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Inverse dynamic analyzing of flexible link
manipulators with translational and rotational
joints

Bien Xuan Duong, My Anh Chu, and Khoi Bui Phan

Abstract— Inverse dynamic problem analyzing of
flexible link robot with translational and rotational
joints is presented in this work. The new model is
developed from single flexible link manipulator with
only rotational joint. The dynamic equations are built
by using finite element method and Lagrange
approach. The approximate force of translational
joint and torque of rotational joint are found based
on rigid model. The simulation results show the
values of driving forces at joints of flexible robot with
desire path and errors of joint variables between
flexible and rigid models. Elastic displacements of
end-effector are shown, respectively. There are
remaining issues which need be studied further in
future work because the error joints variables in
algorithm to solve inverse dynamic problem of
flexible with translational joint has not been
mentioned yet.

Index Terms—Inverse Dynamic , flexible link
manipulator, translational joint, elastic
displacements.

1 INTRODUCTION

ynamic analysis of mechanisms, especially
Drobots, is very important. The dynamic
equations of motion represent the behavior

of system, so accurate modeling and equations are
essential to successfully design of the control
system. The analysis of robots considering the
elastic characteristics of its members has been
considerable attention in recent years. Flexibility in
robots can affect position accuracy. Inverse
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dynamic of flexible robots is very essential for
selecting the actuator and designing the proper
control strategy. Most of the investigations on the
dynamic modeling of robot manipulators with
elastic arms have been confined to manipulators
with only revolute joints.

In the literature, most of the investigations on the
inverse dynamics of the flexible robot manipulator
copies with manipulators constructed with only
rotational joints [1-3]. Kwon and Book [1] present
a single link robot which is described and modeled
by using assumed modes method (AMM). Inverse
equation is derived in a state space form from direct
dynamic equations and using definitions concepts
which are causal system, anti-causal system and
Non-causal system. Based on these concepts, the
time-domain inverse dynamic method was
interpreted in the frequency-domain in detail by
using the two sided Laplace transform in the
frequency-domain and the convolution integral.
This method is limited to linear system. Stable
inversion method is studied for the same robot
configuration but the nonlinear effect is taken into
account [2]. An inversion-based approach to exact
nonlinear output tracking control is presented. Non-
causal inversion is incorporated into tracking
regulators and is a powerful tool for control.
Eliodoro and Miguel [3] propose a new method
based on the finite difference approach to discretize
the time variable for solving the inverse dynamics
of the robot. This method is a non-recursive and
non-iterative approach carried out in the time
domain in contrast with methods previously
proposed. By using either the finite element method
(FEM) or AMM, some other authors consider the
dynamic modeling and analysis of the flexible
robots with translational joint [4-8]. Pan et al [4]
presented a model R-P with FEM approach. The
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result is differential algebraic equations which are
solved by using Newmark method. Al-Bedoor and
Khulief [5] presented a general dynamic model for
R-P robot based on FEM and Lagrange approach.
They defined a concept which is translational
element. The stiffness of translational element is
changed. The prismatic joint variable is distance
from origin coordinate system to translational
element. The number of element is small because it
is hard challenge to build and solve differential
equations. Khadem [6] studied a three-dimensional
flexible n-degree of freedom manipulator having
both revolute and prismatic joint. A novel approach
is presented using the perturbation method. The
dynamic equations are derived using the Jourdain’s
principle and the Gibbs-Appell notation. Korayem
[7] also presented a systematic algorithm capable of
deriving equations of motion of N-flexible link
manipulators with revolute-prismatic joints by
using recursive Gibbs-Appell formulation and
AMM. However, the inverse dynamics modeling
and analysis of the generalized flexible robot
constructed with translational joint has not been
much mentioned yet.

The objective of the described work in what
follows was to present surveying inverse dynamics
problem of flexible link robot with translational and
rotational joints. The Lagrange approach in
conjunction with the finite element method is
employed in deriving the equations of motion.
Inverse dynamics problem of model with flexible
link can be approximately solved based on model
with rigid links. The forward kinematic, inverse
kinematic and inverse dynamics of rigid model are
used to find joints values from desire path and
driving force and torque which are inputs data for
flexible model problems. The force and torque of
joints can be found in such a way that the end point
of link 2 can track the desire path even though link
2 is deformed.

