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Abstract—The forming limit curve (FLC) is used 
in sheet metal forming analysis to determine the 
critical strain or stress values at which the sheet metal 
is failing when it is under the plastic deformation 
process, e.g. deep drawing process. In this paper, the 
FLC of the AA6061-T6 aluminum alloy sheet is 
predicted by using a micro-mechanistic constitutive 
model. The proposed constitutive model is 
implemented via a vectorized user-defined material 
subroutine (VUMAT) and integrated with finite 
element code in ABAQUS/Explicit software. The 
mechanical behavior of AA6061-T6 sheet is 
determined by the tensile tests. The material 
parameters of damage model are identified based on 
semi-experience method. To archive the various strain 
states, the numerical simulation is conducted for the 
Nakajima test and then the inverse parabolic fit 
technique that based on ISO 124004-2:2008 standrad 
is used to extracted the limit strain values. The 
numerical results are compared with the those of M-
K, Hill and Swift analytical models.   
 

Index Terms—forming limit curve, void growth, 
Nakajima drawing, Dung model. 
 

1 INTRODUCTION 

ver many years, the aluminum alloy sheets 
was widely applied in automotive and civil 

industries because of their outstanding advantages 
in high strength and light weight. Therefore, it is 
necessary to accurately describe their forming 
behaviors at large strains.  
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The FLC curve is usually predicted by the 
Marciniak-Kuczynski (M-K) theory model [1] that 
based on an inconsistency in sheet. Beside the FLC 
theory prediction, the Nakajima deep drawing 
model is also applied widely in experiment and 
numerical simulation to determine the forming 
limit curve. Accordingly, the Nakajima test is 
usually conducted for the several specimens to find 
the various strain paths that presents forming 
response of material from uniaxial to biaxial 
stretched loading state. In this method, the limit 
strains are determined by an inverse parabolic fit 
[2, 3] or time-dependent technique [2, 4]  at or after 
the onset of necking.  

The ductile fracture mechanism of metallic 
materials and their alloys has been proved to be due 
to the micro-void nucleation, growth and 
coalescence in matrix material [5, 6]. A cylindrical 
micro-void growth in rigid-plastic material based 
ductile fracture criterion was proposed by 
McClintock [5]. Dung [7] has modified the 
McClintock model for the ellipsoidal and 
cylindrical void growth in hardening matrix 
material under the remoted stress field and has 
proposed a constitutive model for porous ductile 
material. Employing a ductile fracture model to 
predict FLC is widely applied because it is 
considered as an effective remedy for saving more 
time than that of the experiment [3, 8]. 

In this study, we use a Dung’s porous ductile 
material model [7], conjugated with the Hill’48 
quadratic yield function to predict the FLC of 
AA6061-T6 aluminum alloy. The ductile fracture 
model is implemented by a vectorized user-defined 
material subroutine (VUMAT) in 
ABAQUS/Explicit software package. The seven 
specimens with various waist width would be used 
to numerical simulation and then the limit strains 
were attained by the inverse parabolic fit in 
accordance with ISO 12004-2:2008 standard. The 
present results are compared with the those of 
theory FLC models. 
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2 CONSTITUTIVE MODEL 

The  sheet  metal  is  usually  showing  an 
anisotropy  so  that  the  von  Mises  equivalent  stress 
function  in  the  original  Dung’s  model  [7]  is 
replaced by the Hill48 quadratic criterion [9]. 
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Here  ij    , 1,2,3i j =   are  components  of 

Cauchy  stress  tensor,  , , , , ,F G H L M N are 

anisotropic coefficients. 
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The  Lankford’s  coefficients  0R ,  45R   and  90R  

are determined by uniaxial tensile tests at  0o ,  45o  

and  90o  in rolling direction. 

Noting  that  for  isotropic  material,  the 

Lankford’s  coefficients  0 45 90 1R R R= = = ,  stress 

equivalent  Hill’48  becomes  stress  equivalent  von 
Mises [10]. 

