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ABSTRACT: The finite element method (FEM) is used widely in analysis of elasto-
plastic behaviours for structures. The analysis often involves a two-stage process: first, the
internal force field acting on the structural material must be defined, and second, the response
of the material to that force field must be determined. In other words, the analysis of
behaviours of structural material is establishment relationships between stresses and strains in
the structure in the plastic as well as elastic ranges. It furnishes more realistic estimates of
load-carrying capacities of structures and provides a better understanding of the reaction of
the structural elements to the forces induced in the material.

Key words: Elasto-plastic, plasticity, Timoshenko, analysis

1. INTRODUCTION

It is generally regarded that the origin of plasticity, as a branch of mechanics of continua,
dated back to a series of papers from 1864 to 1872 by Tresca on the extrusion of metals, in
which he proposed the first yield condition. The actual formulation of the theory was done in
1870 by St. Venant, who introduced the basic constitutive relations for what today we would
call rigid, perfectly plastic materials in plane stress. A generalization similar to the results of
Levy was arrived independently by von Mises in a landmark paper in 1913, accompanied by
his well-known, pressure-insensitive yield criterion (J2-theory, or octahedral shear stress yield
condition).

In 1924, Prandtl extended the St. Venant-Levy-von Mises equations for the plane
continuum problem to include the elastic component of strain, and Reuss in 1930 carried out
their extension to three dimensions. The appropriate flow rule associated with the Tresca yield
condition, which contains singular regimes (i.e., corners or discontinuities in derivatives with
respect to stress), was discussed by Reuss in 1932 and 1933 [1].

In 1958, Prager further extended this general framework to include thermal effects (non-
isothermal plastic deformation), by allowing the yield surface to change its shape with
temperature.A very significant concept of work hardening, termed the material stability
postulate, was proposed by Drucker in 1951 and amplified in his further papers. With this
concept, the plastic stress-strain relations together with many related fundamental aspects of the
subject may be treated in a unified manner [1]

2. FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC BOUNDARY

2.1.Formulation of the elasto-plastic matrix: 3-D elasto-plastic stiffness matrix
The equation of the incremental stress-strain relation as follows [1]:
doij = C;fl deg = ( Ciu ™t C§kl)d€kl (1)
in which the incremental stress and strain tensors doj, deg; are generally expressed in vector
forms:
{dO'}T= {doydo, do. dr. dt., dr, } 2)
(e}l = (s, de, de. dy,. dy.. dyy } 3)
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and C,, is the tensor of elastic modulus expressed in matrix form:
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where G and K are the shear and bulk moduli, respectively.
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2.2. Elasto-plastic Timoshenko beam analysis

2.2.1.Timoshenko beam theory

This theory allows for transverse shear deformation effects while Euler-Bernoulli beam
theory takes no account of transverse shear deformation.
The governing equation: [Kf+ KsJ¢p-f=0

where, the submatrices of Kf and Ks and subvectors of f for element e.

Element stiffness matrix by using a 1-point Gauss-Legendre rule:

K'” is evaluated exactly using a 2-point Gauss-Legendre rule:
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2.2.2.Elasto-plastic layered Timoshenko beams

Formulations in the layer approach

Bending moment M and shear force Q by using the mid-ordinate rule:

where

M:EIE—Z—QJ ; 0=GAg,

X

EI=YE(bzt); GA=Y Ght,
l l

(12)-(13)
(14)-(15)

in which b/ is the layer breadth, ¢/ is the layer thickness, z/ is the z-coordinate at the middle of
the layer, £/ is Young’s modulus of the layer material, G/ is the shear modulus of the layer

material.

If the stress at the middle surface of a layer reaches the uniaxial yield stress of the layer

material, the whole layer is considered to be plastic and El is replaced byE, [1— E );

where H’ is the uniaxial strain hardening parameter.