2 DYNAMIC MODELING

2.1 Dynamic model

In this work, we concern the dynamic model of
two link flexible robot which motions on horizontal
plane with translational joint for first rigid link and
rotational joint for second flexible link to formulate
the inverse dynamics problem. It is shown as Fig 1.
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Figure 1. Flexible links robot with translational and rotational
joints

The coordinate system XOY is the fixed frame.
Coordinate system X,0,Y, is attached to end point

of link 1. Coordinate system X,0,Y, is attached to
first point of link 2. The translational joint variable
d (t) is driven by F; (t) force. The rotational joint
variable ¢(¢) is driven by 7(¢) torque. Both joints
are assumed rigid. Link 1 with length L, is
assumed rigid and link 2 with length L, is assumed

flexibility. Link 2 is divided #n elements. The
elements are assumed interconnected at certain
points, known as nodes. Each element has two
nodes. Each node of element ; has 2 elastic

displacement variables which are the flexural

(uzj_1 Sl ) and the slope  displacements
(uzj,uzw). Symbol m, is the mass of payload on
the end-effector point. The coordinate r, of end

point of link 1 on XOY is computed as
T
oy :[Ll d(t)] (1)

The coordinate r,; of element j on X,0,Y, can

be given as
T
L, :[(j—l)lg +x; wj(xj,tﬂ ;(xj :0..16,) 2
Where, length of each element is /, =L% and

w; (x].,t) is the total elastic displacement of
element ; which is defined by [10]

w; (x_/’t):N_/(xj)Q ,/-(t) 3)

The vector of shape function N, (x j) is defined

as
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N, (xj ) :[ . (xj) f, (xj) f; (xj) f. (xj )] 4) Each element of inertial mass matrix M ; can be

. ted
Mode shape function f ,.(xj);(izl...4) can be computed as

. . . M (e ar02 Pozj. aroz 0 gy _
presented in [10]. The elastic displacement Q (¢) ;(s.e)= .[0 m, ) 20 x;s,e=12,.,6 (14)
: s e

of element ; is given as

. Where O, and Q, are the s”,e"” elementof O,
Q, (t)= [”2/‘71 Uy, Upjpy Uy j+2:| (5)  vector. It can be shown that M is of the form
The coordinate r,; of element j on X 0¥ can (m, m, m, m,, ms  my |
be written as m21 m22 m23 m24 m25 m26
r, =T, (6)
) M = my My
. |cosq(t) —sing(r)| . i (15)
Where, T,=| . is the my, My, j_base
sing(¢) cosq(t)
. . ms,  Ms,
transformation matrix from X,0,Y, to X,0,Y, .The m m
L7761 62 a
coordinate Iy, of element ; on XOY can be  yypere
computed as r JEI o9 3.
L, =T+, (7) 357 21007 70 T 4200 7
.. . 11 1 13 1
The elastic displacement Q () of element 7 is —ml? —ml ml>  ———m,l
) n M _| 210 105 420 140 (16)
given as B N E T S T
T 7007 42007 35 ¢ 210 ¢
Q u (t) = [u2n—l Uy,  Uppi ”2n+2] (®) 13 | 1 |
. . . . _ - 2 - 3 o 2 - 3
The coordinate r,, of end point of flexible link 2 "0 mle ~Ta™k ™l o™k |
on XOY can be computed as And,
L +L,cosq(t)—u,,, sing(r) = L =~y [ 65 B Lty ;
0E = . ©) ¢ 1207 —Lu,,.,)sing +6l,(1-2)cosq
d(t)+L,sing(t)+u,,, cosq(r) 1 "
. . .. = =—m,l T =—m,l’ m,, =m,,;
If assumed that robot with all of links are rigid, "= "s = 3" 050 = Mho =75 e COSE M = Mha:
the coordinate 1, ., on XOY can be written as m, =$mzlf(10/—7);mz4 61 (5~ 3)m,e =Lm (10 -3);
| L +L,cosq (7) (10) 1 2002~ 1)+ 12 (2ul, = 3uy uy ., +2042,,)
0F _rigid d (t) +1,sing (t) my, = mmzh 221, (1 1y =ty gty ;o) F13L (1t =y ) s
. . . +78(u2_ +ul )+ 701> +54u, _u,.
The kinematic energy of link 1 can be computed (4o 3ye) 00+ St
1 ,
as My = _@mzlj (57 =2)smy, = myysmyy = myymy, = myimy, = my,;
T1 :lml r()zl (11) My = My55Msy = Myss Mgy = My My = Mg

Where m, is the mass of link 1. The kinetic  The total elastic kinetic energy of link 2 is yielded
energy of element ; is determined as as

:_[ {%’} jzéng(t)Mijg(t) (12) ZTzJ )M,,Q(¢) (17)

