation in [2, 10] and test functions introduced by Drabek, 
Kufner, Nicolosi in [5], we extend some results about elliptic equations in [2, 3, 4, 6, 10]. 

1.INTRODUCTION   

The aim of this paper is to prove the existence of generalized solutions in ( )1,
0

pW Ω  for 
the quasilinear elliptic equations:  

 ( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ =  (1.1) 

i.e. proving the existence of ( )1,p
0u W∈ Ω  such that  

( ) ( )( ) ( ) ( )( ) ( )ca x,u x , u x dx f x, u x , u x dx 0, C∞

Ω Ω

∇ ∇ϕ + ∇ ϕ = ∀ϕ∈ Ω∫ ∫  

where Ω  is a bounded domain in N , N 2≥�  with smooth boundary, ( )p 1, N∈  and 
N N Na : , f :Ω× × → Ω× × →� � � � � �  satisfy the following conditions: 

Each ( )ia x, ,η ξ  is a Caratheodory function, that is, measurable in x for any fixed 

( ) N 1, +ζ = η ξ ∈�  and continuous in ζ  for almost all fixed x∈Ω , 

 ( ) ( ) ( )p 1
i 1 1a x, , c x k x , i 1, Nα −⎡ ⎤η ξ ≤ η + ξ + ∀ =⎣ ⎦  (1.2) 

 

 ( ) ( )* *a x, , a x, , 0⎡ ⎤ ⎡ ⎤η ξ − η ξ ξ− ξ >⎣ ⎦⎣ ⎦  (1.3) 

 ( ) pa x, ,η ξ ξ ≥ λ ξ  (1.4) 

                                                   a.e. * N *x , , , ,∈Ω ∀η∈ ∀ξ ξ ∈ ξ ≠ ξ� � . 

where ( ) ( ) [ ]p '
1 loc 1 1c L ,c 0, k L , 0, p 1 , 0∞∈ Ω ≥ ∈ Ω α∈ − λ > . 

and Nf :Ω× × →� � �  is a Caratheodory function satisfying 

 ( ) ( ) ( )2 2f x, , c x k xβ γ⎡ ⎤η ξ ≤ η + ξ +⎣ ⎦  (1.5) 

 ( ) ( ) q r
3f x, , c x b dη ξ η ≥ − − η − ξ   (1.6) 

where c2 is a positive function in ( )loc 3L ,c∞ Ω  is a positive function in ( )L∞ Ω , ( )p '
2k L∈ Ω  

and r,q [0,p)∈ , b, d are positive constants, [ ] *0, p 1 , [0,p 1)γ∈ − β∈ −  with * Npp
N p

=
−

. 
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Because ( )1 2 locc ,c L∞∈ Ω  we cannot define operator on the whole space ( )1,
0

pW Ω . 
Therefore, we cannot use the property of (S+) operator as usual. To overcome this difficulty, 
in every nΩ  we find solution ( )1,p

n 0 nu W∈ Ω   of the equation: 

( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ =  

where { }nΩ  is an increasing sequence of open subsets of Ω  with smooth boundaries such 

that nΩ  is contained in n 1+Ω  and n 1 n
∞
=Ω = ΩU . In this case, we only have the strong 

convergence of { }nu  to u in ( )1, Ωp
locW  by using the same technique of Drabek, Kufner, 

Nicolosi (in [5], section 2.4). However, it is enough to get the generalized solution.  
An example for our conditions: 

( ) ( ) ( ) ( )

( ) ( ) ( )

p 1
i i 1 1 i

a b
2

1a x, , A k x sgn
d x

1f x, , k x sgn
d x

−

θ

μ

⎡ ⎤η ξ = ξ + η + ξ⎣ ⎦

⎡ ⎤η ξ = ξ + η + η⎣ ⎦

 

where ( ) ( ) 1 1 2d x dist x, ; , 0;A , k , k= ∂Ω θ μ >  are positive functions  

           ( ) ( ) [ ]p' *
1 2 1k , k L ;A ; ,a 0, p 1 ;b [0, p 1).α∈ Ω η ≤ η α ∈ − ∈ −  

The problem is singular because 
( ) ( ) ( )loc
1 1, L

d x d x
∞

θ μ ∈ Ω . 

