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ABSTRACT: The finite element method (FEM) is used widely in analysis of elasto-
plastic behaviours for structures. The analysis often involves a two-stage process: first, the 
internal force field acting on the structural material must be defined, and second, the response 
of the material to that force field must be determined. In other words, the analysis of 
behaviours of structural material is establishment relationships between stresses and strains in 
the structure in the plastic as well as elastic ranges. It furnishes more realistic estimates of 
load-carrying capacities of structures and provides a better understanding of the reaction of 
the structural elements to the forces induced in the material. 
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1. INTRODUCTION 

It is generally regarded that the origin of plasticity, as a branch of mechanics of continua, 
dated back to a series of papers from 1864 to 1872 by Tresca on the extrusion of metals, in 
which he proposed the first yield condition. The actual formulation of the theory was done in 
1870 by St. Venant, who introduced the basic constitutive relations for what today we would 
call rigid, perfectly plastic materials in plane stress. A generalization similar to the results of 
Levy was arrived independently by von Mises in a landmark paper in 1913, accompanied by 
his well-known, pressure-insensitive yield criterion (J2-theory, or octahedral shear stress yield 
condition). 

In 1924, Prandtl extended the St. Venant-Levy-von Mises equations for the plane 
continuum problem to include the elastic component of strain, and Reuss in 1930 carried out 
their extension to three dimensions. The appropriate flow rule associated with the Tresca yield 
condition, which contains singular regimes (i.e., corners or discontinuities in derivatives with 
respect to stress), was discussed by Reuss in 1932 and 1933 [1]. 

In 1958, Prager further extended this general framework to include thermal effects (non-
isothermal plastic deformation), by allowing the yield surface to change its shape with 
temperature.A very significant concept of work hardening, termed the material stability 
postulate, was proposed by Drucker in 1951 and amplified in his further papers. With this 
concept, the plastic stress-strain relations together with many related fundamental aspects of the 
subject may be treated in a unified manner [1] 

2. FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC BOUNDARY 

2.1.Formulation of the elasto-plastic matrix: 3-D elasto-plastic stiffness matrix 
 The equation of the incremental stress-strain relation as follows [1]: 
       dσij = ep

ijklC dεkl = ( ijklC + p
ijklC )dεkl                                               (1) 

in which the incremental stress and strain tensors dσij, dεij are generally expressed in vector 
forms: 
        {dσ}T = {dσx dσy dσz dτyz dτzx dτxy } (2) 
      {dε}T  = {dεx dεy dεz dγyz dγzx dγxy } (3) 
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and ijklC  is the tensor of elastic modulus expressed in matrix form: 
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where G and K are the shear and bulk moduli, respectively. 

                                 G = 
2(1 )

E
ν+

 and K = 
3(1 2 )

E
ν−

 (5) 

(E is Young's modulus and ν Poisson's ratio) 
p
ijklC  is the plastic stiffness tensor.  
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in which  
21 36G

H h
=  (7) 

2.2. Elasto-plastic Timoshenko beam analysis 

2.2.1.Timoshenko beam theory  
This theory allows for transverse shear deformation effects while Euler-Bernoulli beam 

theory takes no account of transverse shear deformation.  
The governing equation:  [Kf + Ks]ϕ - f = 0 (8) 
where, the submatrices of Kf and Ks and subvectors of f for element e. 
Element stiffness matrix by using a 1-point Gauss-Legendre rule: 
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( )e
sK  is evaluated exactly using a 2-point Gauss-Legendre rule: 
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2.2.2.Elasto-plastic layered Timoshenko beams 

Formulations in the layer approach 
Bending moment M and shear force Q by using the mid-ordinate rule: 

                                          θ⎛ ⎞= −⎜ ⎟
⎝ ⎠

d
M EI

dx
 ;       Q = G sAε  (12)-(13) 

where                            =∑ 2( )l l l l
l

EI E b z t ;  =∑ l l l
l

GA G b t  (14)-(15) 

in which bl is the layer breadth, tl  is the layer thickness, zl is the z-coordinate at the middle of 
the layer, El is Young’s modulus of the layer material, Gl is the shear modulus of the layer 
material. 
 If the stress at the middle surface of a layer reaches the uniaxial yield stress of the layer 

material, the whole layer is considered to be plastic and El is replaced by ⎛ ⎞
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where H’ is the uniaxial strain hardening parameter. 