The 1nert1al mass matrix M, is constituted from

Where m, is mass per meter of link 2. The )
matrices of elements follow FEM theory,

generalized elastic displacement ng (t) of respectively.  Vector  Q (t) represents  the

clement j is given as generalized coordinate of system and is given as

ng(t):[d(t) Q(Z) Uy Uy Uy ”2;+2]T(13) Q(t):[d(t) CI([) u . . Uy ”2n+2:|T (18)

The kinetic energy of payload is given as
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(19)

The kinetic energy of system is determined as

.
TP zzmt.r(Z)E

T=T AT, AT =2Q (OMQ() (0

Matrix M is mass matrix of system. The gravity
effects can be ignored as the robot movement is
confined to the horizontal plane. Defining £ and
I are Young’s modulus and inertial moment of

link 2, the elastic potential energy of element ; is
shown as P, with the stiffness matrix K, and

presented as [10]

)]dx LQOKQ, () @D

Where
00 0 0 0 0
00 0 0 0 0
12E1 6EI 12EI  6EI
00 I 2 - Ji JE
6E] 4E1 6EI 2EI
K.=|0 0 —_— - —
, FooL 1 | @
12E1 6EI 12EI 6EI
00 - 3 2 3 2
l(’ l(’ l@ l(’
6E] 2EI 6EI 4E]
00 — -V T2 T
lc le Ze lt n

The_ total elastic potential energy of system is
yielded as

P=3.7=30 ()KQ()

The stlffness matrix Kis constituted from
matrices of elements follow FEM theory similar
M matrix, respectively.

(23)

2.2 Dynamic equations of motion

Fundamentally, the method relies on the
Lagrange equations with Lagrange function
L =T-P are given by

d( oL oL
—| —— |-———=F(t 24
dt(aQ(t)j oQ(¢) (1) @4

Vector F(1) is the external generalized forces

acting on specific generalized coordinate Q(t) and

is determined as
=[F(t) () © 0o 0] @5
Size of matrices M,K is (2n +4)><(2n +4) and
size of F(t) and Q(t) is (2n+4)><l . The
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rotational joint of link 2 is constrained so that the
elastic displacements of first node of element 1 on
link 2 can be zero. Thus variables u ,u, are zero.
By enforcing these boundary conditions and FEM
theory, the generalized coordinate Q(7) becomes

n=[d(e) q(t) u
So  now,

Uy ] (26)
M,K is
(2n+2)x(2n+2) and size of F(r)and Q(¢) is

size of matrices

(2n + 2) x1 When kinetic and potential energy are

known, it is possible to express Lagrange equations
as shown

M(Q)Q+C(Q,Q)Q+DQ+KQ=F(r)  (27)
Where structural damping D and coriolis force
C matrices are calculated as

c(Q,Q)Q=M(Q)Q—§(%<QTM(Q>Q>j (8)
D =aM + K (29)

Where ¢ and g are the damping ratios of the
system which are determined by experience.

3 INVERSE DYNAMIC ANALYZING

Solving inverse dynamics problem can be
computed a feed-forward control to follow a
trajectory more accurately. Inverse dynamics of
flexible robot is the process of determining load
profiles to produce given displacement profiles as
function of time. Forward dynamics of flexible
robot is process of finding displacements given the
loads. This is much simpler than inverse dynamics
process because elastic displacements do not to
know before if there are not external forces which
effect on system. Unlike the rigid link, the inverse
dynamics of flexible robot is more complex
because of links deformations. We need to
determine the force and torque of actuators in such
a way that the end point of link 2 can still track the
desire path even though link 2 is deformed. Inverse
dynamics problem of model with flexible link can
be approximately solved based on model with rigid
links. Steps to solve are shown as Fig 2. The detail
of blocks in Fig 2 is presented in Fig 3, Fig 4, Fig 5
and Fig 6.
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Firstly, assuming that two link is rigid. The
translational and rotational joints of rigid model are
computed from desire path by solving inverse
kinematic rigid problem [9] which is shown in Fig.
3. Then driving force and torque at joints of rigid
model are computed by solving inverse dynamic
rigid [9] (Fig. 4). Results are input data for forward
dynamic flexible model follow equation (27) and
are shown in Fig. 5. Finally, the approximates force
and torque of joints are found by solving inverse
dynamic flexible problem with inputs data which
are joints values of rigid model and elastic
displacements. It is presented by block in Fig. 6.

4 NUMERICAL SIMULATIONS

Simulation specifications of flexible model are
given by Table 1.