The hardening rule of matrix material, 

 p
f f =   (3) 

Here  p is  equivalent  plastic  strain  of  matrix 

material. 
Gurson  [11]  has  been  introduced  a  yield 

function  based  on  mechanism  of  void  nucleation, 
growth and coalescences in matrix material. Based 
on McClintock’s void growth model  [5], Dung [7] 
proposed  not  only  a  yield  function  that  similar  to 
Gurson-Tvergaard-Needleman  (GTN)  model  [12] 
but  also  addition  of  a  explicitly  hardening 
parameter n to consider hardening effects of matrix 
material under deformation as follow: 
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Where,  the parameters  1q ,  2q   are proposed by 

Tvergaard  and  Needleman  [12],  n   is  hardening 

exponent  of  matrix  material,  e is  Hill’48 

equivalent  stress,  *f   is  function  of  void  volume 

fraction (VVF),  ij  is delta Kronecker. 
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Here  cf and  Ff  are critical and onset of fracture 

void  volume  fraction,  respectively,  1 2/uf q q=   is 

ultimate void volume fraction. 
The  evolution  of  void  volume  fraction  is 

computed as follow: 

growth nucleationdf df df=    (6) 

Here,  the  void  volume  fraction  growth  of  the 
presence voids in matrix material: 

 *1 p
growth ij ijdf f d = -   (7) 

Here  p
ijd  is plastic strain rate tensor. 

The evolution of nucleated void volume fraction 
during matrix material under deformation: 

p
nucleationdf Ad=   (8) 

The number of nucleated voids A  is  a  function 
of equivalent plastic strain of matrix material. 
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Where,  Nf ,  Ns ,  N are the parameters relative 

to the void nucleation during matrix material under 
deformation. 

3 NUMERICAL IMPLEMENTATION  

Based  on  the  numerical  algorithm  of  Aravas 
[13],  the  Dung’s  porous  ductile  model  is 
implemented  by  a  vectorized  user-defined 
subroutine  (VUMAT)  and  conjugated  with  finite 
element  code  of  ABAQUS/Explicit  software.  The 
implemented procedure for Dung’s model has been 
completed by Hao et al. [14]. 

4 EXPERIMENTAL WORKS 

The experimental works adopted in this section 
to identify the mechanical behavior of AA6061-T6 
aluminum alloy. The specimens to be designed and 
tested according to the ASTM-E8 standard [15].  

Tensile  tests  were  accomplished  with  a  thin 
sheet  that  its  nominal  thickness  of  2.0  mm.  To 
identify  Lankford’s  coefficients  (R0,  R45,  R90), 
having  least  three  dog-bone  specimens  on  each 
direction  of  the  rolling,  transverse  and  45  degrees 
to rolling direction have used. The initial  length of 
the gage marks is 50 mm for all tests. The geometry 
and  dimension of dog-bone  specimen are  given  in 
Figure 1.  
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Figure 1 Dog-bone specimen 

The  tensile  tests  help  to  obtain  the  mechanical 
properties of AA6061-T6 aluminum alloy as shown 
in TABLE 1. The difference of engineering stress-
strain behavior in three directions of 0o, 45o, 90o to 
rolling direction  is presented as Figure 2. The  true 
strain-stress  curve  that  used  to  fit  Swift  hardening 
rule is given in Figure 3. 

Assuming  that  the  isotropic  hardening  rule 
obeys  Swift  model  [16],  fitting  true  strain-stress 

curve,  the  hardening  parameters  ( K ,  0 ,  n )  is 

obtained  as  TABLE  .  The  Lankford’s  coefficients 
are calculated by the eq. (10). 
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Where  2  and  3 are the transverse and normal 

strains,  respectively.  l0,  lf,  w0,  wf  (0  and  f  indexes 
imply  initial  and  final  values)  are  the  gage  length 

and width of dog-bone specimen,  0 ,45 ,90o o o = . 

 

 
Figure 2. Experimental load behavior in various directions 

 
Figure 3. True stress-strain curve 

5 PARAMETER CALIBRATION 

To  apply  the  porous  plastic  material  model  to 
prediction  of  ductile  fracture,  8  parameters 

 1 2 0, , , , , , ,F C N N nq q f f f s f   must  be  identified. 

In general, any identification procedure that used to 
identify  all  these  parameters  would  be  still 
requirement  of  the  computational  time  cost.  In 
addition, for each material type, may be have more 
one  set  of  material  parameter  (non-uniqueness  of 
the  solution)  [17-19].    A  literature  review  of 
material parameter identification for porous ductile 
model is necessary in  this work. On that basis,  the 
material  parameters  can be  selected  and  calibrated 
for Dung’s model. 

Two  parameters  1 1.5q =   and
2

2 1 2.25q q= =  

that proposed by Tvergaard [20] to correct result of 
numerical calculation and original Gurson model.  