3.BEAM PROBLEM
Finite element idealisation:
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Fig. 1. Finite element idealisation of meshes M1, M2, M3, M4, M5
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Fig. 2. Uniform load — displacement curves for meshes M, M,, M; and Owen’s FE

Table 1. Distribution of plastic layers of some sections at elements with various uniform load

of mesh M2
Uniform Element number
load (kN/mm) 1 2 3 4 5
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Fig. 3. Uniform load — displacement curves for meshes M2, M4 and M5
Table2. Comparison of displacement at mid-point of the beam with formulation of shear
stiffness matrix /Ks/ computed with 1-Gauss point and 2-Gauss point rule of mesh M2
(tolerance &5 = 107)

Uniform Displacement U (mm) Error (%)
load q 1-Gauss point 2-Gauss point

(kN/mm) (a) (b) a-b
0.4290 10.70154906 10.63478666 0.623857
0.4320 12.31206323 12.13690619 1.422646
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0.4325 12.83619912 12.57407891 2.042039
0.4365 19.45118787 18.37697980 5.522583
0.4370 20.46772651 19.30164554 5.697169

The Timoshenko beam theory has got a difficulty by using the shear stiffness matrix [Ks/
because it may lead to “locking” phenomenon with 2-point Gauss-Legendre rule formulation.

4. PLANE STRAIN AND AXISYMMETRIC PROBLEMS IN SOLID MECHANICS
APPLICATIONS

4.1. Problem description. Thick-walled cylinder under internal pressure problem

Material properties:
Elastic modulus: E = 2.1e4 dN/mm’
Poissons ratio: v= 0.3
Uniaxial yield stress: oy = 24.0 dN/mm’
Strain hardening parameter: H = (0.0
Geometry proportions:
Internal radius: a = 100 mm
External radius: b = 200 mm

100 / 2a=200 / 100
2b=400

Fig. 4. A thick-walled cylinder under

P=20 (N/mn?) p=20 (dN/mn?)
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Fig. 6. Finite element idealisation of axisymmetric
problem, mesh AM2

Fig. 5. Finite element idealisation of axisymmetric
problem, mesh AM1
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Fig. 7. Finite element idealisation of plane strain problem, mesh PM1
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Fig. 8. Radial displacement Ua(mm) of inner face of Mesh AM1, PM1 and Owen’s FE
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Fig. 9. Comparison of distribution of circumferential stress o, with internal pressure variables p
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Fig. 10. Comparison of distribution of circumferential stress oy with internal pressure variables p

and 18(dN/mm?) of mesh AM2, PM1 and Owen’s FE
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5. CONCLUSION

For the Timoshenko beam problem, the analysis of elasto-plastic behaviour of the beam
considered development of plastic zone in beam sections through determining plastic layers.
However, the Timoshenko beam theory has met a difficulty by using the shear stiffness matrix
[Ks] because it may lead to “locking” phenomenon with 2-point Gauss-Legendre rule
formulation. This phenomenon can be cured by using 1-point Gauss-Legendre rule formulation
for the shear stiffness matrix. The obtained solutions are sensitive with meshes. The more
number of layers is the more stiffness of the beam. Unfortunately, the experimental results are
not available to compare with the obtained solutions by this approach.

For the considered 2-D problem, the results obtained from the present FE of several
meshes, even for coarse mesh, is close. However, the obtained results of meshes of the
axisymmetric problem model are different with the results obtained by the plane strain problem
model. The variation stress was rather smooth without concentration of stress.

The modelisation of axisymmetric problem with each element having differential stiffness
matrix is especially adaptive for analyzing some thick-walled pipes structures made by
composite material! Elements containing differential material properties have differential
stiffness or they have differential stiffness matrix.

Application of the models can be used to analyse elasto-plastic behaviour for some thick-
walled pipes made by composite materials (especially reinforced concrete pipes) and
“sandwich” materials.

PHUONG PHAP PHAN TU HU'U HAN TRONG PHAN TiCH GIOI HAN PAN
HOI - DEO CUA MQT SO BAI TOAN CAU TRUC

Truong Tich Thien”, Cao Ba Hoang?®
(1) University of Technology, VNU-HCM
(2) Ministry of Construction

TOM TAT: Phwong phdp phan tir hitu han dwoc sir dung réng rdi trong viéc phdn tich
ing xir dan—déociia cac cau tric. Viéc phan tich thieong bao gom qud trinh hai giai doan: xdc
dinh truong noi luc tac dong lén vat liéu cdu triic va dap vng cua vdt liéu tng voi truong noi
lwc do. Noi cach khac, viéc phan tich cac ing xu cua cau tric la sw thiét lgp nhitng moi quan
hé giita g sudt va bién dang trong cdu tric bién dang déo cing nhu dan hoi. N6 dua den
nhitng danh gla thwc hon cdac kha nang chiu tai cua cac cdu triic va cung cdp sw hiéu biét tot
hon vé phan iing ciia cdc phan tie két cdu doi voi nhieng néi e bén trong vit liéu.
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