Remark: 

1) If ( )2c L∞∈ Ω  and , [0,p 1)β γ∈ −  the condition (1.5) implies the condition (1.6). 

2) The pseudo-Laplacian ( ) ( )p 2 p 2
1 1 N Na x, , ,...,− −η ξ = ξ ξ ξ ξ , the p-Laplacian 

( ) ( )p 2 p 2
1 Na x, , ,...,− −η ξ = ξ ξ ξ ξ  are some special cases that satisfy our conditions. So our 

results generalized the corresponding Dirichlet problems in [3, 4]. Our paper also extends 
the recent result about singular elliptic equations for case p=2 in [6]. 

2. PREREQUISITES 

2.1.Lemma 2.1  
(See e.g. [10], Proposition 1.1, page 3) Let G be a measurable set of positive measure 

in n�  and mh : G× × →� � �  satisfy the following conditions: 
a) h is a Caratheodory function. 

b) ( ) ( )i
m

p / p '
1 m i

i 1
h x, u ,..., u c u g x , x G

=

≤ + ∀ ∈∑  

where c is a positive constant, ( )ip 1, , i 1,...,m∈ ∞ ∀ = , ( )p 'g L G∈ . 

Then the Nemytskii operator defined by the equality                
                                           ( )( ) ( ) ( )( )1 m 1 mH u ,..., u x h x,u x ,..., u x=  acts continuously from 

( ) ( )1 mp pL G ... L G× ×  to ( )p 'L G . Moreover, it is bounded, i.e. it transforms any set which is 
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bounded into another bounded set. (Proof of this fact for the simple case can be found in 
[8], theorem 2.2, page 26). 

2.2.Lemma 2.2 
(See e.g. [10], lemma 4.1, page 14) Let mF : U → �  be a continuous mapping of the 

closure of a bounded domain mU ⊂ � . Suppose that the origin is an interior point of D and 

that the condition                ( )( ) ( )
m

i i
i 1

F x , x F x x 0, x U
=

= ≥ ∀ ∈∂∑                   (1.7) 

      Then the equation F(x) =0 has at least one solution in U . 
      We recall some results about Schauder bases. 

Definition: A sequence { }ix  in a Banach space X is a Schauder basis if every x X∈  

can be written uniquely
n

i i i ini 1 i 1
x c x lim c x

∞

→∞
= =

= =∑ ∑ , where { }ic ⊂ � .  

Because every x X∈  is written uniquely i i
i 1

x c x
∞

=

=∑  we have ix 0≠  and ci is a function 

from X to � , for all i in R. 

2.3.Lemma 2.3: ([9], Theorem 3.1, page 20) For all i in � , ci is a continuous linear 
function on X, i.e. ( )i i i X

i , M 0, c x M x , x X∀ ∈ ∃ > ≤ ∀ ∈�  

2.4.Lemma 2.4: ([7], Corollary 3) Let D be a bounded domain in N�  with smooth 
boundary. Then the space ( )1,p

0W D  has a Schauder basis. 

2.5.Lemma 2.5: Let D be an open set inΩ , D ⊂Ω . If  
weak

nu u⎯⎯⎯→  in ( )1,pW D                                                          (1.8) 

 and  ( ) ( ) [ ]n n n nn
D

lim a x,u , u a x, u , u u u dx 0
→∞

∇ − ∇ ∇ −∇ =⎡ ⎤⎣ ⎦∫                (1.9) 

Then there exists a subsequence of { }nu  still denoted by { }nu  such that nu u∇ →∇  

in ( )pL D . 