The  initial  VVF  parameter  f0  is  determined  by 
observation  of  micrograph  of  virgin  material  [21, 
22]  or  calibration  [23].For  AA6061  aluminum 
alloy,  value  of  initial  VVF  is  provided  by  several 
researchers  such  as  Agarwal  et  al.  [22]    (f0    = 
0.0014),  Xu  et  al.  [21]  (f0  =  0.0025),  Shen  et  al. 
[23]  (f0  =  0.0005).  Therefore,  a  suitable  range  for 
the  value  of  f0  VVF  of  AA6061-T6  can  be  lie  in 
(0.0005-0.0025). 

The  parameter  sN  can  be  explained  through  a 
little  metrology  significance  of  nucleated  strain 
measurements. The distribution of nucleated  strain 
values εN  is assumed  to obey a normal distribution 
with  a  standard  deviation  sN.  Qualitatively,  a  low 
standard  deviation  shows  that  the  values  of 
nucleated  strain  εN  tend  to  be  close  to  the  mean 
(also  called  the  expected  value)  of  the  data  set, 
while  a  high  standard  deviation  indicates  that  the 
values of nucleated  strain εN  are  spread out over  a 
wider range of values. In this work, a good quality 
of  nucleated  strain  measurements  is  assumed  to 
obtain so that value of standard deviation sN of 0.05 
is selected. 

Two  parameters  εN  and  fN  are  usually  used  as 

TABLE 1 
MECHANICAL PROPERTIES OF AA6061-T6 ALUMINUM 

ALLOY 

Young’s 
modulus  

( E ) 

Yield 
stress  

( 0 ) 

Poisson’s 
ratio  
( ) 

74.6 GPa  244 MPa  0.314 

TABLE 2 
MATERIAL PARAMETERS OF AA6061-T6 ALUMINUM 

ALLOY 

K (MPa)  0   n 

Lankford’s 
coefficients 

R0  R45  R90 

489.74  0.02  0.179  0.55  0.52  0.53 
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the fitting parameters. In practice, it is difficulty to 
recognize exactly the moment at void nucleation so 
that  the  value  of  nucleated  strain  εN  is  relatively 
selected  based  on  onset  of  material  damage  [19]. 
Accordingly,  a  comparison  of  force  vs. 
displacement  curve  between  experiment  and  finite 
element  method  (FEM)  result  of  pure  Hill48 
plasticity  theory  (no  damage)  is  performed  to 
estimate the value of nucleated strain εN. 

The  mesh  size of 0.5  mm  x  0.5  mm at  critical 
zone  is  used  to  mesh  for  dog-bone  specimen.  The 
displacement controlled load is applied to top edge 
of  specimen.    The  element  type  of  3D,  reduced 
integration,  8-nodes  (C3D8R)  used  for  dog-bone 
specimen. 

 
Figure 4. Graphics of determination of nucleated strain εN 

Values of nucleated, critical and fractured VVF 
(fN,  fC,  fF)  are  calibrated  by  matching  load-
displacement curve of dog-bone specimen between 
experiment and FEM. 

The  FEM  simulations  are  performed  for  nine 
values of fN = 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 
0.04,  0.045,  0.05.  A  best  matched  result  of  load-
displacement  curve  between  FEM  and  experiment 
is selected to fit the values of fC and fF in next step. 

The  evolution  stage  of  VVF  from  fC  to  fF 
increased  more  rapid  than  that  of  previous  period 
due to the coalescence of micro-voids lead to quick 
losing of loading carrying of matrix material. There 
are  25  possible  combinations  of  fC  and  fF  from 
TABLE  .  However,  because  of  the  constrain 

C Ff f  so that have only 24 runs in ABAQUS is 

possible to obtain a best combination of (fC, fF) pair 
that matches the experimental curve. 

Finally, the best fit parameters for predicting of 
ductile fracture are given in TABLE . 

The displacement – load curve corresponding to 

the best  fitted material parameters are presented  in 
Figure 5. 