3.BEAM PROBLEM 

Finite element idealisation: 
Uniform load q (KN/mm)
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Fig. 1. Finite element idealisation of meshes M1, M2, M3, M4, M5 
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Fig. 2. Uniform load – displacement curves for meshes M1, M2, M3 and Owen’s FE 

Table 1. Distribution of plastic layers of some sections at elements with various uniform load 
of mesh M2 
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Fig. 3. Uniform load – displacement curves for meshes M2, M4 and M5 
Table2. Comparison of displacement at mid-point of the beam with formulation of shear 
stiffness matrix [Ks] computed with 1-Gauss point and 2-Gauss point rule of mesh M2 
(tolerance εD = 10-3) 
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0.4325 12.83619912 12.57407891 2.042039 
0.4365 19.45118787 18.37697980 5.522583 
0.4370 20.46772651 19.30164554 5.697169 

  
The Timoshenko beam theory has got a difficulty by using the shear stiffness matrix [Ks] 

because it may lead to “locking” phenomenon with 2-point Gauss-Legendre rule formulation. 

4. PLANE STRAIN AND AXISYMMETRIC PROBLEMS IN SOLID MECHANICS 
APPLICATIONS 

4.1. Problem description:  Thick-walled cylinder under internal pressure problem 
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Fig. 4. A thick-walled cylinder under       
 

Material properties: 
      Elastic modulus: E = 2.1e4 dN/mm2 
      Poissons ratio: ν = 0.3 
      Uniaxial yield stress: σy = 24.0 dN/mm2 
      Strain hardening parameter: H’ = 0.0 
Geometry proportions: 
      Internal radius: a = 100 mm 
      External radius: b = 200 mm 
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Fig. 6. Finite element idealisation of axisymmetric 
problem, mesh AM2 
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Fig. 7. Finite element idealisation of plane strain problem, mesh PM1 
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Fig. 8. Radial displacement Ua(mm) of inner face of Mesh AM1, PM1 and Owen’s FE 
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Fig. 9. Comparison of distribution of circumferential stress σθ  with internal pressure variables p=8 and 

12(dN/mm2) of mesh AM2, PM1 and Owen’s FE. 
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Fig. 10. Comparison of distribution of circumferential stress σθ with internal pressure variables p=14 
and 18(dN/mm2) of mesh AM2, PM1 and Owen’s FE 
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5. CONCLUSION 

For the Timoshenko beam problem, the analysis of elasto-plastic behaviour of the beam 
considered development of plastic zone in beam sections through determining plastic layers. 
However, the Timoshenko beam theory has met a difficulty by using the shear stiffness matrix 
[Ks] because it may lead to “locking” phenomenon with 2-point Gauss-Legendre rule 
formulation. This phenomenon can be cured by using 1-point Gauss-Legendre rule formulation 
for the shear stiffness matrix. The obtained solutions are sensitive with meshes. The more 
number of layers is the more stiffness of the beam. Unfortunately, the experimental results are 
not available to compare with the obtained solutions by this approach. 

For the considered 2-D problem, the results obtained from the present FE of several 
meshes, even for coarse mesh, is close. However, the obtained results of meshes of the 
axisymmetric problem model are different with the results obtained by the plane strain problem 
model. The variation stress was rather smooth without concentration of stress. 

The modelisation of axisymmetric problem with each element having differential stiffness 
matrix is especially adaptive for analyzing some thick-walled pipes structures made by 
composite material! Elements containing differential material properties have differential 
stiffness or they have differential stiffness matrix. 

Application of the models can be used to analyse elasto-plastic behaviour for some thick-
walled pipes made by composite materials (especially reinforced concrete pipes) and 
“sandwich” materials. 

PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN TRONG PHÂN TÍCH GIỚI HẠN ĐÀN 
HỒI - DẺO CỦA MỘT SỐ BÀI TOÁN CẤU TRÚC 

Truong Tich Thien(1), Cao Ba Hoang(2) 
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TÓM TẮT: Phương pháp phần tử hữu hạn được sử dụng rộng rãi trong việc phân tích 
ứng xử đàn−dẻocủa các cấu trúc. Việc phân tích thường bao gồm quá trình hai giai đoạn: xác 
định trường nội lực tác động lên vật liệu cấu trúc và đáp ứng của vật liệu ứng với trường nội 
lực đó. Nói cách khác, việc phân tích các ứng xử của cấu trúc là sự thiết lập những mối quan 
hệ giữa ứng suất và biến dạng trong cấu trúc biến dạng dẻo cũng như đàn hồi. Nó đưa đến 
những đánh giá thực hơn các khả năng chịu tải của các cấu trúc và cung cấp sự hiểu biết tốt 
hơn về phản ứng của các phần tử kết cấu đối với những nội lực bên trong vật liệu. 
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