Proof: Since ( )1 2 locc ,c L∞∈ Ω  we have ( )1 2c ,c L D∞∈  and the conditions (1.2), (1.5) 
become: 

( ) ( )p 1
i 1 1a x, , C k x , i 1, Nα −⎡ ⎤η ξ ≤ η + ξ + ∀ =⎣ ⎦  

( ) ( )2 2f x, , C k xβ γ⎡ ⎤η ξ ≤ η + ξ +⎣ ⎦  

Using the well-known result in [2], Lemma 3, we obtain our Lemma. 
�  

      Let us recall the definition of class (S+): A mapping *T : X X→  is called belongs to the 

class (S+) if for any sequence un in X with 
weak

nu u→ and n n
n

limsup Tu , u u 0
→∞

− ≤  it follows 

that nu u→ . 

2.6.Lemma 2.6: (see [2, 10]) Let D be an open set inΩ , D ⊂Ω  and A be a mapping from 

( )1,p
0W D  to ( ) *1,p

0W D⎡ ⎤⎣ ⎦ , such that ( ) ( )
N

i
i 1 iD D

vAu, v a x,u, u dx f x, u, u vdx
x=

∂
= ∇ + ∇

∂∑∫ ∫  
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      Then A is a (S+) operator. 

3 . MAIN RESULTS 

        Let { }nΩ  be an increasing sequence of open subsets of Ω  with smooth boundaries 

such that nΩ  is contained in n 1+Ω  and n 1 n
∞
=Ω = ΩU . 

First, in every nΩ  we find solution ( )1,p
n 0 nu W∈ Ω   of the equation: 

 ( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ =                                                  (3.1) 

Applying the same technique as in [10], Theorem 4.1, page 14, we can show that (3.1) has a 
bounded solution in ( )1,p

0 nW Ω . 
3.1.Lemma 3.1:  
For each nΩ , the equation: ( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ =         (3.2) 

has a solution ( )1,p
n 0 nu W∈ Ω . Furthermore, there exists a positive constant R independent 

of n satisfying that ( )1,p
n0

n W
u R, n

Ω
≤ ∀ ∈� . 

Proof: Fix n∈� . Let ( )1,p
n 0D , X W D= Ω =  and A be a mapping from ( )1,p

0W D  to 

( ) *1,p
0W D⎡ ⎤⎣ ⎦ , such that  

                   ( ) ( ) ( )
N

1,p
i 0

i 1 iD D

vAu, v a x,u, u dx f x, u, u vdx, u, v W D
x=

∂
= ∇ + ∇ ∀ ∈

∂∑∫ ∫  

By Lemma 2.6, A belongs to class (S+). 
We will prove that A is a demicontinuous operator, i.e. if mu u→  in ( )1,p

0W D , then                              

                        ( )1,p
m 0Au , v Au, v , v W D→ ∀ ∈  

By mu u→  in ( )1,p
0W D  and (1.2), (1.5), applying Lemma 2.1, we get  

( ) ( )i m m ia ., u , u a ., u, u , i 1,.., N∇ → ∇ ∀ =  In ( )p 'L D  as m →∞  

and   ( ) ( )m mf ., u , u f ., u, u∇ → ∇  in ( )p 'L D  as m →∞  

Hence ( ) ( )
N

m i m m m m
i 1 iD D

vAu , v a x,u , u dx f x,u , u vdx
x=

∂
= ∇ + ∇ →

∂∑∫ ∫  

( ) ( ) ( )
N

1,p
i 0

i 1 iD D

va x,u, u dx f x,u, u vdx Au, v , v W D
x=

∂
∇ + ∇ = ∀ ∈

∂∑∫ ∫  

Therefore, A is demicontinuous. 
Besides, by applying the boundedness of Nemytskii operator for ( )a ., u, u∇  and ( )f ., u, u∇  
one deduces that A is bounded. 
For any arbitrary u in ( )1,p

0W D , due to (1.4), (1.6), we have 

( ) ( )
D D

Au,u a x, u, u udx f x,u, u udx= ∇ ∇ + ∇∫ ∫  

( ) ( ) ( ) ( )p q r
3

D D

u x dx c x b. u x d. u x dx⎡ ⎤≥ λ ∇ − + + ∇
⎣ ⎦∫ ∫  

( ) ( ) ( )q

rp q
3X L D L D

D

u c b u d u x dx∞≥ λ − − − ∇∫  

Let ( ) ( )u x u x , x D= ∀ ∈
)

 and ( )u x 0, x \ D= ∀ ∈Ω
)