 

 

 
Figure 5. The displacement – load curve after calibration 

6 FORMING LIMIT CURVE 

6.1 Nakajima test 

The Nakajima’s type deep drawing is conducted 
for  the  seven  specimens  with  waist  width  w =  30, 
55,  70,  90,  120,  145  and  the  circular  shape  as 
Figure 6a. The  setup of deep drawing  is presented 
in Figure 6b. The blank used mesh  type of 3D, 8-
nodes,  reduced  integration  (C3D8R)  whereas  the 
punch,  holder  and  die  are  assumed  absolute  hard 
with 3D analytical rigid type. The initial mesh size 
at  analysis  zone  is  1.0  mm  x  1.0  mm.  Three 
element  layers  through  the  thickness  of  blank  are 

used. The blank holding force  450holdF   kN is used 

to avoid any sliding phenomenon and early damage 
at the blank holding region. The friction coefficient 
between  the  blank  and  punch  surfaces  is  0.03 
whereas  the  friction coefficient value of 0.1 on all 
remain contact surfaces is adopted.  

 

 

Figure 6 (a) Blank and (b) deep drawing setup (unit: mm) 

TABLE 3 
THE VALUES OF CRITICAL AND FRACTURE VVF FOR CALIBRATION 

fC  0.015  0.035  0.06  0.08  0.15 

fF  0.08  0.15  0.17  0.2  0.25 

 
TABLE 4 

BEST FIT VALUES OF MATERIAL PARAMETERS FOR DUNG MODEL 

q1  q2  fF  fC  f0  εN  sN  fN 

1.5  2.25  0.15  0.035  0.0018  0.09  0.05  0.03 
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After the blank is clamped and the die is fixed, 
the blank is stretched by moving the punch in 
vertical direction until its fracture occurs. 

 
(a) 

 
                       (b) 

Figure 7 The extracted path along cross section of W30 and 
W120 specimens 

The limit strains are then determined based on 
cross-section method that its basic concept is the 
analysis of the measured strain data along 
predefined cross sections at onset necking time. 
The detail procedure of this method is given in ISO 
12004-2:2008 – part 2 standard. Accordingly, the 
principal strain average value of three extracted 
paths along cross section of each specimen (Figure 
7) are taken to fit an inverse parabola. 

The best fit inverse parabola is limited by the fit 
boundaries that presented through the inner (purple 
dot  square  line)  and  outer  (green  solid  line)  fit 
window limits as Figure 8.  

The size of inner fit window (L0) is determined 
by the highest peaks of the second derivative of the 
second  order  parabola  that  regressed  by  three 
consecutive points of principal strain data within a 
range of 6 mm.  
 

 
(a) 

 

 
(b) 

Figure 8 The curve fit of the principal strain data and the limit 
strain determination . (a) W30 and (b) W120 specimens 

The size of the outer limit window should have 
at least 5 points and calculated as follows: 

L R FW =W =W /2   (11) 

Where  WL  left  fit  window  width,  WR  right  fit 
window width 

 F 2 1W 10 1 / =       (12) 

With 

 2 2, 2,1 / 2 BL BR  =     (13) 

 1 1, 1,1 / 2 BL BR  =    (14) 

The  subscripts  “BL”  and  “BR”  are  used  for  ε1 
and  ε2  of  the  left  and  right  inner  boundaries, 
respectively. 

 
After  determination  of  fit  boundaries,  the 

inverse best  fit parabola  is  fitted by all data points 
within  fit  window  (WL  and  WR).  The  resulting 
value in the crack position  is  the wanted limits for 
principal strains ε1 and ε2. 
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6.2 M-K model 

The  Marciniak-Kuczynski  (M-K)  model  is 
probably  the  most  well-known and  widely  used  to 
predict  analytical  FLC  curve  [24].  Marciniak  and 
Kuczynski  introduced  imperfections  into  sheets  to 
describe  necking  condition.  This  theory  based  on 
the  material  inhomogeneity  assumption,  i.e.,  there 
is  groove  which  is  perpendicular  to  the  axial  of 
maximum principal stress on the sheet surface (see 
Figure  9).  This  initial  inhomogeneity  grows 
continuously  and  eventually  becoming  a  localized 
necking.  From  the  Fig.9,  the  zone  (b)  is  groove 
zone,  it  is  assumed  the  zone  (a)  is  homogeneous 
zone and obey uniform proportional loading states. 
The  x,  y,  z  axes  correspond  to  rolling,  transverse 
and normal directions of the sheet, whereas 1 and 2 
represent the principal stress and strain directions in 
the  homogeneous  region.  Meanwhile,  the  set  of 
axes aligned to  the groove is represented by n, t, z 
axes,  where  t  is  the  longitudinal  one.  In  the  sheet 
metal forming process,  the material  is firstly under 
plastic  deformation  with  constant  incremental 
stretching  until  maximum  force  happen.  The  M-K 
model  assumes  the  flow  localization  occurs  in  the 
groove  when  a  critical  strain  is  reached  in  the 
homogeneous  region.  Then,  the  values  of  strain 
increment  in  two  regions  are  compared  with 

specific criterion  (e.g., dε1b 10dε1a)  and  finally  the 
material major and minor strain limits are obtained 
on the forming limit diagrams. 