TABLE 1
PARAMETERS OF DYNAMIC MODEL
Property Symbol Value
Length of link 1 (m) L, 0.05
Mass of link 1 and base m 14
(kg) : ‘
Parameters of link 2

Length of link (m) L, 0.3
Width (m) b 0.02
Thickness (m) h 0.001
Number of element n 5
Cross section area (m?) A=b.h 2.10°
Mass density (kg/m®) o 7850
Mass per meter (kg/m) m=p.A 0.157
(\;\31;12% S modulus E 51010
Inerjtial mament of cross I=b.h3/12 1.67x10-2
section (m*)
Damping ratios o, B 0.005;0.007
Mass of payload (g) m 10
Desire  path — on 0.25-0.1sin(t-
workspace in OX axis xE

/2)
(m)
Desire path on
workspace in OX axis yE 0.1sin(t)
(&)
Time simulation (s) T 2

Simulation results for inverse dynamic of
flexible robot with translational and rotational
joints are shown from Fig 7 to Fig 16. It is
noteworthy to mention that we need to find the
initial values of joints variable at t=0 when inverse
kinematic of rigid model is solved.
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Figure 7. Translational joint values of rigid and flexible model
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Figure 8. Rotational joint values of rigid and flexible model
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Figure 9. Deviation of translational joint variables between rigid
and flexible model

Fig. 7 and fig. 8 show the values of joint
variables between rigid and flexible model.
Translational and rotational joints values are small
because of short time simulation. Fig. 9 and fig. 10
describe deviation of these values. Maximum
deviation value of translational joint is 25 mm and
rotational joint variable is 0.17 rad. These
deviations appear from effect of elastic
displacements and error of numerical method
which is used to solving problems.
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Figure 15. Flexural displacement value at end-effector point in
flexible model
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Figure 16. Slope displacement value at end-effector point in
flexible model

Fig. 15 shows flexural displacement value at
end-effect point. Maximum value is 0.7 mm. Fig.
16 shown slope displacement at end-effect point.
Maximum value is 0.035 rad. Both values are small
because of short time simulation and small values
of joint variables.

In general, simulation results show that elastic
displacements of flexible link effect on dynamic
behaviors of system. Different between rigid model
and flexible model are clearly visible.

5 CONCLUSION

Nonlinear dynamic modeling and equations of
motion of flexible manipulators with translational
and rotational joints are built by using finite
element method and Lagrange approach. Model is
developed based on single link manipulator with
only rotational joint. Inverse dynamic problem of
flexible link manipulator is surveyed with an
algorithm which is based on rigid model.
Approximate driving force and torque at joints of
flexible link manipulator are found with desire
path. Derivation values of these also are shown.
Elastic displacements at end-effector point are
presented. However, there are remaining issues
which need be studied further in future work
because the error joints variables in algorithm to
solve inverse dynamic problem of flexible with
translational joint has not been mentioned yet.
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Phan tich dong luc hoc r(} bot c6 khau dan hoi
vo1 cac khop tinh tién va khdp quay

Duong Xuan Bién, Chu Anh My, Phan Bui Khoi

Tém tit - Bai bao nay trinh bay viéc phéan tich bai
toan dong luc hoc ngwoc cia hé ré bt cé6 khau dan
hdi véi cac khop tinh tién va khép quay. M6 hinh
dong Iwe hoc méi dwge phat trién tir hé rd bot co 1
khau dan hdi véi chi mét khép quay. Hé phuwong
trinh dong lwe hoc dwgc xiay dung dwa trén phuwong
phap Phan tir hitu han va hé phwong trinh Lagrange.
Luc din dgng cho khép tinh tién va mé men din dong
cho khép quay dwoe tinh xip xi dwa trén mé hinh rd
bét véi cac khiu gia thiét cimg tuyét dbi. Két qua md
phéng viéc phan tich dong lwc hoc ngwoe mo ta gia tri
lre/md men din ddng giira md hinh ctmg va mé hinh
dan hdi cing véi gia tri sai 1éch giita chiing. Gia tri
chuyén vi dan hdi tai diém thao tac cudi ciing dwoc
thé hién. Tuy nhién, vin con rit nhiéu vin dé cin
nghién ctru thém trong twong lai béi gia tri sai léch
ciia bién khép trong thuit toan giai dong lwe hoc
nguoc van chwa dwge xét dén trong bai bao nay.

Tir khéa - Pong luc hoc ngwee, khdu dan hdi,
khép tinh tieén, chuyén vi dan hoi