, we have  
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( ) ( )
( )q

r / p 1 r / p
q pp

3X L D L
D D

Au,u u c b u d u x dx dx∞

−

Ω

⎛ ⎞ ⎛ ⎞
≥ λ − − − ∇⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫

)
 

Since *q p p< < , the continuous imbedding ( ) ( )1,p q
0W LΩ → Ω  implies that 

( ) ( )( ) ( )p1,p
0

q
rp

3X L L DW
Au,u u c b M. u d.K u∞ Ω Ω

≥ λ − − − ∇
)

 

( ) ( ) ( )1,p 1,p
0 0

p q rq
3X L W D W D

u c bM . u d.K u∞ Ω
≥ λ − − −  

( )
q3p L

p p q p rX
X X X

c bM d.Ku
u u u

∞ Ω

− −

⎛ ⎞
⎜ ⎟≥ λ − − −
⎜ ⎟
⎝ ⎠

 

Since 1, r, q<p, one can choose a positive constant R independent of n such that  

( )XAu,u 0, u B 0, R≥ ∀ ∈∂                                              (3.3) 

 
Applying Lemma 2.4 there exists a Schauder basis { }iv  in the space X. We consider in m�  

the domain ( )
m

m 1 m i i
i 1 X

U c c ,..., c : c v R
=

⎧ ⎫
= = <⎨ ⎬
⎩ ⎭

∑  

Applying Lemma 2.3, there exists  

( )
m

i i i j j i 1 m m
j 1 x

M 0, c M c v M R, i 1,m, c ,..., c U
=

> ≤ < ∀ = ∀ ∈∑  

So Um is bounded in m� . We apply Lemma 2.2 to this domain Um and to the mapping 

m
mF : U → � ,  ( ) ( ) ( )( )1 mF c F c ,..., F c= ,   ( )

m

i j j i
j 1

F c A c v , v
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

Let ( )1 m mc c ,..., c U= ∈∂  and 
m

j j
j 1

u c v
=

=∑  then
X

u R= . We have 

( )( ) ( )
m m m

j j j j j j
j 1 j 1 j 1

F c ,c F c c A c v , c v Au, u 0
= = =

⎛ ⎞
= = = ≥⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

because of (3.3). By Lemma 2.2, the equation F(c) =0 has at least one solution in mU , for 

example c= (c1,…, cm). Hence ( )
m

i j j i
j 1

F c A c v , v 0, i 1, m
=

⎛ ⎞
= = ∀ =⎜ ⎟

⎝ ⎠
∑  

Consequently, 
m

m j j
j 1

u c v
=

=∑  satisfies the inequality  

 m X
u R≤  (3.4) 

And is a solution of the system  

 m iAu , v 0, i 1, m= ∀ =  (3.5) 

Let m go through �  we have a sequence { }mu  satisfying (3.4) and is a solution of (3.5). By 
virtue of the reflexivity of the space X, the sequence um contains weakly convergent 
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subsequence
kmu . So 

k

weak

m 0u u→ . Since 0u is in X with the Schauder basis{ }iv , we have 
m

0 j j j jmj 1 j 1

u v lim v
∞

→∞
= =

= α = α∑ ∑ . Let 
m

m j j
j 1

w v
=

= α∑  then m 0w u→  so 
km 0w u→ . We have                  

 
k k k k k k km m 0 m m m m m 0Au ,u u Au ,u w Au , w u− = − + −  (3.6) 

 
Moreover,            

 
k km m 0k

lim Au , w u 0
→∞

− =  (3.7) 

 
because of (3.4), the boundedness of the operator A, and the strong convergence of 

kmw to 

u0. Since 
k

k k

m

m m j j
j 1

u w v
=

− = β∑  and (3.5), we get
k k km m mAu ,u w 0, k− = ∀ .  