Because of M-K model based on an assumption 
of  plane  stress  state  so  that  Hill48  yield  criterion 
can be written as follow 
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Figure 9 Marciniak-Kuczynski (M-K) model 

Because of M-K model based on an assumption 
of  plane  stress  state  so  that  Hill48  yield  criterion 

can be written as follow 
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1 1
i

R R R

R R R
    

 
=  - 

   
 (17) 

 
 
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1 2
1

1 1
i

R R R

R R R


  



 
= =  - 

   
  (18) 

The behavior of material  can be  represented  in 
the form of power law 

n m
i i iK  =     (19) 

Where  n  hardening  exponent,  m  strain  rate 
exponent. 

The  ratio  of  the  principal  stress  and  strain  are 
defined as follows: 

2 2 2

1 1 1

,
d

d

  
 

  
= = =    (20) 

The associated flow rule is expressed by 

1

1

id d


 



=


 and  2

2

id d


 



=


  (21) 

The yield criterion can be rewritten as follows 

   

 

1 2

90 1 0 90 1 2 0 2 0 90 1 2

3

90 1 0 2 90 01
i

i

d d
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d d
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     

 

  

=
 - - -

- -
= =

 

  (22) 
Thus, the strain rate can be written as follows: 

 
 

0 90 0 902

1 90 0 0 90

1

1

R R R Rd

d R R R R




 

 -
= =

 -
   (23) 

The ratio of strain rate can be calculated 

3 /d dt t =   (24) 

   
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3 1 2
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R R R R
d d d

R R R R R R

 
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 
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  (25) 
Introducing  a  new  parameter  β  and  using  eq. 

(22) 

 
 

90 0

1 90 0

1

1 1
i

R Rd

d R R




 


= =

 -  
  (26) 

The ratio of initial thickness between (b) and (a) 
zones  

 
0

0

0

b
mk

a

t
f

t
=   (27) 

Because of thickness strain   3 0ln /t t =   so that 

the current thickness of sheet can be calculated as 

 0 3expt t = . The present thickness ration is 

determined as follow 

 0
3 3

0

expb b
b a

a a

t t

t t
 = -   (28) 
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or 

   3 30
expmk b amk

f f  = -   (29) 

The equilibrium condition requires that the applied 
load remains constant between (a) and (b) zone, 
therefore 

1 1a bF F=   (30) 

If the sheet width is a unity then 

1 1a a b bt t =   (31) 

or 

1 1a mk bf =   (32) 

From eq. (18) 

a ia mk b ibf   =   (33) 

From eq. (19) 

   
n nm m

a ia ia ia mk b ib ib ibd f d        =     (34) 

From eq. (29) 

       3 30
exp

n nm m
a ia ia ia b a b ib ib ibmk

d f d          = -  

  (35) 
From eq. (23), (30) and (31), the strain relation 

between the (a) and (b) zones is given as follow 
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m

n a
a ia ia

a

m

n b
b a b ib ibmk

b

d

f d


  
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

 
  

 

 
= -   

 
  (36) 

In general, the equilibrium equation (36)  can be 
solved  numerically  by  using  the  supplementary 
equations (18), (23) and (26). Given a stress ratio in 
(a) zone (αa) and a finite increment of strain is also 
imposed  in  (a)  zone  ( εa  =  0.001).  The  values  of 
hardening  exponent  n  =  0.179  and  of  strain  rate 
exponent  m  =  0  are  chosen.  Ratio  of  initial 

thickness between (b) and (a) zones   0
0.996

mk
f = . 

Then,  the  numerical  computation  is  performed  by 
using  a  computational  program,  e.g.  MatLab 
language,  to  determine  the  limit  strain  of  each 
strain path in the FLC. The limit strains in (a) zone 
(ε1a, ε2a) are determined once condition (dε1b/dε1a > 
10) is satisfied. 