Hence  

 
k km m 0k

lim Au ,u u 0
→∞

− =  (3.8) 

Because A belongs to class (S+) and (3.8), we deduce that
km 0u u→ .  Since A is 

demicontinuous, passing to limit the equality (3.5) for a fixed i, we have  

 0 iAu , v 0=  (3.9) 

Let v X∈ , then
m

j j j jmj 1 j 1

v v lim v
∞

→∞
= =

= α = α∑ ∑ . Since i is an arbitrary index, it follows from (3.9) 

that
m

0 i i
i 1

Au , v 0, m
=

α = ∀ ∈∑ � . Let m tend to infinity, we get 0Au , v 0=  

Hence, u0 is a solution of the equation (3.2). Moreover, since
k

weak

m 0u u→ , we get 

( )1,p
kn0

0 0 mW X Xk
u u liminf u R

Ω →∞
= ≤ ≤ , where R does not depend on n. This completes the 

proof of Lemma 3.1 
�  

       By Lemma 3.1, we have proved that (3.2) has a bounded solution ( )1,p
n 0 nu W∈ Ω  

satisfying ( )1,p
n0

n W
u R, n

Ω
≤ ∀ ∈� . Next, we expand un to all ( )n n: u x 0, x \Ω = ∀ ∈Ω Ω . So 

( )1,p
n 0u W∈ Ω  and ( ) ( )1,p 1,p

n0 0
n nW W

u u R, n
Ω Ω
= ≤ ∀ ∈� . By virtue of the reflexivity of the 

space ( )1,p
0W Ω , there exists ( )1,p

0u W∈ Ω  such that 
weak

nu u→  in ( )1,p
0W Ω  for some 

subsequence. We will prove that u is a generalized solution of the equation (1.1) in 
( )1,p

0W Ω  , i.e. ( ) ( )( ) ( ) ( )( ) ( )ca x,u x , u x dx f x, u x , u x dx 0, C∞

Ω Ω

∇ ∇ϕ + ∇ ϕ = ∀ϕ∈ Ω∫ ∫  

In order to do that, we need the following lemma: 

3.2.Lemma 3.2. 
 Let m in � , we have  
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( ) ( ) [ ]
m

n n n nn
lim a x,u , u a x, u , u u u dx 0
→∞

Ω

∇ − ∇ ∇ −∇ =⎡ ⎤⎣ ⎦∫  

Proof: We only need to consider n>m+1. Let mφ  be a functions in ( )cC∞ Ω , with m0 1≤ φ ≤  

in Ω  and ( ) m
m

m+1

1    if  x
x

0   if  x \
∈Ω⎧

φ = ⎨ ∈Ω Ω⎩
  . Then there exists M such that, 

 ( ) ( )m mx M,  x M,  xφ ≤ ∇φ ≤ ∀ ∈Ω  (3.10) 

Put ( )n m nw . u u= φ −  restricted on nΩ .  

Because ( )m n m 2 nsupp . u u ,  n m 1+φ − ⊂ Ω ⊂ Ω ∀ > +⎡ ⎤⎣ ⎦ , we have n nsuppw ,  n m 1⊂ Ω ∀ > + . 

So ( )1,p
n 0 nw W∈ Ω . Since un is the solution of the equation (3.2), we have 

( ) ( )
n n

n n n n n na x,u , u w dx f x, u , u w dx 0
Ω Ω

∇ ∇ + ∇ =∫ ∫ .  

Hence              ( ) ( )
m 1 m 1

n n n n n na x, u , u w dx f x,u , u w dx 0
+ +Ω Ω

∇ ∇ + ∇ =∫ ∫      (3.11) 

We shall prove that            ( ) ( )
m 1

n n m nn
lim f x, u , u u u dx 0

+

→∞
Ω

∇ φ − =∫                  (3.12) 

by finding a number s such that ( )n nf ., u , u∇  is bounded in ( )s '
m 1L +Ω  and  nu u→  in 

( )s
m 1L +Ω . Since *[0, p 1)β∈ −  and p<p*, we can find s satisfying *1 s pβ+ < <  and p<s. 

Hence ss 1
s '

β < − =  and p pp 1 p
s s '

γ < − < − = . Since { }nu  is bounded in ( )1,p
0W Ω , the 

Sobolev imbedding implies that there exists a subsequence still denoted by { }nu  such that 

nu u→ in ( )sL Ω , so nu u→ in ( )s
m 1L +Ω . From (1.5) and Lemma 2.1, one deduces that 

( )n nf ., u , u∇  is bounded in ( )s '
m 1L +Ω . Combining (3.10), we have (3.12). Hence  

 ( )
m 1

n n nn
lim f x, u , u w dx 0

+

→∞
Ω

∇ =∫  (3.13) 

From (3.11), (3.13), one deduces that ( )
m 1

n n nn
lim a x, u , u w dx 0

+

→∞
Ω

∇ ∇ =∫  or  

( ) ( )( )
m 1

n n m nn
lim a x, u , u . u u dx 0

+

→∞
Ω

∇ ∇ φ − =∫  

Hence,  

 ( ) ( ) ( )
m 1

n n m n n mn
lim a x, u , u . u u u u . dx 0

+

→∞
Ω

∇ φ ∇ − + − ∇φ =⎡ ⎤⎣ ⎦∫  (3.14) 

Besides, since p < s, we get                       nu u→  in ( )p
m 1L +Ω         (3.15) 

Applying Lemma 2.1, we have ( )n na ., u , u∇  is bounded in ( ) Np'
m 1L +⎡ ⎤Ω⎣ ⎦ . Combining with 

(3.10), (3.15), we obtain                 ( )( )
m 1

n n n mn
lim a x, u , u u u . dx 0

+

→∞
Ω

∇ − ∇φ =∫             (3.16) 

From (3.14), (3.16) we have          ( ) ( )
m 1

n n m nn
lim a x,u , u . u u dx 0

+

→∞
Ω

∇ φ ∇ − =∫             (3.17) 

On the other hand, (1.2), Lemma 2.1, (3.15) imply 
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 ( ) ( )na ., u , u a ., u, u∇ → ∇  in ( ) Np'
m 1L +⎡ ⎤Ω⎣ ⎦  

Combining with (3.10) and the boundedness of un in ( )1,p
0 m 1W +Ω , one deduces that 

 ( ) ( ) ( )
m 1

n m nn
lim a x,u , u a x, u, u . u u dx 0

+

→∞
Ω

∇ − ∇ φ ∇ − =⎡ ⎤⎣ ⎦∫  (3.18) 

and due to the weak convergence of un to u in ( )1,p
0 m 1W +Ω  also 

 ( ) ( )
m 1

m nn
lim a x, u, u . u u dx 0

+

→∞
Ω

∇ φ ∇ − =∫  (3.19) 

It follows from (3.18), (3.19) that 

 ( ) ( )
m 1

n m nn
lim a x, u , u . u u dx 0

+

→∞
Ω

∇ φ ∇ − =∫  (3.20) 

Hence (3.17) together with (3.20) yield 

 ( ) ( ) ( )
m 1

n n n m nn
lim a x,u , u a x, u , u . u u dx 0

+

→∞
Ω

∇ − ∇ φ ∇ − =⎡ ⎤⎣ ⎦∫  

Since ( ) ( ) ( )m n n n n. a x,u , u a x, u , u u u 0φ ∇ − ∇ ∇ −∇ ≥⎡ ⎤⎣ ⎦ , for all x in m 1+Ω , we get 