6.3 Hill model 

Hill [25] proposed a model to describe the curve 
on  the  left  side  of  the  FLC  (ε2  <  0)  based  on  the 
local  necking  condition.  Principal  strains  are 
calculated as follows, 

1
1

n



=


  and  2

1

n



=


  (37) 

Where  2 1/d d  =   denotes  strain  ratio. 

According to eq. (37), the FLC calculated based on 

Hill’s  model  is  only  dependent  on  the  hardening 
coefficient of n = 0.179 and strain ratio    that lie 

in range from -0.5 to zero. 

6.4 Swift model 

Swift  [16]  introduced  a  criterion  for  predicting 
FLC  based  on  the  onset  of  diffuse  necking 
criterion. 
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1 2
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1 2 2
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 - 
  (39) 

It is important to remark that, for plane strain (β 
= 0) and equibiaxial tension (β = 1). Similar to Hill 
model,  given  hardening  coefficient  of  n  =  0.179 
and strain ratio    that lie in range from zero to 1.0, 

the right side of FLC curve is plotted in Fig. 10. 
 

 
 
Figure 10. FLC curve of AA6061-T6 aluminum alloy sheet 

 
Finally,  the  FLC curve  of  AA6061-T6  sheet  is 

obtained by the Nakajima deep drawing simulation 
using  a  porous  ductile  model  and  the  analytical 
model as shown in Figure 0. The results show that 
the  FLC  of  three  models  are  consistent  with  each 
other at plane strain state and the FLC curve shape 
of Dung-Hill48 model is agree with that of Hill and 
Swift models. While that the M-K model displays a 
big shift large compare to two remaining models. 

 

7 CONCLUSION 

In  this  study,  we  present  a  FLC  determination 
of  AA6061-T6  aluminum  alloy  sheet.  Material 
properties  and  anisotropy  coefficients  were 
obtained from tensile test. Applying Dung’s porous 
ductile  model  to  determined  FLC  through 
numerical  simulation  of  Nakajima  deep  drawing. 
The  inverse  parabolic  fit  technique  that  based  on 
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ISO 12004-2:2008-part standard is used to achieve 
the limit strain values in forming process. Using the 
famous  theory  models  of  the  FLC  calculation  by 
M-K,  Swift  and  Hill,  the  analytical  FLC  curve  is 
proposed.  The  analytical  FLC  curve  shape  of  Hill 
and Swift models agrees with that of the numerical 
data  whereas  the  predicted  FLC  curve  in  biaxial 
loading  states  using  M-K  model  is  fairly  large 
deviation from that of remaining models.  
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Tóm tắt - Đường cong giới hạn gia công được sử 
dụng trong phân tích gia công kim loại dạng tấm 
nhằm xác định các giá trị ứng suất hoặc biến dạng tới 
hạn mà tại các giá trị tới hạn này vật liệu sẽ bị hư 
hòng khi chịu biến dạng dẻo, ví dụ như quá trình dập 
kim loại. Bài báo này nhằm dự đoán giới hạn gia công 
của tấm hợp kim nhôm AA6061-T6 dựa trên mô hình 
nứt dẻo vi mô. Mô hình cơ sở được lập trình dưới 
dạng chương trình vật liệu người dùng kết hợp với 
mã phần tử hữu hạn trong phần mềm 
ABAQUS/Explicit. Các thí nghiệm kéo đơn trục được 
thực hiện để xác định ứng xử cơ tính của vật liệu. Các 
tham số đầu vào của mô hình cơ sở được xác định 
dựa trên phương pháp bán kinh nghiệm. Để đạt được 
các trạng thái biến dạng khác nhau, các mẫu dập sâu 
Nakajima được sử dụng để mô phỏng và kỹ thuật hồi 
quy parapol ngược theo chuẩn ISO 124004-2:2008 
được áp dụng để tính các giá trị biến dạng giới hạn. 
Các kết quả đạt được thông qua mô phỏng số sẽ được 
so sánh với các mô hình giải tích như M-K, Hill và 
Swift. 
 

Từ khóa - đường cong giới hạn gia công, tăng 
trưởng lỗ hổng vi mô, dập Nakajima, mô hình N. L. 
Dung 

Xác định đường cong giới hạn gia công  
tấm hợp kim nhôm AA6061-T6 
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