 ( ) ( ) ( )
m

n n n m nn
lim a x, u , u a x, u , u . u u dx 0
→∞

Ω

∇ − ∇ φ ∇ − =⎡ ⎤⎣ ⎦∫  

The fact that ( )m mx 1, xφ = ∀ ∈Ω  then implies  

 ( ) ( ) ( )
m

n n n nn
lim a x,u , u a x,u , u u u dx 0
→∞

Ω

∇ − ∇ ∇ − =⎡ ⎤⎣ ⎦∫  �  

Fix ( )cC∞ϕ∈ Ω , there exists m in � such that msuppϕ⊂ Ω . Applying Lemma 2.5, 

Lemma 3.2, we have nu u∇ →∇ in ( )p
mL Ω  for some subsequence. Since nu u→ in 

( )p
mL Ω  also, together with Lemma 2.1, we obtain 

 ( ) ( )
m m

n na x,u , u dx a x, u, u dx
Ω Ω

∇ ∇ϕ → ∇ ∇ϕ∫ ∫  

 ( ) ( )
m m

n nf x, u , u dx f x, u, u dx
Ω Ω

∇ ϕ → ∇ ϕ∫ ∫  

So 

 ( ) ( ) ( ) ( )
m m

a x, u, u dx f x, u, u dx a x, u, u dx f x, u, u dx 0
Ω Ω Ω Ω

∇ ∇ϕ + ∇ ϕ = ∇ ∇ϕ + ∇ ϕ =∫ ∫ ∫ ∫  

Therefore, we get the main theorem:  
Theorem 3.1. Under the conditions (1.2)-(1.6), equation (1.1) has at least a generalized 
solution u in ( )1,p

0W Ω , that is, for any ( )cC∞ϕ∈ Ω  
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( ) ( )a x, u, u dx f x,u, u dx 0
Ω Ω

∇ ∇ϕ + ∇ ϕ =∫ ∫  

SỰ TỒN TẠI NGHIỆM CỦA PHƯƠNG TRÌNH ELLIPTIC QUASILINEAR 
VỚI ĐIỀU KIỆN KÌ DỊ 

Chung Nhân Phú, Trần Tấn Quốc 
Trường Đại học Khoa học tự nhiên, ĐHQG-HCM 

TÓM TẮT: Trong bài báo này, chúng tôi khảo sát sự tồn tại nghiệm suy rộng của một 
lớp phương trình elliptic kì dị: 

( ) ( )( ) ( ) ( )( )diva x, u x , u x f x, u x , u x 0− ∇ + ∇ =  

Sử dụng phương pháp xấp xỉ Galerkin trong [2,10] và hàm thử được Drabek, Kufner, 
Nicolosi nêu trong [5], chúng tôi mở rộng một số kết quả về phương trình elliptic trong 
[2,3,4,6,10]. 

REFERENCES 

[1]. Adams A., Sobolev spaces, Academic Press, (1975) 
[2]. Browder F. E., Existence theorem for nonlinear partial differential equations, 

Pro.Sym. Pure Math., Vol XVI, ed. by Chern S. S. and Smale S., AMS, Providence, 
p 1-60, (1970). 

[3]. Dinca G., Jebelean P., Some existence results for a class of nonlinear equations 
involving a duality mapping, Nonlinear Analysis 46, p 47-363, (2001). 

[4]. Dinca G., Jebelean P., Mawhin J., Variational and Topological Methods for 
Dirichlet problems with p-Laplacian, Portugaliae Mathematica, Vol 58, Num 3, p 
340-378, (2001). 

[5]. Drabek P., Kufner A., Nicolosi F., Quasilinear Elliptic Equations with 
Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and 
Applications, Berlin – New York (1997) 

[6]. Duc D. M., Loc N. H., Tuoc P. V., Topological degree for a class of operators and 
applications, Nonlinear Analysis Vol 57, p 505-518, (2004). 

[7]. Fucik S., John O., Necas J., On the existence of Schauder bases in Sobolev spaces, 
Comment. Math. Univ. Carolin. 13, p 163-175,(1972).  

[8]. Krasnoselskii M.A., Topological Methods in the Theory of Nonlinear Integral 
Equations, Pergamon Press,  (1964). 

[9]. Singer I., Bases in Banach spaces I, Springer, (1970) 
[10]. Skrypnik I.V., Methods for Analysis of Nonlinear Elliptic Boundary Value 

Problems, AMS (1994) 
 
 
 
 
 
 


